aboutsummaryrefslogtreecommitdiff
path: root/documentation/cxx/hybrid/guide/index.xhtml
blob: b555009f04df2836459104e27db8761cdc8d09f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>
  <title>Embedded C++/Hybrid Mapping Getting Started Guide</title>

  <meta name="copyright" content="&copy; 2005-2009 Code Synthesis Tools CC"/>
  <meta name="keywords" content="xsd,xml,schema,c++,mapping,data,binding,parse,serialize,create,modify,write,validation,embedded,mobile"/>
  <meta name="description" content="Embedded C++/Hybrid Mapping Getting Started Guide"/>

  <link rel="stylesheet" type="text/css" href="../../../default.css" />

<style type="text/css">
  pre {
    padding    : 0 0 0 0em;
    margin     : 0em 0em 0em 0;

    font-size  : 102%
  }

  body {
    min-width: 48em;
  }

  h1 {
    font-weight: bold;
    font-size: 200%;
    line-height: 1.2em;
  }

  h2 {
    font-weight : bold;
    font-size   : 150%;

    padding-top : 0.8em;
  }

  h3 {
    font-size   : 140%;
    padding-top : 0.8em;
  }

  /* Adjust indentation for three levels. */
  #container {
    max-width: 48em;
  }

  #content {
    padding: 0 0.1em 0 4em;
    /*background-color: red;*/
  }

  #content h1 {
    margin-left: -2.06em;
  }

  #content h2 {
    margin-left: -1.33em;
  }

  /* Title page */

  #titlepage {
    padding: 2em 0 1em 0;
    border-bottom: 1px solid black;
  }

  #titlepage .title {
    font-weight: bold;
    font-size: 200%;
    text-align: center;
  }

  #titlepage #first-title {
    padding: 1em 0 0.4em 0;
  }

  #titlepage #second-title {
    padding: 0.4em 0 2em 0;
  }

  /* Lists */
  ul.list li, ol.list li {
    padding-top      : 0.3em;
    padding-bottom   : 0.3em;
  }

  div.img {
    text-align: center;
    padding: 2em 0 2em 0;
  }

  /*  */
  dl dt {
    padding   : 0.8em 0 0 0;
  }

  /* TOC */
  table.toc {
    border-style      : none;
    border-collapse   : separate;
    border-spacing    : 0;

    margin            : 0.2em 0 0.2em 0;
    padding           : 0 0 0 0;
  }

  table.toc tr {
    padding           : 0 0 0 0;
    margin            : 0 0 0 0;
  }

  table.toc * td, table.toc * th {
    border-style      : none;
    margin            : 0 0 0 0;
    vertical-align    : top;
  }

  table.toc * th {
    font-weight       : normal;
    padding           : 0em 0.1em 0em 0;
    text-align        : left;
    white-space       : nowrap;
  }

  table.toc * table.toc th {
    padding-left      : 1em;
  }

  table.toc * td {
    padding           : 0em 0 0em 0.7em;
    text-align        : left;
  }

  /* Built-in table */
  #builtin {
    margin: 2em 0 2em 0;

    border-collapse   : collapse;
    border            : 1px solid;
    border-color      : #000000;

    font-size        : 11px;
    line-height      : 14px;
  }

  #builtin th, #builtin td {
    border: 1px solid;
    padding           : 0.9em 0.9em 0.7em 0.9em;
  }

  #builtin th {
    background : #cde8f6;
  }

  #builtin td {
    text-align: left;
  }

  /* XML Schema features table. */
  #features {
    margin: 2em 0 2em 0;

    border-collapse   : collapse;
    border            : 1px solid;
    border-color      : #000000;

    font-size        : 11px;
    line-height      : 14px;
  }

  #features th, #features td {
    border: 1px solid;
    padding           : 0.6em 0.6em 0.6em 0.6em;
  }

  #features th {
    background : #cde8f6;
  }

  #features td {
    text-align: left;
  }
</style>


</head>

<body>
<div id="container">
  <div id="content">

  <div class="noprint">

  <div id="titlepage">
    <div class="title" id="first-title">Embedded C++/Hybrid Mapping</div>
    <div class="title" id="second-title">Getting Started Guide</div>

  <p>Copyright &copy; 2005-2009 CODE SYNTHESIS TOOLS CC</p>

  <p>Permission is granted to copy, distribute and/or modify this
     document under the terms of the
     <a href="http://www.codesynthesis.com/licenses/fdl-1.2.txt">GNU Free
     Documentation License, version 1.2</a>; with no Invariant Sections,
     no Front-Cover Texts and no Back-Cover Texts.
  </p>

  <p>This document is available in the following formats:
     <a href="http://www.codesynthesis.com/projects/xsde/documentation/cxx/hybrid/guide/index.xhtml">XHTML</a>,
     <a href="http://www.codesynthesis.com/projects/xsde/documentation/cxx/hybrid/guide/cxx-hybrid-e-guide.pdf">PDF</a>, and
     <a href="http://www.codesynthesis.com/projects/xsde/documentation/cxx/hybrid/guide/cxx-hybrid-e-guide.ps">PostScript</a>.</p>

  </div>

  <h1>Table of Contents</h1>

  <table class="toc">
    <tr>
      <th></th><td><a href="#0">Preface</a>
        <table class="toc">
          <tr><th></th><td><a href="#0.1">About This Document</a></td></tr>
          <tr><th></th><td><a href="#0.2">More Information</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>1</th><td><a href="#1">Introduction</a>
        <table class="toc">
          <tr><th>1.1</th><td><a href="#1.1">Mapping Overview</a></td></tr>
          <tr><th>1.2</th><td><a href="#1.2">Benefits</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>2</th><td><a href="#2">Hello World Example</a>
        <table class="toc">
          <tr><th>2.1</th><td><a href="#2.1">Writing XML Document and Schema</a></td></tr>
          <tr><th>2.2</th><td><a href="#2.2">Translating Schema to C++</a></td></tr>
          <tr><th>2.3</th><td><a href="#2.3">Implementing Application Logic</a></td></tr>
          <tr><th>2.4</th><td><a href="#2.4">Compiling and Running</a></td></tr>
	  <tr><th>2.5</th><td><a href="#2.5">Adding Serialization</a></td></tr>
	  <tr><th>2.6</th><td><a href="#2.6">A Minimal Version</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>3</th><td><a href="#3">Mapping Configuration</a>
        <table class="toc">
          <tr><th>3.1</th><td><a href="#3.1">Standard Template Library</a></td></tr>
          <tr><th>3.2</th><td><a href="#3.2">Input/Output Stream Library</a></td></tr>
          <tr><th>3.3</th><td><a href="#3.3">C++ Exceptions</a></td></tr>
          <tr><th>3.4</th><td><a href="#3.4">XML Schema Validation</a></td></tr>
	  <tr><th>3.5</th><td><a href="#3.5">64-bit Integer Type</a></td></tr>
          <tr><th>3.6</th><td><a href="#3.6">Parser and Serializer Reuse</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>4</th><td><a href="#4">Working with Object Models</a>
        <table class="toc">
          <tr><th>4.1</th><td><a href="#4.1">Namespaces</a></td></tr>
          <tr><th>4.2</th><td><a href="#4.2">Memory Management</a></td></tr>
          <tr><th>4.3</th><td><a href="#4.3">Attributes and Elements</a></td></tr>
          <tr><th>4.4</th><td><a href="#4.4">Compositors</a></td></tr>
          <tr><th>4.5</th><td><a href="#4.5">Accessing the Object Model</a></td></tr>
          <tr><th>4.6</th><td><a href="#4.6">Modifying the Object Model</a></td></tr>
          <tr><th>4.7</th><td><a href="#4.7">Creating the Object Model from Scratch</a></td></tr>
	  <tr><th>4.8</th><td><a href="#4.8">Customizing the Object Model</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>5</th><td><a href="#5">Mapping for Built-In XML Schema Types</a>
        <table class="toc">
          <tr><th>5.1</th><td><a href="#5.1">Mapping for <code>QName</code></a></td></tr>
          <tr><th>5.2</th><td><a href="#5.2">Mapping for <code>NMTOKENS</code> and <code>IDREFS</code>s</a></td></tr>
          <tr><th>5.3</th><td><a href="#5.3">Mapping for <code>base54Binary</code> and <code>hexBinary</code>s</a></td></tr>
	  <tr><th>5.4</th><td><a href="#5.4">Time Zone Representation</a></td></tr>
	  <tr><th>5.5</th><td><a href="#5.5">Mapping for <code>date</code></a></td></tr>
	  <tr><th>5.6</th><td><a href="#5.6">Mapping for <code>dateTime</code></a></td></tr>
	  <tr><th>5.7</th><td><a href="#5.7">Mapping for <code>duration</code></a></td></tr>
	  <tr><th>5.8</th><td><a href="#5.8">Mapping for <code>gDay</code></a></td></tr>
	  <tr><th>5.9</th><td><a href="#5.9">Mapping for <code>gMonth</code></a></td></tr>
	  <tr><th>5.10</th><td><a href="#5.10">Mapping for <code>gMonthDay</code></a></td></tr>
	  <tr><th>5.11</th><td><a href="#5.11">Mapping for <code>gYear</code></a></td></tr>
	  <tr><th>5.12</th><td><a href="#5.12">Mapping for <code>gYearMonth</code></a></td></tr>
	  <tr><th>5.13</th><td><a href="#5.13">Mapping for <code>time</code></a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>6</th><td><a href="#6">Parsing and Serialization</a>
        <table class="toc">
          <tr><th>6.1</th><td><a href="#6.1">Customizing Parsers and Serializers</a></td></tr>
        </table>
      </td>
    </tr>

  </table>
  </div>

  <h1><a name="0">Preface</a></h1>

  <h2><a name="0.1">About This Document</a></h2>

  <p>The goal of this document is to provide you with an
     understanding of the C++/Hybrid programming model and allow you
     to efficiently evaluate XSD/e against your project's technical
     requirements. As such, this document is intended for embedded
     C++ developers and software architects who are looking for an
     embedded XML processing solution. Prior experience with XML
     and C++ is required to understand this document. Basic
     understanding of XML Schema is advantageous but not expected
     or required.
  </p>


  <h2><a name="0.2">More Information</a></h2>

  <p>Beyond this guide, you may also find the following sources of
     information useful:</p>

  <ul class="list">
    <li><a href="http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml">XSD/e
        Compiler Command Line Manual</a></li>

    <li><a href="http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml">Embedded
         C++/Parser Mapping Getting Started Guide</a>. The C++/Hybrid
         mapping uses C++/Parser for XML parsing.</li>

    <li><a href="http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml">Embedded
         C++/Serializer Mapping Getting Started Guide</a>. The C++/Hybrid
         mapping uses C++/Serializer for XML serialization.</li>

    <li>The <code>INSTALL</code> file in the XSD/e distribution provides
        build instructions for various platforms.</li>

    <li>The <code>examples/cxx/hybrid/</code> directory in the XSD/e
        distribution contains a collection of examples and a README
        file with an overview of each example.</li>

    <li>The <a href="http://www.codesynthesis.com/mailman/listinfo/xsde-users">xsde-users</a>
        mailing list is the place to ask technical questions about XSD/e and the
        Embedded C++/Hybrid mapping. Furthermore, the
        <a href="http://www.codesynthesis.com/pipermail/xsde-users/">archives</a>
        may already have answers to some of your questions.</li>

  </ul>

  <!-- Introduction -->

  <h1><a name="1">1 Introduction</a></h1>

  <p>Welcome to CodeSynthesis XSD/e and the Embedded C++/Hybrid mapping.
     XSD/e is a validating XML parser/serializer and data binding generator
     for mobile and embedded systems. Embedded C++/Hybrid is a W3C XML
     Schema to C++ mapping that represents the data stored in XML as a
     light-weight, statically-typed, in-memory object model.
  </p>

  <h2><a name="1.1">1.1 Mapping Overview</a></h2>

  <p>Based on a formal description of an XML vocabulary (schema), the
     C++/Hybrid mapping produces a tree-like data structure suitable
     for in-memory processing. The core of the mapping consists of C++
     classes that constitute the object model and are derived from
     types defined in XML Schema. The C++/Hybrid mapping uses the
     APIs provided by the
     <a href="http://www.codesynthesis.com/products/xsde/c++/parser/">Embedded
     C++/Parser</a> and
     <a href="http://www.codesynthesis.com/products/xsde/c++/serializer/">Embedded
     C++/Serializer</a>
     mappings to perform validation and parsing of XML to the object
     model and validation and serialization of the object model to
     XML. The following diagram illustrates the high-level architecture
     of the C++/Hybrid mapping:</p>

  <!-- align=center is needed for html2ps -->
  <div class="img" align="center"><img src="figure-1.png"/></div>

  <p>The use of well-defined APIs presented by the C++/Parser and
     C++/Serializer mappings for XML parsing and serialization
     allows a number of advanced techniques, for example, customization
     of parsing and serialization code, filtering of XML during
     parsing or object model during serialization, as well as the hybrid,
     partially event-driven, partially in-memory processing
     where the XML document is delivered to the application as
     parts of the object model. The last feature combines the
     ease and convenience of the in-memory processing model
     with the ability to minimize the use of RAM and process documents
     that would otherwise not fit into memory.
  </p>

  <p>The Embedded C++/Hybrid mapping was specifically designed and
     optimized for mobile and embedded systems where hardware
     constraints require high efficiency and economical use of
     resources. As a result, the generated parsing and serialization
     code is 2-10 times faster than general-purpose XML processors
     while at the same time maintaining extremely low static and
     dynamic memory footprints. For example, an executable that
     performs validating XML parsing and serialization can be as small
     as 150KB in size. The size can be further reduced by disabling
     support for parsing or serialization as well as XML Schema
     validation.
  </p>

  <p>The generated code and the runtime library are also highly-portable
     and, in their minimal configuration, can be used without STL, RTTI,
     iostream, C++ exceptions, and with the minimal use of C++ templates.</p>

   <p>A typical application that uses the C++/Hybrid mapping for XML
      processing performs the following three steps: it first
      reads (parses) an XML document to an in-memory object model, it
      then performs some useful computations on that object model which
      may involve modification of the model, and finally it may write
      (serialize) the modified object model back to XML. The next chapter
      presents a simple application that performs these three steps. The
      following chapters describe the Embedded C++/Hybrid mapping in more
      detail.</p>

  <h2><a name="1.2">1.2 Benefits</a></h2>

  <p>Traditional XML access APIs such as Document Object Model (DOM)
     or Simple API for XML (SAX) as well as general-purpose XML Schema
     validators have a number of drawbacks that make them less suitable
     for creating mobile and embedded XML processing applications. These
     drawbacks include:
  </p>

  <ul class="list">
    <li>Generic representation of XML in terms of elements, attributes,
        and text forces an application developer to write a substantial
        amount of bridging code that identifies and transforms pieces
        of information encoded in XML to a representation more suitable
        for consumption by the application logic.</li>

    <li>String-based flow control defers error detection to runtime.
        It also reduces code readability and maintainability.</li>

    <li>Lack of type safety and inefficient use of resources due to
        the data being represented as text.</li>

    <li>Extra validation code that is not used by the application.</li>

    <li>Resulting applications are hard to debug, change, and
        maintain.</li>
  </ul>

  <p>In contrast, a light-weight, statically-typed, vocabulary-specific
     object model produced by the Embedded C++/Hybrid mapping allows
     you to operate in your domain terms instead of the generic elements,
     attributes, and text. Native data types are used to store the XML
     data (for example, integers are stored as integers, not as text).
     Validation code is included only for XML Schema constructs that
     are used in the application. This results in efficient use of
     resources and compact object code.</p>

  <p>Furthermore, static typing helps catch errors at
     compile-time rather than at run-time. Automatic code generation
     frees you for more interesting tasks (such as doing something
     useful with the information stored in the XML documents) and
     minimizes the effort needed to adapt your applications to changes
     in the document structure. To summarize, the C++/Hybrid object
     model has the following key advantages over generic XML access
     APIs:</p>

  <ul class="list">
    <li><b>Ease of use.</b> The generated code hides all the complexity
        associated with parsing and serializing XML. This includes navigating
        the structure and converting between the text representation and
        data types suitable for manipulation by the application logic.</li>

    <li><b>Natural representation.</b> The object representation allows
         you to access the XML data using your domain vocabulary instead
         of generic elements, attributes, and text.</li>

    <li><b>Concise code.</b> With the object representation the
        application implementation is simpler and thus easier
        to read and understand.</li>

    <li><b>Safety.</b> The generated object model is statically
        typed and uses functions instead of strings to access the
        information. This helps catch programming errors at compile-time
        rather than at runtime.</li>

    <li><b>Maintainability.</b> Automatic code generation minimizes the
        effort needed to adapt the application to changes in the
        document structure. With static typing, the C++ compiler
        can pin-point the places in the client code that need to be
        changed.</li>

    <li><b>Efficiency.</b> If the application makes repetitive use
        of the data extracted from XML, then the C++/Hybrid object model
        is more efficient because the navigation is performed using
        function calls rather than string comparisons and the XML
        data is extracted only once. The runtime memory
        usage is also reduced due to more efficient data storage
        (for instance, storing numeric data as integers instead of
        strings) as well as the static knowledge of cardinality
        constraints.

        <p>Furthermore, the generated XML parsing and serialization code
        combines validation and data-to-text conversion in a single step.
        This makes the generated code much more efficient than traditional
        architectures with separate stages for validation and data
        conversion.</p>
    </li>
  </ul>

  <!-- Hello World Example -->


  <h1><a name="2">2 Hello World Example</a></h1>

  <p>In this chapter we will examine how to parse, access, modify, and
     serialize a very simple XML document using the generated
     C++/Hybrid object model as well as the XML parser and serializer. The
     code presented in this chapter is based on the <code>hello</code>
     example which can be found in the <code>examples/cxx/hybrid/</code>
     directory of the XSD/e distribution.</p>

  <h2><a name="2.1">2.1 Writing XML Document and Schema</a></h2>

  <p>First, we need to get an idea about the structure
     of the XML documents we are going to process. Our
     <code>hello.xml</code>, for example, could look like this:</p>

  <pre class="xml">
&lt;?xml version="1.0"?>
&lt;hello>

  &lt;greeting>Hello&lt;/greeting>

  &lt;name>sun&lt;/name>
  &lt;name>earth&lt;/name>
  &lt;name>world&lt;/name>

&lt;/hello>
  </pre>

  <p>Then we can write a description of the above XML in the
     XML Schema language and save it into <code>hello.xsd</code>:</p>

  <pre class="xml">
&lt;?xml version="1.0"?>
&lt;xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

  &lt;xs:complexType name="hello">
    &lt;xs:sequence>
      &lt;xs:element name="greeting" type="xs:string"/>
      &lt;xs:element name="name" type="xs:string" maxOccurs="unbounded"/>
    &lt;/xs:sequence>
  &lt;/xs:complexType>

  &lt;xs:element name="hello" type="hello"/>

&lt;/xs:schema>
  </pre>

  <p>Even if you are not familiar with XML Schema, it
     should be easy to connect declarations in <code>hello.xsd</code>
     to elements in <code>hello.xml</code>. The <code>hello</code> type
     is defined as a sequence of the nested <code>greeting</code> and
     <code>name</code> elements. Note that the term sequence in XML
     Schema means that elements should appear in a particular order
     as opposed to appearing multiple times. The <code>name</code>
     element has its <code>maxOccurs</code> property set to
     <code>unbounded</code> which means it can appear multiple times
     in an XML document. Finally, the globally-defined <code>hello</code>
     element prescribes the root element for our vocabulary. For an
     easily-approachable introduction to XML Schema refer to
     <a href="http://www.w3.org/TR/xmlschema-0/">XML Schema Part 0:
     Primer</a>.</p>

  <p>The above schema is a specification of our XML vocabulary; it tells
     everybody what valid documents of our XML-based language should look
     like. The next step is to compile the schema to generate the object
     model and the parser.</p>


  <h2><a name="2.2">2.2 Translating Schema to C++</a></h2>

  <p>Now we are ready to translate our <code>hello.xsd</code> to C++.
     To do this we invoke the XSD/e compiler from a terminal (UNIX) or
     a command prompt (Windows):
  </p>

  <pre class="terminal">
$ xsde cxx-hybrid --generate-parser --generate-aggregate hello.xsd
  </pre>

  <p>This invocation of the XSD/e compiler produces three pairs of C++ files:
     <code>hello.hxx</code> and <code>hello.cxx</code>,
     <code>hello-pskel.hxx</code> and <code>hello-pskel.cxx</code>, as well as
     <code>hello-pimpl.hxx</code> and <code>hello-pimpl.cxx</code>. The
     first pair contains the object model classes. The second pair contains
     parser skeletons. Parser skeletons are generated by the C++/Parser
     mapping which is automatically invoked by C++/Hybrid.
     For now we can ignore parser skeletons except that we need to compile
     them and link the result to our application. The last pair of files
     contains parser implementations. They implement the parser skeletons
     to create and populate the object model types from XML data. The generation
     of parser skeletons and parser implementations is requested with the
     <code>--generate-parser</code> XSD/e compiler option.</p>

  <p>You may be wondering what is the <code>--generate-aggregate</code>
     option for. This option instructs the XSD/e compiler to generate
     parser and, as we will see later, serializer aggregates. The
     generated parser implementation files mentioned above contain
     a separate parser implementation class for each type defined
     in XML Schema. These parser implementations need to be
     instantiated and connected before we can use them to parse an XML document.
     When you specify the <code>--generate-aggregate</code> option,
     the XSD/e compiler generates a class (in the parser implementation
     files), called parser aggregate, for each global element defined
     in the schema (you can also generate a parser aggregate for a type
     as well as control for which global elements parser aggregates
     are generated, see the
     <a href="http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml">XSD/e
     Compiler Command Line Manual</a> for more information). A parser
     aggregate instantiates and connects all the necessary parser
     implementations needed to parse an XML document with a given root
     element. We will see how to use the parser aggregate for the
     <code>hello</code> root element in the next section.</p>

  <p>The following code fragment is taken from <code>hello.hxx</code>; it
     shows what the C++ object model for our "Hello World" XML vocabulary
     looks like:
  </p>

  <pre class="c++">
class hello
{
public:
  hello ();

  // greeting
  //
  const std::string&amp;
  greeting () const;

  std::string&amp;
  greeting ();

  void
  greeting (const std::string&amp;);

  // name
  //
  typedef xsde::string_sequence name_sequence;
  typedef name_sequence::iterator name_iterator;
  typedef name_sequence::const_iterator name_const_iterator;

  const name_sequence&amp;
  name () const;

  name_sequence&amp;
  name ();

private:
  ...
};
  </pre>

  <p>The <code>hello</code> C++ class corresponds to the
     <code>hello</code> XML Schema type. For each element
     in this type a set of accessor and modifier functions
     are generated inside the <code>hello</code> class. Note
     that the member functions for the <code>greeting</code> and
     <code>name</code> elements are different because of the
     different cardinalities these two elements have
     (<code>greeting</code> is a required single element and
     <code>name</code> is a sequence of elements).</p>

  <p>It is also evident that the built-in XML Schema type
     <code>string</code> is mapped to <code>std::string</code>.
     The internal <code>string_sequence</code> class that
     is used in the <code>name_sequence</code> type definition
     has an interface similar to <code>std::vector</code>. The
     mapping between the built-in XML Schema types and C++ types
     is described in more detail in <a href="#5">Chapter 5,
     "Mapping for Built-in XML Schema Types"</a>.</p>


  <h2><a name="2.3">2.3 Implementing Application Logic</a></h2>

  <p>At this point we have all the parts we need to do something useful
     with the information stored in our XML document:
  </p>

  <pre class="c++">
#include &lt;iostream>

#include "hello.hxx"
#include "hello-pimpl.hxx"

using namespace std;

int
main (int argc, char* argv[])
{
  try
  {
    // Parse.
    //
    hello_paggr hello_p;
    xml_schema::document_pimpl doc_p (hello_p.root_parser (),
                                      hello_p.root_name ());
    hello_p.pre ();
    doc_p.parse (argv[1]);
    hello* h = hello_p.post ();

    // Print what we've got.
    //
    for (hello::name_const_iterator i = h->name ().begin ();
         i != h->name ().end ();
         ++i)
    {
      cout &lt;&lt; h->greeting () &lt;&lt; ", " &lt;&lt; *i &lt;&lt; "!" &lt;&lt; endl;
    }

    delete h;
  }
  catch (const xml_schema::parser_exception&amp; e)
  {
    cerr &lt;&lt; argv[1] &lt;&lt; ":" &lt;&lt; e.line () &lt;&lt; ":" &lt;&lt; e.column ()
         &lt;&lt; ": " &lt;&lt; e.text () &lt;&lt; endl;
    return 1;
  }
}
  </pre>

  <p>The first part of our application creates a document parser
     and parses the XML file specified in the command line to the
     object model. The <code>hello_paggr</code> class is the parser
     aggregate class we discussed earlier. Parsing is covered in more
     detail in <a href="#6">Chapter 6, "Parsing and Serialization"</a>.
     The second part uses the returned object model to iterate over
     names and print a greeting line for each of them. We also catch
     and print the <code>xml_schema::parser_exception</code> exception
     in case something goes wrong.
  </p>

  <h2><a name="2.4">2.4 Compiling and Running</a></h2>

  <p>After saving our application from the previous section in
     <code>driver.cxx</code>, we are ready to compile our first
     program and run it on the test XML document. On UNIX
     this can be done with the following commands:
  </p>

  <pre class="terminal">
$ c++ -I.../libxsde -c driver.cxx hello-pskel.cxx hello-pimpl.cxx
$ c++ -o driver driver.o hello-pskel.o hello-pimpl.o \
  .../libxsde/xsde/libxsde.a
$ ./driver hello.xml
Hello, sun!
Hello, moon!
Hello, world!
  </pre>

  <p>Here <code>.../libxsde</code> represents the path to the
     <code>libxsde</code> directory in the XSD/e distribution.</p>

  <p>We can also test the error handling. To test XML well-formedness
     checking, we can try to parse <code>hello.hxx</code>:</p>

  <pre class="terminal">
$ ./driver hello.hxx
hello.hxx:1:0: not well-formed (invalid token)
  </pre>

  <p>We can also try to parse a valid XML but not from our
     vocabulary, for example <code>hello.xsd</code>:</p>

  <pre class="terminal">
$ ./driver hello.xsd
hello.xsd:2:57: unexpected element encountered
  </pre>

  <h2><a name="2.5">2.5 Adding Serialization</a></h2>

  <p>While parsing and accessing the XML data may be everything
     you need, there are applications that require creating new
     or modifying existing XML documents. To request the generation
     of serialization support we will need to add the
     <code>--generate-serializer</code> option to our XSD/e
     compiler invocation:</p>

  <pre class="terminal">
$ xsde cxx-hybrid --generate-parser --generate-serializer \
  --generate-aggregate hello.xsd
  </pre>

  <p>This will result in two additional pairs of C++ files:
     <code>hello-sskel.hxx</code> and <code>hello-sskel.cxx</code>, as well as
     <code>hello-simpl.hxx</code> and <code>hello-simpl.cxx</code>.
     Similar to the parser files, the first pair contains serializer
     skeletons (generated by the C++/Serializer mapping) and the second
     pair contains serializer implementations as well as the serializer
     aggregate for the <code>hello</code> root element.</p>

  <p>Let us first examine an application that modifies an existing
     object model and serializes it back to XML:</p>

  <pre class="c++">
#include &lt;iostream>

#include "hello.hxx"
#include "hello-pimpl.hxx"
#include "hello-simpl.hxx"

using namespace std;

int
main (int argc, char* argv[])
{
  try
  {
    // Parse.
    //
    hello_paggr hello_p;
    xml_schema::document_pimpl doc_p (hello_p.root_parser (),
                                      hello_p.root_name ());
    hello_p.pre ();
    doc_p.parse (argv[1]);
    hello* h = hello_p.post ();

    // Change the greeting phrase.
    //
    h->greeting ("Hi");

    // Add another entry to the name sequence.
    //
    h->name ().push_back ("mars");

    // Serialize the modified object model to XML.
    //
    hello_saggr hello_s;
    xml_schema::document_simpl doc_s (hello_s.root_serializer (),
                                      hello_s.root_name ());
    hello_s.pre (*h);
    doc_s.serialize (cout);
    hello_s.post ();

    delete h;
  }
  catch (const xml_schema::parser_exception&amp; e)
  {
    cerr &lt;&lt; argv[1] &lt;&lt; ":" &lt;&lt; e.line () &lt;&lt; ":" &lt;&lt; e.column ()
         &lt;&lt; ": " &lt;&lt; e.text () &lt;&lt; endl;
    return 1;
  }
  catch (const xml_schema::serializer_exception&amp; e)
  {
    cerr &lt;&lt; "error: " &lt;&lt; e.text () &lt;&lt; endl;
    return 1;
  }
}
  </pre>

  <p>First, our application parses an XML document and obtains its
     object model as in the previous example. Then it changes the
     greeting string and adds another entry to the list of names.
     Finally, it creates a document serializer and serializes the
     object model back to XML. The resulting XML is written to
     the standard output (<code>cout</code>) for us to inspect.
     We could have also written the result to a file or memory
     buffer by creating an instance of <code>std::ofstream</code>
     or <code>std::ostringstream</code> and passing it to
     <code>serialize()</code> instead of <code>cout</code>.
     The <code>hello_saggr</code> class is the serializer aggregate
     class we discussed earlier. Serialization is covered in more
     detail in <a href="#6">Chapter 6, "Parsing and Serialization"</a>.</p>

  <p>If we now compile and run this application (don't forget to
     compile and link <code>hello-sskel.cxx</code> and
     <code>hello-simpl.cxx</code>), we will see the
     output as shown in the following listing:</p>

  <pre class="xml">
&lt;hello>
  &lt;greeting>Hi&lt;/greeting>
  &lt;name>sun&lt;/name>
  &lt;name>earth&lt;/name>
  &lt;name>world&lt;/name>
  &lt;name>mars&lt;/name>
&lt;/hello>
  </pre>

  <p>
     We can also test XML Schema validation. We can "accidently"
     remove all the names from the object model by adding the following
     after: <code>push_back ("mars")</code>:</p>

  <pre class="c++">
h->name ().clear ();
  </pre>

  <p>This will violate our vocabulary specification which requires
     at least one <code>name</code> element to be present. If we
     make the above change and recompile our application, we will
     get the following output:</p>

  <pre class="terminal">
$ ./driver hello.xml
error: expected element not encountered
  </pre>

  <p>It is also possible to create and serialize an object model from
     scratch as shown in the following example. For this case we
     can remove the <code>--generate-parser</code> option since
     we don't need support for XML parsing.</p>

  <pre class="c++">
#include &lt;sstream>
#include &lt;iostream>

#include "hello.hxx"
#include "hello-simpl.hxx"

using namespace std;

int
main (int argc, char* argv[])
{
  try
  {
    hello h;
    h.greeting ("Hi");

    hello::name_sequence&amp; ns = h.name ();
    ns.push_back ("Jane");
    ns.push_back ("John");

    // Serialize the object model to XML.
    //
    hello_saggr hello_s;
    xml_schema::document_simpl doc_s (hello_s.root_serializer (),
                                      hello_s.root_name ());
    ostringstream ostr;

    hello_s.pre (*h);
    doc_s.serialize (ostr);
    hello_s.post ();

    delete h;

    cout &lt;&lt; ostr.c_str () &lt;&lt; endl;
  }
  catch (const xml_schema::serializer_exception&amp; e)
  {
    cerr &lt;&lt; "error: " &lt;&lt; e.text () &lt;&lt; endl;
    return 1;
  }
}
  </pre>

  <p>In this example we used the generated default constructor to
     create an empty instance of type <code>hello</code>. We then
     set greeting and, to reduce typing, we obtained a reference to
     the name sequence which we used to add a few names. The
     serialization part is identical to the previous example except
     this time we first save the XML representation into a string.
     If we compile and run this program, it produces the following
     output:</p>

  <pre class="xml">
&lt;hello>
  &lt;greeting>Hi&lt;/greeting>
  &lt;name>Jane&lt;/name>
  &lt;name>John&lt;/name>
&lt;/hello>
  </pre>

  <h2><a name="2.6">2.6 A Minimal Version</a></h2>

  <p>The previous sections showed a number of examples that relied
     on STL for strings, iostream of input/output and C++ exceptions
     for error handling.
     As was mentioned in the introduction and will be discussed
     in further detail in the next chapter, the C++/Hybrid mapping
     can be configured only to rely on the minimal subset of C++.
     In this section we will implement an example that parses,
     prints, modifies and serializes the object model without
     relying on STL, iostream, or C++ exceptions.</p>

  <p>The first step is to instruct the XSD/e compiler not to use
     any of the above features in the generated code. You may also
     need to re-configure and rebuild the XSD/e runtime library
     (<code>libxsde.a</code>) to disable STL, iostream, and
     exceptions.</p>

  <pre class="terminal">
$ xsde cxx-hybrid --no-stl --no-iostream --no-exceptions \
  --generate-parser --generate-serializer --generate-aggregate \
  hello.xsd
  </pre>

  <p>If you now study the generated <code>hello.hxx</code> file,
     you will notice that the use of <code>std::string</code> type
     is replaced with <code>char*</code>. When STL is disabled,
     built-in XML Schema type <code>string</code> is mapped to a
     C string. The following listing presents the content of
     <code>driver.cxx</code> in full:</p>

  <pre class="c++">
#include &lt;stdio.h>

#include "people.hxx"

#include "people-pimpl.hxx"
#include "people-simpl.hxx"

using namespace std;

struct writer: xml_schema::writer
{
  virtual bool
  write (const char* s, size_t n)
  {
    return fwrite (s, n, 1, stdout) == 1;
  }

  virtual bool
  flush ()
  {
    return fflush (stdout) == 0;
  }
};

int
main (int argc, char* argv[])
{
  // Open the file or use STDIN.
  //
  FILE* f = fopen (argv[1], "rb");

  if (f == 0)
  {
    fprintf (stderr, "%s: unable to open\n", argc);
    return 1;
  }

  // Parse.
  //
  using xml_schema::parser_error;

  parser_error pe;
  bool io_error = false;
  hello* h = 0;

  do
  {
    hello_paggr hello_p;
    xml_schema::document_pimpl doc_p (hello_p.root_parser (),
                                      hello_p.root_name ());
    if (pe = doc_p._error ())
      break;

    hello_p.pre ();

    if (pe = hello_p._error ())
      break;

    char buf[4096];

    do
    {
      size_t s = fread (buf, 1, sizeof (buf), f);

      if (s != sizeof (buf) &amp;&amp; ferror (f))
      {
        io_error = true;
        break;
      }

      doc_p.parse (buf, s, feof (f) != 0);
      pe = doc_p._error ();

    } while (!pe &amp;&amp; !feof (f));

    if (io_error || pe)
      break;

    h = hello_p.post ();
    pe = hello_p._error ();

  } while (false);

  fclose (f);

  // Handle parsing errors.
  //
  if (io_error)
  {
    fprintf (stderr, "%s: read failure\n", argc);
    return 1;
  }

  if (pe)
  {
    switch (pe.type ())
    {
    case parser_error::sys:
      {
        fprintf (stderr, "%s: %s\n", argc, pe.sys_text ());
        break;
      }
    case parser_error::xml:
      {
        fprintf (stderr, "%s:%lu:%lu: %s\n",
                 argc, pe.line (), pe.column (), pe.xml_text ());
        break;
      }
    case parser_error::schema:
      {
        fprintf (stderr, "%s:%lu:%lu: %s\n",
                 argc, pe.line (), pe.column (), pe.schema_text ());
        break;
      }
    default:
      break;
    }

    return 1;
  }

  // Print what we've got.
  //
  for (hello::name_const_iterator i = h->name ().begin ();
       i != h->name ().end ();
       ++i)
  {
    printf ("%s, %s!\n", h->greeting (), *i);
  }

  using xml_schema::strdupx;

  // Change the greeting phrase.
  //
  h->greeting (strdupx ("Hi"));

  // Add another entry to the name sequence.
  //
  h->name ().push_back (strdupx ("mars"));

  // Serialize.
  //
  using xml_schema::serializer_error;

  serializer_error se;
  writer w;

  do
  {
    hello_saggr hello_s;
    xml_schema::document_simpl doc_s (hello_s.root_serializer (),
                                      hello_s.root_name ());
    if (se = doc_s._error ())
      break;

    hello_s.pre (*h);

    if (se = hello_s._error ())
      break;

    doc_s.serialize (w);

    if (se = doc_s._error ())
      break;

    hello_s.post ();

    se = hello_s._error ();

  } while (false);

  delete h;

  // Handle serializer errors.
  //
  if (se)
  {
    switch (se.type ())
    {
    case serializer_error::sys:
      {
        fprintf (stderr, "error: %s\n", se.sys_text ());
        break;
      }
    case serializer_error::xml:
      {
        fprintf (stderr, "error: %s\n", se.xml_text ());
        break;
      }
    case serializer_error::schema:
      {
        fprintf (stderr, "error: %s\n", se.schema_text ());
        break;
      }
    default:
      break;
    }

    return 1;
  }
}
  </pre>

  <p>The parsing and serialization parts of the above example got
     quite a bit more complex due to the lack of exceptions and iostream
     support. For more information on what's going on there, refer to
     <a href="#6">Chapter 6, "Parsing and Serialization"</a>. On the other
     hand, the access and modification of the object model stayed
     relatively unchanged. The only noticeable change is the use
     of the <code>xml_schema::strdupx</code> function to create
     C strings from string literals. We have to use this function
     because the object model assumes ownership of the strings
     passed. We also cannot use the standard C <code>strdup</code>
     because the object model expects the strings to be allocated
     with C++ operator <code>new[]</code> while C <code>strdup</code>
     uses <code>malloc</code> (on most implementations operator
     <code>new</code> is implemented in terms of <code>malloc</code>
     so you can probably use <code>strdup</code> if you really
     want to).</p>


  <!-- Mapping Configuration -->


  <h1><a name="3">3 Mapping Configuration</a></h1>

  <p>The Embedded C++/Hybrid mapping has a number of configuration
     parameters that determine the overall properties and behavior
     of the generated code, such as the use of Standard Template
     Library (STL), Input/Output Stream Library (iostream), C++
     exceptions, XML Schema validation, 64-bit integer types, as well as
     parser and serializer implementation reuse styles. In the previous
     chapter we have already got an overview of the changes to the
     generated code that happen when we disable STL, iostream, and C++
     exceptions. In this chapter we will discuss these and other
     configuration parameters in more detail.</p>

  <p>In order to enable or disable a particular feature, the corresponding
     configuration parameter should be set accordingly in the XSD/e runtime
     library as well as specified during schema compilation with the XSD/e
     command line options as described in the
     <a href="http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml">XSD/e
     Compiler Command Line Manual</a>.
  </p>

  <p>While the XML documents can use various encodings, the Embedded
     C++/Hybrid mapping always delivers character data to the application
     in the UTF-8 encoding. The underlying XML parser used by the mapping
     includes built-in support for XML documents encoded in UTF-8, UTF-16,
     ISO-8859-1, and US-ASCII. Other encodings can be supported by providing
     application-specific decoder functions. C++/Hybrid also expects character
     data supplied by the application to be in the UTF-8 encoding. The
     underlying XML serializer used by the mapping produces the resulting
     XML in the UTF-8 encoding as well.</p>

  <h2><a name="3.1">3.1 Standard Template Library</a></h2>

  <p>To disable the use of STL you will need to configure the XSD/e
     runtime without support for STL as well as pass the
     <code>--no-stl</code> option to the XSD/e compiler when
     translating your schemas.</p>

  <p>When STL is disabled, all string-based XML Schema types
     (see <a href="#5">Chapter 5, "Mapping for Built-In XML Schema
     Types"</a>) are mapped to C-style <code>char*</code> instead of
     <code>std::string</code>. In this configuration when you set an
     element or attribute value of a string-based type, the object
     model assumes ownership of the string and expects that it was
     allocated with operator <code>new[]</code>. To simplify
     creation of such strings from string literals, the generated
     code provides the <code>strdupx</code> and <code>strndupx</code>
     functions in the <code>xml_schema</code> namespace. These functions
     are similar to C <code>strdup</code> and <code>strndup</code> except
     that they use operator <code>new[]</code> instead of <code>malloc</code>
     to allocate the string:</p>

  <pre class="c++">
namespace xml_schema
{
  char*
  strdupx (const char*);

  char*
  strndupx (const char*, size_t);
}
  </pre>

  <h2><a name="3.2">3.2 Input/Output Stream Library</a></h2>

  <p>To disable the use of iostream you will need to configure the
     XSD/e runtime library without support for iostream as well as
     pass the <code>--no-iostream</code> option to the XSD/e compiler
     when translating your schemas. When iostream is disabled, a
     number of overloaded <code>parse()</code> and <code>serialize()</code>
     functions in the document parser (<code>xml_schema::document_pimpl</code>)
     and document serializer (<code>xml_schema::document_simpl</code>) become
     unavailable. See
     <a href="http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml#7">Chapter 7,
     "Document Parser and Error Handling"</a> in the Embedded
     C++/Parser Mapping Getting Started Guide and
     <a href="http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml#8">Chapter 8,
     "Document Serializer and Error Handling"</a> in the Embedded
     C++/Serializer Mapping Getting Started Guide for details.
     </p>

  <h2><a name="3.3">3.3 C++ Exceptions</a></h2>

  <p>To disable the use of C++ exceptions, you will need to configure
     the XSD/e runtime without support for exceptions as well as pass
     the <code>--no-exceptions</code> option to the XSD/e compiler
     when translating your schemas. When C++ exceptions are disabled,
     the error conditions that may arise while parsing, serializing,
     and modifying the object model are indicated with error codes
     instead of exceptions. For more information on error handling
     during parsing, see
     <a href="http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml#7">Chapter 7,
     "Document Parser and Error Handling"</a> in the Embedded C++/Parser
     Mapping Getting Started Guide. For more information on error handling
     during serialization, see
     <a href="http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml#8">Chapter 8,
     "Document Serializer and Error Handling"</a> in the Embedded
     C++/Serializer Mapping Getting Started Guide. For more information on
     error handling in the object model, see <a href="#4">Chapter 4, "Working
     with Object Models"</a> below.
  </p>

  <h2><a name="3.4">3.4 XML Schema Validation</a></h2>

  <p>By default, XML Schema validation is enabled during both parsing
     and serialization. To disable validation during parsing, you will
     need to configure the XSD/e runtime to disable support for validation
     in the C++/Parser mapping as well as pass the <code>--suppress-parser-val</code>
     option to the XSD/e compiler when translating your schemas. To disable
     validation during serialization, you will need to configure the XSD/e
     runtime to disable support for validation in the C++/Serializer mapping
     as well as pass the <code>--suppress-serializer-val</code>
     option to the XSD/e compiler when translating your schemas. If you
     are disabling validation during both parsing and serialization, you
     can use the <code>--suppress-validation</code> option instead of the
     two options mentioned above.</p>

  <p>Disabling XML Schema validation allows to further increase the
     parsing and serialization performance as well as reduce footprint in
     cases where the data being parsed and/or serialized is known
     to be valid.</p>

  <h2><a name="3.5">3.5 64-bit Integer Type</a></h2>

  <p>By default the 64-bit <code>long</code> and <code>unsignedLong</code>
     built-in XML Schema types are mapped to the 64-bit <code>long long</code>
     and <code>unsigned long long</code> fundamental C++ types. To
     disable the use of these types in the mapping you will need to
     configure the XSD/e runtime accordingly as well as pass
     the <code>--no-long-long</code> option to the XSD/e compiler
     when translating your schemas. When the use of 64-bit integral
     C++ types is disabled the <code>long</code> and
     <code>unsignedLong</code> XML Schema built-in types are mapped
     to <code>long</code> and <code>unsigned long</code> fundamental
     C++ types.</p>

  <h2><a name="3.6">3.6 Parser and Serializer Reuse</a></h2>

  <p>When one type in XML Schema inherits from another, it is
     often desirable to be able to reuse the parser and serializer
     implementations corresponding to the base type in the parser
     and serializer implementations corresponding to the derived type.
     XSD/e provides support for two reuse styles: the so-called <em>mixin</em>
     (generated when the <code>--reuse-style-mixin</code> option
     is specified) and <em>tiein</em> (generated by default) styles.
     The XSD/e runtime should be configured in accordance with the
     reuse style used in the generated code. See <a href="http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml#5.6">Section 5.6,
     "Parser Reuse"</a> in the Embedded C++/Parser Mapping Getting Started
     Guide and
     <a href="http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml#6.6">Section 6.6,
     "Serializer Reuse"</a> in the Embedded C++/Serializer Mapping Getting
     Started Guide for details.</p>


  <!-- Chapater 4 -->


  <h1><a name="4">4 Working with Object Models</a></h1>

  <p>As we have seen in the previous chapters, the XSD/e compiler generates
     a C++ class for each type defined in XML Schema. Together these classes
     constitute an object model for an XML vocabulary. In this chapter we
     will take a closer look at different parts that comprise an
     object model class as well as how to create, access, and modify
     object models.</p>

  <p>In this chapter we will use the following schema that describes a
     collection of person records. We save it in <code>people.xsd</code>:</p>

  <pre class="xml">
&lt;?xml version="1.0"?>
&lt;xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

  &lt;xs:simpleType name="gender">
    &lt;xs:restriction base="xs:string">
      &lt;xs:enumeration value="male"/>
      &lt;xs:enumeration value="female"/>
    &lt;/xs:restriction>
  &lt;/xs:simpleType>

  &lt;xs:complexType name="person">
    &lt;xs:sequence>
      &lt;xs:element name="first-name" type="xs:string"/>
      &lt;xs:element name="middle-name" type="xs:string" minOccurs="0"/>
      &lt;xs:element name="last-name" type="xs:string"/>
      &lt;xs:element name="gender" type="gender"/>
      &lt;xs:element name="age" type="xs:unsignedShort"/>
    &lt;/xs:sequence>
    &lt;xs:attribute name="id" type="xs:unsignedInt" use="required"/>
  &lt;/xs:complexType>

  &lt;xs:complexType name="people">
    &lt;xs:sequence>
      &lt;xs:element name="person" type="person" maxOccurs="unbounded"/>
    &lt;/xs:sequence>
  &lt;/xs:complexType>

  &lt;xs:element name="people" type="people"/>

&lt;/xs:schema>
  </pre>

  <p>A sample XML instance to go along with this schema is saved
     in <code>people.xml</code>:</p>

  <pre class="xml">
&lt;?xml version="1.0"?>
&lt;people>

  &lt;person id="1">
    &lt;first-name>John&lt;/first-name>
    &lt;last-name>Doe&lt;/last-name>
    &lt;gender>male&lt;/gender>
    &lt;age>32&lt;/age>
  &lt;/person>

  &lt;person id="2">
    &lt;first-name>Jane&lt;/first-name>
    &lt;middle-name>Mary&lt;/middle-name>
    &lt;last-name>Doe&lt;/last-name>
    &lt;gender>female&lt;/gender>
    &lt;age>28&lt;/age>
  &lt;/person>

&lt;/people>
  </pre>

  <p>Compiling <code>people.xsd</code> with the XSD/e compiler results
     in three generated object model classes: <code>gender</code>,
     <code>person</code> and <code>people</code>. Here is how they
     look with STL enabled:</p>

  <pre class="c++">
// gender (fixed-length)
//
class gender: public std::string
{
public:
  gender ();
  gender (const gender&amp;);
  gender&amp; operator= (const gender&amp;);
};

// person (fixed-length)
//
class person
{
public:
  person ();
  person (const person&amp;);
  person&amp; operator= (const person&amp;);

  // id
  //
  unsigned int
  id () const;

  unsigned int&amp;
  id ();

  void
  id (unsigned int);

  // first-name
  //
  const std::string&amp;
  first_name () const;

  std::string&amp;
  first_name ();

  void
  first_name (const std::string&amp;);

  // middle-name
  //
  bool
  middle_name_present () const;

  void
  middle_name_present (bool);

  const std::string&amp;
  middle_name () const;

  std::string&amp;
  middle_name ();

  void
  middle_name (const std::string&amp;);

  // last-name
  //
  const std::string&amp;
  last_name () const;

  std::string&amp;
  last_name ();

  void
  last_name (const std::string&amp;);

  // gender
  //
  const ::gender&amp;
  gender () const;

  ::gender&amp;
  gender ();

  void
  gender (const ::gender&amp;);

  // age
  //
  unsigned short
  age () const;

  unsigned short&amp;
  age ();

  void
  age (unsigned short);

private:
  ...
};

// people (variable-length)
//
class people
{
public:
  people ();

private:
  people (const people&amp;);
  people&amp; operator= (const people&amp;);

public:
  // person
  //
  typedef xsde::fix_sequence&lt;person> person_sequence;
  typedef person_sequence::iterator person_iterator;
  typedef person_sequence::const_iterator person_const_iterator;

  const person_sequence&amp;
  person () const;

  person_sequence&amp;
  person ();

private:
  ...
};
  </pre>

  <p>We will examine these classes in detail in the subsequent
     sections.</p>

  <h2><a name="4.1">4.1 Namespaces</a></h2>

  <p>XSD/e maps XML namespaces specified in the <code>targetNamespace</code>
     attribute in XML Schema to one or more nested C++ namespaces. By
     default, a namespace URI is mapped to a sequence of C++ namespace
     names by removing the protocol and host parts and splitting the
     rest into a sequence of names with <code>'/'</code> as the name
     separator. For example, the <code>http://www.codesynthesis.com/cs/my</code>
     XML namespace is mapped to the <code>cs::my</code> C++ namespace.</p>

  <p>The default mapping of namespace URIs to C++ namespaces
     can be altered using the <code>--namespace-map</code> and
     <code>--namespace-regex</code> compiler options. For example,
     to map the <code>http://www.codesynthesis.com/my</code> XML
     namespace to the <code>cs::my</code> C++ namespace, we can use
     the following option:</p>

  <pre class="terminal">
--namespace-map http://www.codesynthesis.com/my=cs::my
  </pre>

  <p>A vocabulary without a namespace is mapped to the global scope. This
     also can be altered with the above options by using an empty name
     for the XML namespace. For example, we could place the generated
     object model classes for the <code>people.xsd</code> schema
     into the <code>records</code> C++ namespace by adding the following
     option:</p>

  <pre class="terminal">
--namespace-map =records
  </pre>


  <h2><a name="4.2">4.2 Memory Management</a></h2>

  <p>To ensure that objects are allocated and passed efficiently,
     the C++/Hybrid mapping divides all object model types into
     fixed-length and variable-length. A type is variable-length
     if any of the following is true:</p>

  <ol class="list">
    <li>it is an XML Schema <code>list</code> type</li>

    <li>it is an XML Schema <code>union</code> type and STL is disabled</li>

    <li>it derives from a variable-length type</li>

    <li>it contains an element or attribute of a variable-length type</li>

    <li>it contains an element or compositor (<code>sequence</code>
        or <code>choice</code>) with <code>maxOccurs</code>
        greater than one</li>

    <li>it is recursive (that is, one of its elements contains
        a reference, directly or indirectly, to the type itself)</li>
  </ol>

  <p>The following build-in XML Schema types are variable-length:
     <code>base64Binary</code>, <code>hexBinary</code>, <code>NMTOKENS</code>,
     and <code>IDREFS</code>. Furthermore, if STL is disabled, all
     string-based build-in XML Schema types are variable-length,
     namely: <code>string</code>, <code>normalizedString</code>,
     <code>token</code>, <code>Name</code>, <code>NMTOKEN</code>,
     <code>NCName</code>, <code>language</code>, <code>QName</code>,
     <code>ID</code>, <code>IDFER</code>, and <code>anyURI</code>.</p>

  <p>Otherwise, a type is fixed-length. As you might have noticed from
     the previous code listings, the XSD/e compiler adds a comment before
     each generated object model class that states whether it is fixed or
     variable-length. For example, the <code>people</code> type is
     variable-length because it contains a sequence of <code>person</code>
     elements (<code>maxOccurs="unbounded"</code>). If we recompile
     the <code>people.xsd</code> schema with the <code>--no-stl</code>
     option, the first two types will also become variable-length
     since <code>gender</code> inherits from and <code>person</code>
     contains elements of the <code>string</code> built-in type. And
     when STL is disabled, <code>string</code> is variable-length.</p>

  <p>The object model uses different methods for storing and passing
     around fixed-length and variable-length types. Instances of
     fixed-length types are stored and passed by value since it is
     cheaper to copy than to allocate them dynamically (in the
     STL case, the <code>std::string</code> is expected to support the
     referenced-counted copy-on-write optimization, which makes
     copying cheap).</p>

  <p>Variable-length types are always allocated dynamically and
     are stored and passed as pointers. Because copying an instance
     of a variable-length type can be expensive, such types make
     their copy constructor and copy assignment operators unavailable.</p>

  <p>When you set a value of an element or attribute of a
     variable-length type, the object model assumes ownership of
     the pointed to object. It expects you to allocate the object with
     operator <code>new</code> and will eventually delete it
     with operator <code>delete</code>. As an example, let us extend
     our <code>people.xsd</code> schema with the following type:</p>

  <pre class="xml">
&lt;xs:complexType name="staff">
  &lt;xs:sequence>
    &lt;xs:element name="permanent" type="people"/>
    &lt;xs:element name="contract" type="people"/>
  &lt;/xs:sequence>
&lt;/xs:complexType>
  </pre>

  <p>If we compile it with XSD/e, we will get the following C++
     class:</p>

  <pre class="c++">
// staff (variable-length)
//
class staff
{
public:
  staff ();

private:
  staff (const staff&amp;);
  staff&amp; operator= (const staff&amp;);

public:
  // permanent
  //
  const people&amp;
  permanent () const;

  people&amp;
  permanent ();

  void
  permanent (people*);

  // contract
  //
  const people&amp;
  contract () const;

  people&amp;
  contract ();

  void
  contract (people*);

private:
  ...
};
  </pre>

  <p>Notice that unlike, say, the <code>first_name()</code> modifier
     function in the <code>person</code> class, the <code>permanent()</code>
     and <code>contract()</code> modifiers expect a pointer to the
     <code>people</code> object. The following listing shows how
     we can create and populate an instance of the <code>staff</code>
     class. The use of smart pointers to hold the results of dynamic
     allocations is omitted for brevity:</p>

  <pre class="c++">
people* per = new people;
people* con = new people;

// Populate per and con.

staff s;
s->permanent (per) // Assumes ownership or per.
s->contract (con)  // Assumes ownership or con.
  </pre>

  <h2><a name="4.3">4.3 Attributes and Elements</a></h2>

  <p>As we have seen before, XSD/e generates a different
     set of member functions for elements with different cardinalities.
     The C++/Hybrid mapping divides all the possible element and attribute
     cardinalities into three cardinality classes:
     <em>one</em>, <em>optional</em>, and <em>sequence</em>.</p>

  <p>The <em>one</em> cardinality class covers all elements that should
     occur exactly once as well as the required attributes. In our
     example, the <code>first-name</code>, <code>last-name</code>,
     <code>gender</code>, and <code>age</code> elements as well as
     the <code>id</code> attribute belong to this cardinality class.
     The following code fragment shows again the accessor and modifier
     functions that are generated for the <code>first-name</code> element
     in the <code>person</code> class:</p>

  <pre class="c++">
class person
{
  // first-name
  //
  const std::string&amp;
  first_name () const;

  std::string&amp;
  first_name ();

  void
  first_name (const std::string&amp;);
};
  </pre>

  <p>The first two accessor functions return read-only (constant) and
     read-write references to the element's value, respectively. The
     modifier function sets the new value for the element. Note that
     the signature of the modifier function varies depending on
     whether the element or attribute is of a fixed or variable-length
     type, as was discussed in the previous section.</p>

  <p>The <em>optional</em> cardinality class covers all elements that
     can occur zero or one time as well as optional attributes. In our
     example, the <code>middle-name</code> element belongs to this
     cardinality class. The following code fragment shows again the
     accessor and modifier functions that are generated for this element
     in the <code>person</code> class:</p>

  <pre class="c++">
class person
{
  // middle-name
  //
  bool
  middle_name_present () const;

  void
  middle_name_present (bool);

  const std::string&amp;
  middle_name () const;

  std::string&amp;
  middle_name ();

  void
  middle_name (const std::string&amp;);
};
  </pre>

  <p>Compared to the <em>one</em> cardinality class, <em>optional</em> adds
     two extra functions for querying and modifying the element's presence
     status. The following example shows how we can use these functions:</p>

  <pre class="c++">
person&amp; p = ...

if (p.middle_name_present ())
{
  cout &lt;&lt; p.middle_name () &lt;&lt; endl;
  p.middle_name_present (false); // Reset to the "not present" state.
}
  </pre>

  <p>Finally, the <em>sequence</em> cardinality class covers all elements
     that can occur more than once. In our example, the
     <code>person</code> element in the <code>people</code> type
     belongs to this cardinality class. The following code fragment shows
     again the type definitions as well as the accessor and modifier
     functions that are generated for this element in the <code>people</code>
     class:</p>

  <pre class="c++">
class people
{
  // person
  //
  typedef xsde::fix_sequence&lt;person> person_sequence;
  typedef person_sequence::iterator person_iterator;
  typedef person_sequence::const_iterator person_const_iterator;

  const person_sequence&amp;
  person () const;

  person_sequence&amp;
  person ();
};
  </pre>

  <p>The <code>person_sequence</code> type is a sequence container for the
     element's values. It has an interface similar to <code>std::vector</code>
     and we will discuss it in more detail shortly. The <code>person_iterator</code>
     and <code>person_const_iterator</code> types are read-write and read-only
     (constant) iterators for the <code>person_sequence</code>
     container.</p>

  <p>Unlike other two cardinality classes, the <em>sequence</em> class
     only provides accessor functions that return read-only (constant)
     and read-write references to the sequence container. The
     modification of the element values is performed my manipulating
     the returned sequence container and elements that it contains.</p>

  <p>In the remainder of this section we will examine the interfaces
     of the sequence containers which differ slightly depending on
     whether the element type is fixed or variable-length and whether
     C++ exceptions are enabled. Also, when STL is disabled, string
     sequences have a special interface which is also discussed
     below.</p>

  <p>When exceptions are enabled, the fixed-length type sequences
     are implemented in terms of the following class template:</p>

  <pre class="c++">
template &lt;typename T>
class fix_sequence
{
public:
  typedef T         value_type;
  typedef T*        pointer;
  typedef const T*  const_pointer;
  typedef T&amp;        reference;
  typedef const T&amp;  const_reference;

  typedef size_t    size_type;
  typedef ptrdiff_t difference_type;

  typedef T*        iterator;
  typedef const T*  const_iterator;

public:
  fix_sequence ();

  void
  swap (fix_sequence&amp;);

private:
  fix_sequence (const fix_sequence&amp;);

  fix_sequence&amp;
  operator= (fix_sequence&amp;);

public:
  iterator
  begin ();

  const_iterator
  begin () const;

  iterator
  end ();

  const_iterator
  end () const;

  T&amp;
  front ();

  const T&amp;
  front () const;

  T&amp;
  back ();

  const T&amp;
  back () const;

  T&amp;
  operator[] (size_t);

  const T&amp;
  operator[] (size_t) const;

public:
  bool
  empty () const;

  size_t
  size () const;

  size_t
  capacity () const;

  size_t
  max_size () const;

public:
  void
  clear ();

  void
  pop_back ();

  iterator
  erase (iterator);

  void
  push_back (const T&amp;);

  iterator
  insert (iterator, const T&amp;);

  void
  reserve (size_t);
};
  </pre>

  <p>When C++ exceptions are disabled, the signatures of the
     <code>push_back()</code>, <code>insert()</code>, and
     <code>reserve()</code> functions change as follows:</p>

  <pre class="c++">
template &lt;typename T>
class fix_sequence
{
public:
  enum error
  {
    error_none,
    error_no_memory
  };

  ...

public:
  error
  push_back (const T&amp;);

  error
  insert (iterator, const T&amp;);

  error
  insert (iterator, const T&amp;, iterator&amp; result);

  error
  reserve (size_t);
};
  </pre>

  <p>That is, the functions that may require memory allocation
     now return an error code that you will need to check in
     order to detect the out of memory condition.</p>

  <p>When exceptions are enabled, the variable-length type sequences
     are implemented in terms of the following class template:</p>

  <pre class="c++">
template &lt;typename T>
class var_sequence
{
public:
  typedef T         value_type;
  typedef T*        pointer;
  typedef const T*  const_pointer;
  typedef T&amp;        reference;
  typedef const T&amp;  const_reference;

  typedef size_t    size_type;
  typedef ptrdiff_t difference_type;

  typedef &lt;implementation details> iterator;
  typedef &lt;implementation details> const_iterator;

public:
  var_sequence ();

  void
  swap (var_sequence&amp;);

private:
  var_sequence (const var_sequence&amp;);

  var_sequence&amp;
  operator= (var_sequence&amp;);

public:
  iterator
  begin ();

  const_iterator
  begin () const;

  iterator
  end ();

  const_iterator
  end () const;

  T&amp;
  front ();

  const T&amp;
  front () const;

  T&amp;
  back ();

  const T&amp;
  back () const;

  T&amp;
  operator[] (size_t);

  const T&amp;
  operator[] (size_t) const;

public:
  bool
  empty () const;

  size_t
  size () const;

  size_t
  capacity () const;

  size_t
  max_size () const;

public:
  void
  clear ();

  void
  pop_back ();

  iterator
  erase (iterator);

  void
  push_back (T*);

  iterator
  insert (iterator, T*);

  error
  reserve (size_t);
};
  </pre>

  <p>Most of this interface is identical to the fixed-length type
     version except for the <code>push_back()</code> and
     <code>insert()</code> functions. Similar to the modifier
     functions for elements and attributes of variable-length
     types, these two functions expect a pointer to the
     dynamically-allocated instance of the type and assume
     ownership of the passed object. To simplify error handling,
     these two functions delete the passed object if the reallocation
     of the underlying sequence buffer fails.</p>

  <p>When C++ exceptions are disabled, the <code>push_back()</code>,
     <code>insert()</code>, and <code>reserve()</code> functions
     return an error code to signal the out of memory condition:</p>

  <pre class="c++">
template &lt;typename T>
class var_sequence
{
public:
  enum error
  {
    error_none,
    error_no_memory
  };

  ...

public:
  error
  push_back (T*);

  error
  insert (iterator, T*);

  error
  insert (iterator, T*, iterator&amp; result);

  error
  reserve (size_t);
};
  </pre>


  <p>When STL is enabled, the string sequence have the same
     interface as <code>fix_sequence&lt;std::string></code>. When
     STL is disabled and strings are mapped to <code>char*</code>,
     the string sequence has a special interface. When C++ exceptions are
     enabled, it has the following definition:</p>

  <pre class="c++">
namespace xml_schema
{
  class string_sequence
  {
  public:
    typedef char*         value_type;
    typedef char**        pointer;
    typedef const char**  const_pointer;
    typedef char*         reference;
    typedef const char*   const_reference;

    typedef size_t        size_type;
    typedef ptrdiff_t     difference_type;

    typedef char** iterator;
    typedef const char* const* const_iterator;

    string_sequence ();

    void
    swap (string_sequence&amp;);

  private:
    string_sequence (string_sequence&amp;);

    string_sequence&amp;
    operator= (string_sequence&amp;);

  public:
    iterator
    begin ();

    const_iterator
    begin () const;

    iterator
    end ();

    const_iterator
    end () const;

    char*
    front ();

    const char*
    front () const;

    char*
    back ();

    const char*
    back () const;

    char*
    operator[] (size_t);

    const char*
    operator[] (size_t) const;

  public:
    bool
    empty () const;

    size_t
    size () const;

    size_t
    capacity () const;

    size_t
    max_size () const;

  public:
    void
    clear ();

    void
    pop_back ();

    iterator
    erase (iterator);

    void
    push_back (char*);

    void
    push_back_copy (const char*);

    iterator
    insert (iterator, char*);

    void
    reserve (size_t);

    // Detach a string from the sequence at a given position.
    // The string pointer at this position in the sequence is
    // set to 0.
    //
    char*
    detach (iterator);
  };
}
  </pre>

  <p>The <code>push_back()</code> and <code>insert()</code> functions
     assume ownership of the passed string which should be allocated
     with operator <code>new[]</code> and will be deallocated
     with operator <code>delete[]</code> by the <code>string_sequence</code>
     object. Similar to <code>var_sequence</code>, these two functions
     free the passed string if the reallocation of the underlying
     sequence buffer fails. The <code>push_back_copy()</code>
     function makes a copy of the passed string.
     If you detach the underlying element string, then it should
     eventually be deallocated with operator <code>delete[]</code>.</p>

  <p>When C++ exceptions are disabled, the signatures of the
     <code>push_back()</code>, <code>push_back_copy()</code>,
     <code>insert()</code>, and <code>reserve()</code> functions
     in the <code>string_sequence</code> class change as follows:</p>

  <pre class="c++">
namespace xml_schema
{
  class string_sequence
  {
  public:
    enum error
    {
      error_none,
      error_no_memory
    };

    ...

  public:
    error
    push_back (char*);

    error
    push_back_copy (const char*);

    error
    insert (iterator, char*);

    error
    insert (iterator, char*, iterator&amp; result);

    error
    reserve (size_t);
  };
}
  </pre>

  <h2><a name="4.4">4.4 Compositors</a></h2>

  <p>The XML Schema language provides three compositor constructs that
     are used to group elements: <code>all</code>, <code>sequence</code>,
     and <code>choice</code>. If a compositor has an <em>optional</em>
     or <em>sequence</em> cardinality class (see <a href="#4.3">Section
     4.3, "Attributes and Elements"</a>) or if a compositor is
     inside <code>choice</code>, then the C++/Hybrid mapping generates
     a nested class for such a compositor as well as a set of accessor
     and modifier functions similar to the ones defined for elements
     and attributes. Otherwise, the member functions, corresponding
     to elements defined in a compositor, are generated directly in
     the containing class.</p>

  <p>Compositor classes are either fixed or variable-length and
     obey the same storage and passing rules as object model
     classes corresponding to XML Schema types (see <a href="#4.2">Section
     4.2, "Memory Management"</a>). Consider the following schema
     fragment as an example:</p>

  <pre class="xml">
&lt;complexType name="type">
  &lt;sequence>
    &lt;sequence minOccurs="0">
      &lt;element name="a" type="int"/>
      &lt;element name="b" type="string" maxOccurs="unbounded"/>
    &lt;/sequence>
    &lt;sequence maxOccurs="unbounded">
      &lt;element name="c" type="int"/>
      &lt;element name="d" type="string"/>
    &lt;/sequence>
  &lt;/sequence>
&lt;/complexType>
  </pre>

  <p>The corresponding object model class is shown below:</p>

  <pre class="c++">
// type (variable-length)
//
class type
{
public:
  type ();

private:
  type (const type&amp;);
  type&amp; operator= (const type&amp;);

public:
  // sequence (variable-length)
  //
  class sequence_type
  {
  public:
    sequence_type ();

  private:
    sequence_type (const sequence_type&amp;);
    sequence_type&amp; operator= (const sequence_type&amp;);

  public:
    // a
    //
    int
    a () const;

    int&amp;
    a ();

    void
    a (int);

    // b
    //
    typedef xsde::string_sequence b_sequence;
    typedef b_sequence::iterator b_iterator;
    typedef b_sequence::const_iterator b_const_iterator;

    const b_sequence&amp;
    b () const;

    b_sequence&amp;
    b ();

  private:
    ...
  };

  bool
  sequence_present () const;

  void
  sequence_present (bool);

  const sequence_type&amp;
  sequence () const;

  sequence_type&amp;
  sequence ();

  void
  sequence (sequence_type*);

  // sequence1 (fixed-length)
  //
  class sequence1_type
  {
  public:
    sequence1_type ();
    sequence1_type (const sequence1_type&amp;);
    sequence1_type&amp; operator= (const sequence1_type&amp;);

    // c
    //
    int
    c () const;

    int&amp;
    c ();

    void
    c (int);

    // d
    //
    const std::string&amp;
    d () const;

    std::string&amp;
    d ();

    void
    d (const std::string&amp;);

  private:
    ...
  };

  typedef xsde::fix_sequence&lt;sequence1_type> sequence1_sequence;
  typedef sequence1_sequence::iterator sequence1_iterator;
  typedef sequence1_sequence::const_iterator sequence1_const_iterator;

  const sequence1_sequence&amp;
  sequence1 () const;

  sequence1_sequence&amp;
  sequence1 ();

private:
  ...
};
  </pre>

  <p>The content of the outer <code>sequence</code> compositor is
     generated in-line since this compositor belongs to the <em>one</em>
     cardinality class. The first nested <code>sequence</code> compositor
     is optional (<code>minOccurs="0"</code>), which results in a corresponding
     nested class. Notice that the <code>sequence_type</code> is
     variable-length and the accessor and modifier functions corresponding
     to this <code>sequence</code> compositor are the same as for an
     optional element or attribute. Similarly, the second nested
     compositor is of the <em>sequence</em> cardinality class
     (<code>maxOccurs="unbounded"</code>), which also results in a
     nested class and a set of accessor functions.</p>

  <p>Generated code corresponding to an <code>all</code> and
     <code>sequence</code> compositor, whether in-line or as a
     nested class, simply define accessor and modifier functions
     for the elements that this compositor contains. For the
     <code>choice</code> compositor, on the other hand,
     additional types and functions are generated to support
     querying and selecting the choice arm that is in effect.
     Consider the following simple example:</p>

  <pre class="xml">
&lt;complexType name="type">
  &lt;choice>
    &lt;element name="a" type="int"/>
    &lt;element name="b" type="string"/>
    &lt;element name="c" type="boolean"/>
  &lt;/choice>
&lt;/complexType>
  </pre>


  <p>The corresponding object model class is shown next:</p>

  <pre class="c++">
// type (fixed-length)
//
class type
{
public:
  type ();
  type (const type&amp;);
  type&amp; operator= (const type&amp;);

  // choice
  //
  enum choice_arm_tag
  {
    a_tag,
    b_tag,
    c_tag
  };

  choice_arm_tag
  choice_arm () const;

  void
  choice_arm (choice_arm_tag);

  // a
  //
  int
  a () const;

  int&amp;
  a ();

  void
  a (int);

  // b
  //
  const std::string&amp;
  b () const;

  std::string&amp;
  b ();

  void
  b (const std::string&amp;);

  // c
  //
  bool
  c () const;

  bool&amp;
  c ();

  void
  c (bool);

private:
  ...
};
  </pre>

  <p>The extra type is the <code>choice_arm_tag</code> enumeration
     which defines a set of tags corresponding to each choice arm.
     There are also the <code>choice_arm()</code> accessor and modifier
     functions that can be used to query and set the current choice arm.
     The following code fragment shows how we can use this class:</p>

  <pre class="c++">
type&amp; x = ...

switch (x.choice_arm ())
{
case type::a_tag:
  {
    cout &lt;&lt; "a: " &lt;&lt; x.a () &lt;&lt; endl;
    break;
  }
case type::b_tag:
  {
    cout &lt;&lt; "b: " &lt;&lt; x.b () &lt;&lt; endl;
    break;
  }
case type::c_tag:
  {
    cout &lt;&lt; "c: " &lt;&lt; x.c () &lt;&lt; endl;
    break;
  }
}

// Modifiers automatically set the corresponding arm.
//
x.a (10);

// For accessors we need to select the arm explicitly.
//
x.choice_arm (type::b_tag);
x.b () = "b";
  </pre>

  <p>The following slightly more complex example triggers the generation of
     nested classes for the <code>choice</code> compositor as well as for
     the <code>sequence</code> compositor inside <code>choice</code>.
     Notice that the nested class for <code>sequence</code> is generated
     because it is in <code>choice</code> even though its cardinality
     class is <em>one</em>.</p>

  <pre class="xml">
&lt;complexType name="type">
  &lt;choice maxOccurs="unbounded">
    &lt;sequence>
      &lt;element name="a" type="int"/>
      &lt;element name="b" type="string"/>
    &lt;/sequence>
    &lt;element name="c" type="boolean"/>
  &lt;/choice>
&lt;/complexType>
  </pre>

  <p>The corresponding object model class is shown next:</p>

  <pre class="c++">
// type (variable-length)
//
class type
{
public:
  type ();

private:
  type (const type&amp;);
  type&amp; operator= (const type&amp;);

public:
  // choice (fixed-length)
  //
  class choice_type
  {
  public:
    choice_type ();
    choice_type (const choice_type&amp;);
    choice_type&amp; operator= (const choice_type&amp;);

    enum choice_arm_tag
    {
      sequence_tag,
      c_tag
    };

    choice_arm_tag
    choice_arm () const;

    void
    choice_arm (choice_arm_tag);

    // sequence (fixed-length)
    //
    class sequence_type
    {
    public:
      sequence_type ();
      sequence_type (const sequence_type&amp;);
      sequence_type&amp; operator= (const sequence_type&amp;);

      // a
      //
      int
      a () const;

      int&amp;
      a ();

      void
      a (int);

      // b
      //
      const std::string&amp;
      b () const;

      std::string&amp;
      b ();

      void
      b (const std::string&amp;);

    private:
      ...
    };

    const sequence_type&amp;
    sequence () const;

    sequence_type&amp;
    sequence ();

    void
    sequence (const sequence_type&amp;);

    // c
    //
    bool
    c () const;

    bool&amp;
    c ();

    void
    c (bool);

  private:
    ...
  };

  typedef xsde::fix_sequence&lt;choice_type> choice_sequence;
  typedef choice_sequence::iterator choice_iterator;
  typedef choice_sequence::const_iterator choice_const_iterator;

  const choice_sequence&amp;
  choice () const;

  choice_sequence&amp;
  choice ();

private:
  ...
};
  </pre>

  <h2><a name="4.5">4.5 Accessing the Object Model</a></h2>

  <p>In this section we will examine how to get to the information
     stored in the object model for the person records vocabulary
     introduced at the beginning of this chapter. The following
     application accesses and prints the contents of the
     <code>people.xml</code> file:</p>

  <pre class="c++">
#include &lt;memory>
#include &lt;iostream>

#include "people.hxx"
#include "people-pimpl.hxx"

using namespace std;

int
main ()
{
  // Parse.
  //
  people_paggr people_p;
  xml_schema::document_pimpl doc_p (people_p.root_parser (),
                                    people_p.root_name ());
  people_p.pre ();
  doc_p.parse ("people.xml");
  auto_ptr&lt;people> ppl (people_p.post ());

  // Iterate over individual person records.
  //
  people::person_sequence&amp; ps = ppl->person ();

  for (people::person_iterator i = ps.begin (); i != ps.end (); ++i)
  {
    person&amp; p = *i;

    // Print names: first-name and last-name are required elements,
    // middle-name is optional.
    //
    cout &lt;&lt; "name:   " &lt;&lt; p.first_name () &lt;&lt; " ";

    if (p.middle_name_present ())
      cout &lt;&lt; p.middle_name () &lt;&lt; " ";

    cout &lt;&lt; p.last_name () &lt;&lt; endl;

    // Print gender, age, and id which are all required.
    //
    cout &lt;&lt; "gender: " &lt;&lt; p.gender () &lt;&lt; endl
         &lt;&lt; "age:    " &lt;&lt; p.age () &lt;&lt; endl
         &lt;&lt; "id:     " &lt;&lt; p.id () &lt;&lt; endl
         &lt;&lt; endl;
  }
}
  </pre>

  <p>This code shows common patterns of accessing elements and attributes
     with different cardinality classes. For the sequence element
     (<code>person</code> in the <code>people</code> type) we first obtain a
     reference to the container and then iterate over individual
     records. The values of elements and attributes with the
     <em>one</em> cardinality class (<code>first-name</code>,
     <code>last-name</code>, <code>gender</code>, <code>age</code>,
     and <code>id</code>) can be obtained directly by calling the
     corresponding accessor functions. For the optional
     <code>middle-name</code> element we first check if the value is present
     and only then call the corresponding accessor to retrieve it.</p>

  <p>Note that when we want to reduce typing by creating a variable
     representing a fragment of the object model that we are currently
     working with (<code>ps</code> and <code>p</code> above), we obtain
     a reference to that fragment instead of making a copy. This is
     generally a good rule to follow when creating efficient
     applications.</p>

  <p>If we run the above application on our sample
     <code>people.xml</code>, the output looks as follows:</p>

  <pre class="terminal">
name:   John Doe
gender: male
age:    32
id:     1

name:   Jane Mary Doe
gender: female
age:    28
id:     2
  </pre>


  <h2><a name="4.6">4.6 Modifying the Object Model</a></h2>

  <p>In this section we will examine how to modify the information
     stored in the object model for our person records vocabulary.
     The following application changes the contents of the
     <code>people.xml</code> file:</p>

  <pre class="c++">
#include &lt;memory>
#include &lt;iostream>

#include "people.hxx"
#include "people-pimpl.hxx"
#include "people-simpl.hxx"

using namespace std;

int
main ()
{
  // Parse.
  //
  people_paggr people_p;
  xml_schema::document_pimpl doc_p (people_p.root_parser (),
                                    people_p.root_name ());
  people_p.pre ();
  doc_p.parse ("people.xml");
  auto_ptr&lt;people> ppl (people_p.post ());

  // Iterate over individual person records and increment
  // the age.
  //
  people::person_sequence&amp; ps = ppl->person ();

  for (people::person_iterator i = ps.begin (); i != ps.end (); ++i)
  {
    i->age ()++; // Alternative way: i->age (i->age () + 1)
  }

  // Add middle-name to the first record and remove it from
  // the second.
  //
  person&amp; john = ps[0];
  person&amp; jane = ps[1];

  john.middle_name ("Mary");
  jane.middle_name_present (false);

  // Add another John record.
  //
  ps.push_back (john);

  // Serialize the modified object model to XML.
  //
  people_saggr people_s;
  xml_schema::document_simpl doc_s (people_s.root_serializer (),
                                    people_s.root_name ());
  people_s.pre (*ppl);
  doc_s.serialize (cout);
  people_s.post ();
}
  </pre>

  <p>The first modification the above application performs is iterating
     over person records and incrementing the age value. This code
     fragment shows how to modify the value of a required attribute
     or element. The next modification shows how to set a new value
     for the optional <code>middle-name</code> element as well
     as clear its value. Finally, the example adds a copy of the
     John Doe record to the <code>person</code> element sequence.</p>

  <p>Note that in this case using references for the <code>ps</code>,
     <code>john</code>, and <code>jane</code> variables is no longer
     a performance improvement but a requirement for the application
     to function correctly. If we hadn't used references, all our changes
     would have been made on copies without affecting the object model.</p>

  <p>If we run the above application on our sample <code>people.xml</code>,
     the output looks as follows:</p>

  <pre class="xml">
&lt;?xml version="1.0"?>
&lt;people>

  &lt;person id="1">
    &lt;first-name>John&lt;/first-name>
    &lt;middle-name>Mary&lt;/middle-name>
    &lt;last-name>Doe&lt;/last-name>
    &lt;gender>male&lt;/gender>
    &lt;age>33&lt;/age>
  &lt;/person>

  &lt;person id="2">
    &lt;first-name>Jane&lt;/first-name>
    &lt;last-name>Doe&lt;/last-name>
    &lt;gender>female&lt;/gender>
    &lt;age>29&lt;/age>
  &lt;/person>

  &lt;person id="1">
    &lt;first-name>John&lt;/first-name>
    &lt;middle-name>Mary&lt;/middle-name>
    &lt;last-name>Doe&lt;/last-name>
    &lt;gender>male&lt;/gender>
    &lt;age>33&lt;/age>
  &lt;/person>

&lt;/people>
  </pre>

  <h2><a name="4.7">4.7 Creating the Object Model from Scratch</a></h2>

  <p>In this section we will examine how to create a new object model
     for our person records vocabulary. The following application
     recreates the content of the original <code>people.xml</code>
     file:</p>

  <pre class="c++">
#include &lt;iostream>

#include "people.hxx"
#include "people-simpl.hxx"

using namespace std;

int
main ()
{
  people ppl;
  people::person_sequence&amp; ps = ppl.person ();

  // John
  //
  {
    person p;
    p.first_name ("John");
    p.last_name ("Doe");
    p.age (32);
    p.id (1);

    gender g;
    g.assign ("male");
    p.gender (g);

    ps.push_back (p);
  }

  // Jane
  //
  {
    person p;
    p.first_name ("Jane");
    p.middle_name ("Mary");
    p.last_name ("Doe");
    p.age (28);
    p.id (2);

    gender g;
    g.assign ("male");
    p.gender (g);

    ps.push_back (p);
  }

  // Serialize the object model to XML.
  //
  people_saggr people_s;
  xml_schema::document_simpl doc_s (people_s.root_serializer (),
                                    people_s.root_name ());
  people_s.pre (ppl);
  doc_s.serialize (cout);
  people_s.post ();
}
  </pre>

  <p>The only new part in the above application is the calls
     to the <code>people</code> and <code>person</code>
     constructors. As a general rule, a newly created instance
     does not assign any values to its elements and attributes.
     That is, members with the <em>one</em> cardinality
     class are left uninitialized, members with the <em>optional</em>
     cardinality class are set to the "not present" state,
     and members with the <em>sequence</em> cardinality class
     have empty containers. After the instance has been
     created, we can set its element and attribute values
     using the modifier functions.</p>

  <p>The above application produces the following output:</p>

  <pre class="xml">
&lt;?xml version="1.0" ?>
&lt;people>

  &lt;person id="1">
    &lt;first-name>John&lt;/first-name>
    &lt;last-name>Doe&lt;/last-name>
    &lt;gender>male&lt;/gender>
    &lt;age>32&lt;/age>
  &lt;/person>

  &lt;person id="2">
    &lt;first-name>Jane&lt;/first-name>
    &lt;middle-name>Mary&lt;/middle-name>
    &lt;last-name>Doe&lt;/last-name>
    &lt;gender>female&lt;/gender>
    &lt;age>28&lt;/age>
  &lt;/person>

&lt;/people>
  </pre>

  <h2><a name="4.8">4.8 Customizing the Object Model</a></h2>

  <p>Sometimes it is desirable to be able to store extra,
     application-specific data in some object model classes or
     nested compositor classes. Cases where this functionality
     may be required include handling of typeless content
     matched by XML Schema wildcards as well as a need for
     an application to pass extra data as part of the object
     model. The C++/Hybrid mapping provides a light-weight
     mechanism for storing custom data by allowing you to add
     a sequence of opaque objects, stored as <code>void*</code>,
     to select generated classes. It is also possible to
     customize the parsing and serialization code for such
     classes in order to populate the custom data sequence
     during parsing and later serialize it to XML. See
     <a href="#6.1">Section 6.1, "Customizing Parsers and
     Serializers"</a> for details.</p>

  <p>To instruct the XSD/e compiler to include custom data
     in a specific object model class, we need to use the
     <code>--custom-data</code> option with the corresponding
     XML Schema type name as its argument. To include custom
     data into a nested compositor class, use its qualified
     name starting with the XML Schema type, for example
     <code>type::sequence1</code>. If we would like to
     add the ability to store custom data in the generated
     <code>person</code> class for our person records
     vocabulary, we can compile <code>people.xsd</code>
     like this:</p>

  <pre class="terminal">
$ xsde cxx-hybrid --custom-type person people.xsd
  </pre>

  <p>The resulting <code>person</code> class will have the
     following extra set of type definitions and functions:</p>


  <pre class="c++">
// person (variable-length)
//
class person
{
public:

  ...

  // Custom data.
  //
  typedef xsde::data_sequence custom_data_sequence;
  typedef custom_data_sequence::iterator custom_data_iterator;
  typedef custom_data_sequence::const_iterator custom_data_const_iterator;

  const custom_data_sequence&amp;
  custom_data () const;

  custom_data_sequence&amp;
  custom_data ();
};
  </pre>

  <p>Notice also that the <code>person</code> class is now variable-length
     since it contains a sequence. When C++ exceptions are enabled, the
     custom data sequence has the following interface:</p>

  <pre class="c++">
class data_sequence
{
public:
  typedef void*         value_type;
  typedef void**        pointer;
  typedef const void**  const_pointer;
  typedef void*         reference;
  typedef const void*   const_reference;

  typedef size_t        size_type;
  typedef ptrdiff_t     difference_type;

  typedef void** iterator;
  typedef const void* const* const_iterator;

  typedef void (*destroy_func) (void* data, size_t pos);

public:
  data_sequence ();

  void
  destructor (destroy_func);

  void
  swap (data_sequence&amp;);

private:
  data_sequence (const data_sequence&amp;);

  data_sequence&amp;
  operator= (data_sequence&amp;);

public:
  iterator
  begin ();

  const_iterator
  begin () const;

  iterator
  end ();

  const_iterator
  end () const;

  void*
  front ();

  const void*
  front () const;

  void*
  back ();

  const void*
  back () const;

  void*
  operator[] (size_t);

  const void*
  operator[] (size_t) const;

public:
  bool
  empty () const;

  size_t
  size () const;

  size_t
  capacity () const;

  size_t
  max_size () const;

public:
  void
  clear ();

  void
  pop_back ();

  iterator
  erase (iterator);

  void
  push_back (void*);

  iterator
  insert (iterator, void*);

  void
  reserve (size_t);
};
  </pre>

  <p>The <code>destructor()</code> modifier allows you to specify
     the clean up function used to free the sequence elements.
     The second argument in this clean up function is the position
     of the element in the sequence that is being freed. This allows
     you to store objects of different types in the same custom
     data sequence. The <code>push_back()</code> and <code>insert()</code>
     functions free the passed object if the reallocation of the
     underlying sequence buffer fails.</p>

  <p>When exceptions are disabled, the <code>push_back()</code>,
     <code>insert()</code>, and <code>reserve()</code> functions
     return an error code to signal the out of memory condition:</p>

  <pre class="c++">
class data_sequence
{
public:
  enum error
  {
    error_none,
    error_no_memory
  };

  ...

public:
  error
  push_back (void*);

  error
  insert (iterator, void*);

  error
  insert (iterator, void*, iterator&amp; result);

  error
  reserve (size_t);
};
  </pre>

  <p>The following code fragment shows how we can store and retrieve
     custom data in the <code>person</code> class:</p>

  <pre class="c++">
class data
{
  ...
};

void
destroy_data (void* p, size_t)
{
  delete static_cast&lt;data*> (p);
}

person&amp; = ...;
person::custom_data_sequence&amp; cd = p.custom_data ();

cd.destructor (&amp;destroy_data);

// Store.
//
data* d = new data;
cd.push_back (d);

// Retrieve.
//
for (person::custom_data_iterator i = cd.begin (); i != cd.end (); ++i)
{
  data* d = static_cast&lt;data*> (*i);
}
  </pre>


  <!-- Built-in XML Schema Type Parsers -->


  <h1><a name="5">5 Mapping for Built-In XML Schema Types</a></h1>

  <p>In XML Schema, built-in types, such as <code>int</code>,
     <code>string</code>, etc., are defined in the XML Schema namespace.
     By default this namespace is mapped to C++ namespace
     <code>xml_schema</code> (this mapping can be altered
     with the <code>--namespace-map</code> option). The following table
     summarizes the mapping of XML Schema built-in types to C++ types
     in the C++/Hybrid mapping. Declarations for these types are
     automatically included into each generated header file.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="builtin" border="1">
    <tr>
      <th>XML Schema type</th>
      <th>Alias in the <code>xml_schema</code> namespace</th>
      <th>C++ type</th>
    </tr>

    <tr>
      <th colspan="3">fixed-length integral types</th>
    </tr>
    <!-- 8-bit -->
    <tr>
      <td><code>byte</code></td>
      <td><code>byte</code></td>
      <td><code>signed&nbsp;char</code></td>
    </tr>
    <tr>
      <td><code>unsignedByte</code></td>
      <td><code>unsigned_byte</code></td>
      <td><code>unsigned&nbsp;char</code></td>
    </tr>

    <!-- 16-bit -->
    <tr>
      <td><code>short</code></td>
      <td><code>short_</code></td>
      <td><code>short</code></td>
    </tr>
    <tr>
      <td><code>unsignedShort</code></td>
      <td><code>unsigned_short</code></td>
      <td><code>unsigned&nbsp;short</code></td>
    </tr>

    <!-- 32-bit -->
    <tr>
      <td><code>int</code></td>
      <td><code>int_</code></td>
      <td><code>int</code></td>
    </tr>
    <tr>
      <td><code>unsignedInt</code></td>
      <td><code>unsigned_int</code></td>
      <td><code>unsigned&nbsp;int</code></td>
    </tr>

    <!-- 64-bit -->
    <tr>
      <td><code>long</code></td>
      <td><code>long_</code></td>
      <td><code>long</code> or<br/> <code>long&nbsp;long</code><br/>
          <a href="#3.5">Section 3.5, "64-bit Integer Type"</a></td>
    </tr>
    <tr>
      <td><code>unsignedLong</code></td>
      <td><code>unsigned_long</code></td>
      <td><code>unsigned&nbsp;long</code> or
          <code>unsigned&nbsp;long&nbsp;long</code><br/>
          <a href="#3.5">Section 3.5, "64-bit Integer Type"</a></td>
    </tr>

    <tr>
      <th colspan="3">arbitrary-length integral types</th>
    </tr>
    <tr>
      <td><code>integer</code></td>
      <td><code>integer</code></td>
      <td><code>long</code></td>
    </tr>
    <tr>
      <td><code>nonPositiveInteger</code></td>
      <td><code>non_positive_integer</code></td>
      <td><code>long</code></td>
    </tr>
    <tr>
      <td><code>nonNegativeInteger</code></td>
      <td><code>non_negative_integer</code></td>
      <td><code>unsigned long</code></td>
    </tr>
    <tr>
      <td><code>positiveInteger</code></td>
      <td><code>positive_integer</code></td>
      <td><code>unsigned long</code></td>
    </tr>
    <tr>
      <td><code>negativeInteger</code></td>
      <td><code>negative_integer</code></td>
      <td><code>long</code></td>
    </tr>

    <tr>
      <th colspan="3">boolean types</th>
    </tr>
    <tr>
      <td><code>boolean</code></td>
      <td><code>boolean</code></td>
      <td><code>bool</code></td>
    </tr>

    <tr>
      <th colspan="3">fixed-precision floating-point types</th>
    </tr>
    <tr>
      <td><code>float</code></td>
      <td><code>float_</code></td>
      <td><code>float</code></td>
    </tr>
    <tr>
      <td><code>double</code></td>
      <td><code>double_</code></td>
      <td><code>double</code></td>
    </tr>

    <tr>
      <th colspan="3">arbitrary-precision floating-point types</th>
    </tr>
    <tr>
      <td><code>decimal</code></td>
      <td><code>decimal</code></td>
      <td><code>double</code></td>
    </tr>

    <tr>
      <th colspan="3">string types</th>
    </tr>
    <tr>
      <td><code>string</code></td>
      <td><code>string</code></td>
      <td><code>std::string</code> or <code>char*</code><br/>
          <a href="#3.1">Section 3.1, "Standard Template Library"</a></td>
    </tr>
    <tr>
      <td><code>normalizedString</code></td>
      <td><code>normalized_string</code></td>
      <td><code>std::string</code> or <code>char*</code><br/>
          <a href="#3.1">Section 3.1, "Standard Template Library"</a></td>
    </tr>
    <tr>
      <td><code>token</code></td>
      <td><code>token</code></td>
      <td><code>std::string</code> or <code>char*</code><br/>
          <a href="#3.1">Section 3.1, "Standard Template Library"</a></td>
    </tr>
    <tr>
      <td><code>Name</code></td>
      <td><code>name</code></td>
      <td><code>std::string</code> or <code>char*</code><br/>
          <a href="#3.1">Section 3.1, "Standard Template Library"</a></td>
    </tr>
    <tr>
      <td><code>NMTOKEN</code></td>
      <td><code>nmtoken</code></td>
      <td><code>std::string</code> or <code>char*</code><br/>
          <a href="#3.1">Section 3.1, "Standard Template Library"</a></td>
    </tr>
    <tr>
      <td><code>NMTOKENS</code></td>
      <td><code>nmtokens</code></td>
      <td><a href="#5.2">Section 5.2, "Mapping for <code>NMTOKENS</code> and <code>IDREFS</code>"</a></td>
    </tr>
    <tr>
      <td><code>NCName</code></td>
      <td><code>ncname</code></td>
      <td><code>std::string</code> or <code>char*</code><br/>
          <a href="#3.1">Section 3.1, "Standard Template Library"</a></td>
    </tr>
    <tr>
      <td><code>language</code></td>
      <td><code>language</code></td>
      <td><code>std::string</code> or <code>char*</code><br/>
          <a href="#3.1">Section 3.1, "Standard Template Library"</a></td>
    </tr>

    <tr>
      <th colspan="3">qualified name</th>
    </tr>
    <tr>
      <td><code>QName</code></td>
      <td><code>qname</code></td>
      <td><a href="#5.1">Section 5.1, "Mapping for <code>QName</code>"</a></td>
    </tr>

    <tr>
      <th colspan="3">ID/IDREF types</th>
    </tr>
    <tr>
      <td><code>ID</code></td>
      <td><code>id</code></td>
      <td><code>std::string</code> or <code>char*</code><br/>
          <a href="#3.1">Section 3.1, "Standard Template Library"</a></td>
    </tr>
    <tr>
      <td><code>IDREF</code></td>
      <td><code>idref</code></td>
      <td><code>std::string</code> or <code>char*</code><br/>
          <a href="#3.1">Section 3.1, "Standard Template Library"</a></td>
    </tr>
    <tr>
      <td><code>IDREFS</code></td>
      <td><code>idrefs</code></td>
      <td><a href="#5.2">Section 5.2, "Mapping for <code>NMTOKENS</code> and <code>IDREFS</code>"</a></td>
    </tr>

    <tr>
      <th colspan="3">URI types</th>
    </tr>
    <tr>
      <td><code>anyURI</code></td>
      <td><code>uri</code></td>
      <td><code>std::string</code> or <code>char*</code><br/>
          <a href="#3.1">Section 3.1, "Standard Template Library"</a></td>
    </tr>

    <tr>
      <th colspan="3">binary types</th>
    </tr>
    <tr>
      <td><code>base64Binary</code></td>
      <td><code>base64_binary</code></td>
      <td><a href="#5.3">Section 5.3, "Mapping for <code>base64Binary</code> and <code>hexBinary</code>"</a></td>
    </tr>
    <tr>
      <td><code>hexBinary</code></td>
      <td><code>hex_binary</code></td>
      <td><a href="#5.3">Section 5.3, "Mapping for <code>base64Binary</code> and <code>hexBinary</code>"</a></td>
    </tr>

    <tr>
      <th colspan="3">date/time types</th>
    </tr>
    <tr>
      <td><code>date</code></td>
      <td><code>date</code></td>
      <td><a href="#5.5">Section 5.5, "Mapping for <code>date</code>"</a></td>
    </tr>
    <tr>
      <td><code>dateTime</code></td>
      <td><code>date_time</code></td>
      <td><a href="#5.6">Section 5.6, "Mapping for <code>dateTime</code>"</a></td>
    </tr>
    <tr>
      <td><code>duration</code></td>
      <td><code>duration</code></td>
      <td><a href="#5.7">Section 5.7, "Mapping for <code>duration</code>"</a></td>
    </tr>
    <tr>
      <td><code>gDay</code></td>
      <td><code>gday</code></td>
      <td><a href="#5.8">Section 5.8, "Mapping for <code>gDay</code>"</a></td>
    </tr>
    <tr>
      <td><code>gMonth</code></td>
      <td><code>gmonth</code></td>
      <td><a href="#5.9">Section 5.9, "Mapping for <code>gMonth</code>"</a></td>
    </tr>
    <tr>
      <td><code>gMonthDay</code></td>
      <td><code>gmonth_day</code></td>
      <td><a href="#5.10">Section 5.10, "Mapping for <code>gMonthDay</code>"</a></td>
    </tr>
    <tr>
      <td><code>gYear</code></td>
      <td><code>gyear</code></td>
      <td><a href="#5.11">Section 5.11, "Mapping for <code>gYear</code>"</a></td>
    </tr>
    <tr>
      <td><code>gYearMonth</code></td>
      <td><code>gyear_month</code></td>
      <td><a href="#5.12">Section 5.12, "Mapping for <code>gYearMonth</code>"</a></td>
    </tr>
    <tr>
      <td><code>time</code></td>
      <td><code>time</code></td>
      <td><a href="#5.13">Section 5.13, "Mapping for <code>time</code>"</a></td>
    </tr>
  </table>

  <p>As you can see from the table above a number of built-in
     XML Schema types are mapped to fundamental C++ types such
     as <code>int</code> or <code>bool</code>. All string-based
     XML Schema types are mapped to either <code>std::string</code>
     or <code>char*</code>, depending on whether the use of STL is
     enabled or not. A number of built-in types, such as
     <code>QName</code>, the binary types, and the date/time types,
     do not have suitable fundamental or standard C++ types to map to.
     These types are implemented from scratch in the XSD/e runtime
     and are discussed in more detail in the subsequent sections.</p>

  <p>In cases where the schema calls for an inheritance from a built-in
     type which is mapped to a fundamental C++ type, a special base
     type corresponding to the fundamental type and defined in the
     <code>xml_schema</code> namespace is used (C++ does not allow
     inheritance from fundamental types). For example:</p>

  <pre class="xml">
&lt;complexType name="measure">
  &lt;simpleContent>
    &lt;extension base="int">
      &lt;attribute name="unit" type="string" use="required"/>
    &lt;/extension>
  &lt;/simpleContent>
&lt;/complexType>
  </pre>

  <p>The corresponding object model class is shown below:</p>

  <pre class="c++">
// measure (fixed-length)
//
class measure: public xml_schema::int_base
{
public:
  measure ();
  measure (const measure&amp;);
  measure&amp; operator= (const measure&amp;);

  // unit
  //
  const std::string&amp;
  unit () const;

  std::string&amp;
  unit ();

  void
  unit (const std::string&amp;);

private:
  ...
};
  </pre>

  <p>The <code>xml_schema::int_base</code> class has the following
     interface:</p>

  <pre class="c++">
namespace xml_schema
{
  class int_base
  {
  public:
    int_base ();

    int_base&amp;
    operator= (int);

  public:
    int
    base_value () const;

    int&amp;
    base_value ();

    void
    base_value (int);

    operator const int&amp; () const;
    operator int&amp; ();
  };
}
  </pre>

  <p>All other base types for fundamental C++ types have similar
     interfaces. The only exception is the base type for string
     types when STL is disabled:</p>

  <pre class="c++">
namespace xml_schema
{
  class string_base
  {
  public:
    string_base ();

    string_base&amp;
    operator= (char* x)

  public:
    const char*
    base_value () const;

    char*
    base_value ();

    void
    base_value (char* x);

    operator const char* () const;
    operator char* ();
  };
}
  </pre>

  <p>Note that the <code>string_base</code> object assumes ownership
     of the strings passed to the assignment operator and the
     <code>base_value()</code> modifier.</p>

  <h2><a name="5.1">5.1 Mapping for <code>QName</code></a></h2>

  <p>The <code>QName</code> built-in XML Schema type is mapped to the
     <code>qname</code> class which represents an XML qualified name.
     With STL enabled (<a href="#3.1">Section 3.1, "Standard Template
     Library"</a>), it has the following interface:</p>

  <pre class="c++">
namespace xml_schema
{
  class qname
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    qname ();

    explicit
    qname (const std::string&amp; name);
    qname (const std::string&amp; prefix, const std::string&amp; name);

    void
    swap (qname&amp;);

    const std::string&amp;
    prefix () const;

    std::string&amp;
    prefix ();

    void
    prefix (const std::string&amp;);

    const std::string&amp;
    name () const;

    std::string&amp;
    name ();

    void
    name (const std::string&amp;);
  };

  bool
  operator== (const qname&amp;, const qname&amp;);

  bool
  operator!= (const qname&amp;, const qname&amp;);
}
  </pre>

  <p>When STL is disabled and C++ exceptions are enabled
     (<a href="#3.3">Section 3.3, "C++ Exceptions"</a>), the
     <code>qname</code> type has the following interface:</p>

  <pre class="c++">
namespace xml_schema
{
  class qname
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    qname ();

    explicit
    qname (char* name);
    qname (char* prefix, char* name);

    void
    swap (qname&amp;);

  private:
    qname (const qname&amp;);

    qname&amp;
    operator= (const qname&amp;);

  public:
    char*
    prefix ();

    const char*
    prefix () const;

    void
    prefix (char*);

    void
    prefix_copy (const char*);

    char*
    prefix_detach ();

  public:
    char*
    name ();

    const char*
    name () const;

    void
    name (char*);

    void
    name_copy (const char*);

    char*
    name_detach ();
  };

  bool
  operator== (const qname&amp;, const qname&amp;);

  bool
  operator!= (const qname&amp;, const qname&amp;);
}
</pre>

  <p>The modifier functions and constructors that have the <code>char*</code>
     argument assume ownership of the passed strings which should be allocated
     with operator <code>new char[]</code> and will be deallocated with
     operator <code>delete[]</code> by the <code>qname</code> object.
     If you detach the underlying prefix or name strings, then they
     should eventually be deallocated with operator <code>delete[]</code>.
     </p>

  <p>Finally, if both STL and C++ exceptions are disabled, the
     <code>qname</code> type has the following interface:</p>

  <pre class="c++">
namespace xml_schema
{
  class qname
  {
  public:
    enum error
    {
      error_none,
      error_no_memory
    };

    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    qname ();

    explicit
    qname (char* name);
    qname (char* prefix, char* name);

    void
    swap (qname&amp;);

  private:
    qname (const qname&amp;);

    qname&amp;
    operator= (const qname&amp;);

  public:
    char*
    prefix ();

    const char*
    prefix () const;

    void
    prefix (char*);

    error
    prefix_copy (const char*);

    char*
    prefix_detach ();

  public:
    char*
    name ();

    const char*
    name () const;

    void
    name (char*);

    error
    name_copy (const char*);

    char*
    name_detach ();
  };

  bool
  operator== (const qname&amp;, const qname&amp;);

  bool
  operator!= (const qname&amp;, const qname&amp;);
}
  </pre>

  <h2><a name="5.2">5.2 Mapping for <code>NMTOKENS</code> and <code>IDREFS</code></a></h2>

  <p>The <code>NMTOKENS</code> and <code>IDREFS</code> built-in
     XML Schema types are mapped to the string sequence type which
     is discussed in <a href="#4.3">Section 4.3, "Attributes and
     Elements"</a>.</p>

  <h2><a name="5.3">5.3 Mapping for <code>base64Binary</code> and <code>hexBinary</code></a></h2>

  <p>The <code>base64Binary</code> and <code>hexBinary</code> built-in
     XML Schema types are mapped to the <code>buffer</code> class.
     With C++ exceptions enabled (<a href="#3.3">Section 3.3, "C++
     Exceptions"</a>), it has the following interface:</p>

  <pre class="c++">
namespace xml_schema
{
  class buffer
  {
  public:
    class bounds {}; // Out of bounds exception.

  public:
    buffer ();

    explicit
    buffer (size_t size);
    buffer (size_t size, size_t capacity);
    buffer (const void* data, size_t size);
    buffer (const void* data, size_t size, size_t capacity);

    enum ownership_value { assume_ownership };

    // This constructor assumes ownership of the memory passed.
    //
    buffer (void* data, size_t size, size_t capacity, ownership_value);

  private:
    buffer (const buffer&amp;);

    buffer&amp;
    operator= (const buffer&amp;);

  public:
    void
    attach (void* data, size_t size, size_t capacity);

    void*
    detach ();

    void
    swap (buffer&amp;);

  public:
    size_t
    capacity () const;

    bool
    capacity (size_t);

  public:
    size_t
    size () const;

    bool
    size (size_t);

  public:
    const char*
    data () const;

    char*
    data ();

    const char*
    begin () const;

    char*
    begin ();

    const char*
    end () const;

    char*
    end ();
  };

  bool
  operator== (const buffer&amp;, const buffer&amp;);

  bool
  operator!= (const buffer&amp;, const buffer&amp;);
}
  </pre>

  <p>The last constructor and the <code>attach()</code> member function
     make the <code>buffer</code> instance assume the ownership of the
     memory block pointed to by the <code>data</code> argument and
     eventually release it by calling <code>operator delete()</code>.
     The <code>detach()</code> member function detaches and returns the
     underlying memory block which should eventually be released by
     calling <code>operator delete()</code>.
  </p>

  <p>The <code>capacity()</code> and <code>size()</code> modifier functions
     return <code>true</code> if the underlying buffer has moved. The
     <code>bounds</code> exception is thrown if the constructor or
     <code>attach()</code> member function arguments violate the
     <code>(size&nbsp;&lt;=&nbsp;capacity)</code> constraint.</p>

  <p>If C++ exceptions are disabled, the <code>buffer</code> class has
     the following interface:</p>

  <pre class="c++">
namespace xml_schema
{
  class buffer
  {
  public:
    enum error
    {
      error_none,
      error_bounds,
      error_no_memory
    };

    buffer ();

  private:
    buffer (const buffer&amp;);

    buffer&amp;
    operator= (const buffer&amp;);

  public:
    error
    attach (void* data, size_t size, size_t capacity);

    void*
    detach ();

    void
    swap (buffer&amp;);

  public:
    size_t
    capacity () const;

    error
    capacity (size_t);

    error
    capacity (size_t, bool&amp; moved);

  public:
    size_t
    size () const;

    error
    size (size_t);

    error
    size (size_t, bool&amp; moved);

  public:
    const char*
    data () const;

    char*
    data ();

    const char*
    begin () const;

    char*
    begin ();

    const char*
    end () const;

    char*
    end ();
  };

  bool
  operator== (const buffer&amp;, const buffer&amp;);

  bool
  operator!= (const buffer&amp;, const buffer&amp;);
}
  </pre>

  <h2><a name="5.4">5.4 Time Zone Representation</a></h2>

  <p>The <code>date</code>, <code>dateTime</code>, <code>gDay</code>,
     <code>gMonth</code>, <code>gMonthDay</code>, <code>gYear</code>,
     <code>gYearMonth</code>, and <code>time</code> XML Schema built-in
     types all include an optional time zone component. The following
     <code>time_zone</code> base class is used to represent this
     information:</p>

  <pre class="c++">
namespace xml_schema
{
  class time_zone
  {
  public:
    time_zone ();
    time_zone (short hours, short minutes);

    bool
    zone_present () const;

    void
    zone_reset ();

    short
    zone_hours () const;

    void
    zone_hours (short);

    short
    zone_minutes () const;

    void
    zone_minutes (short);
  };

  bool
  operator== (const time_zone&amp;, const time_zone&amp;);

  bool
  operator!= (const time_zone&amp;, const time_zone&amp;);
}
  </pre>

  <p>The <code>zone_present()</code> accessor function returns <code>true</code>
     if the time zone is specified. The <code>zone_reset()</code> modifier
     function resets the time zone object to the "not specified"
     state. If the time zone offset is negative then both hours and
     minutes components should be negative.</p>

  <h2><a name="5.5">5.5 Mapping for <code>date</code></a></h2>

  <p>The <code>date</code> built-in XML Schema type is mapped to the
     <code>date</code> class which represents a year, a day, and a month
     with an optional time zone. Its interface is presented below. For
     more information on the base <code>xml_schema::time_zone</code>
     class refer to <a href="#5.4">Section 5.4, "Time Zone
     Representation"</a>.</p>

  <pre class="c++">
namespace xml_schema
{
  class date: public time_zone
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    date ();

    date (int year, unsigned short month, unsigned short day);

    date (int year, unsigned short month, unsigned short day,
          short zone_hours, short zone_minutes);

    int
    year () const;

    void
    year (int);

    unsigned short
    month () const;

    void
    month (unsigned short);

    unsigned short
    day () const;

    void
    day (unsigned short);
  };

  bool
  operator== (const date&amp;, const date&amp;);

  bool
  operator!= (const date&amp;, const date&amp;);
}
  </pre>

  <h2><a name="5.6">5.6 Mapping for <code>dateTime</code></a></h2>

  <p>The <code>dateTime</code> built-in XML Schema type is mapped to the
     <code>date_time</code> class which represents a year, a month, a day,
     hours, minutes, and seconds with an optional time zone. Its interface
     is presented below. For more information on the base
     <code>xml_schema::time_zone</code> class refer to <a href="#5.4">Section
     5.4, "Time Zone Representation"</a>.</p>

  <pre class="c++">
namespace xml_schema
{
  class date_time: public time_zone
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    date_time ();

    date_time (int year, unsigned short month, unsigned short day,
               unsigned short hours, unsigned short minutes,
               double seconds);

    date_time (int year, unsigned short month, unsigned short day,
               unsigned short hours, unsigned short minutes,
               double seconds, short zone_hours, short zone_minutes);

    int
    year () const;

    void
    year (int);

    unsigned short
    month () const;

    void
    month (unsigned short);

    unsigned short
    day () const;

    void
    day (unsigned short);

    unsigned short
    hours () const;

    void
    hours (unsigned short);

    unsigned short
    minutes () const;

    void
    minutes (unsigned short);

    double
    seconds () const;

    void
    seconds (double);
  };

  bool
  operator== (const date_time&amp;, const date_time&amp;);

  bool
  operator!= (const date_time&amp;, const date_time&amp;);
}
  </pre>

  <h2><a name="5.7">5.7 Mapping for <code>duration</code></a></h2>

  <p>The <code>duration</code> built-in XML Schema type is mapped to the
     <code>duration</code> class which represents a potentially
     negative duration in the form of years, months, days, hours, minutes,
     and seconds. Its interface is presented below.</p>

  <pre class="c++">
namespace xml_schema
{
  class duration
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    duration ();

    duration (bool negative,
              unsigned int years, unsigned int months, unsigned int days,
              unsigned int hours, unsigned int minutes, double seconds);

    bool
    negative () const;

    void
    negative (bool);

    unsigned int
    years () const;

    void
    years (unsigned int);

    unsigned int
    months () const;

    void
    months (unsigned int);

    unsigned int
    days () const;

    void
    days (unsigned int);

    unsigned int
    hours () const;

    void
    hours (unsigned int);

    unsigned int
    minutes () const;

    void
    minutes (unsigned int);

    double
    seconds () const;

    void
    seconds (double);
  };

  bool
  operator== (const duration&amp;, const duration&amp;);

  bool
  operator!= (const duration&amp;, const duration&amp;);
}
  </pre>


  <h2><a name="5.8">5.8 Mapping for <code>gDay</code></a></h2>

  <p>The <code>gDay</code> built-in XML Schema type is mapped to the
     <code>gday</code> class which represents a day of the month with
     an optional time zone. Its interface is presented below. For
     more information on the base <code>xml_schema::time_zone</code>
     class refer to <a href="#5.4">Section 5.4, "Time Zone
     Representation"</a>.</p>

  <pre class="c++">
namespace xml_schema
{
  class gday: public time_zone
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    gday ();

    explicit
    gday (unsigned short day);

    gday (unsigned short day, short zone_hours, short zone_minutes);

    unsigned short
    day () const;

    void
    day (unsigned short);
  };

  bool
  operator== (const gday&amp;, const gday&amp;);

  bool
  operator!= (const gday&amp;, const gday&amp;);
}
  </pre>

  <h2><a name="5.9">5.9 Mapping for <code>gMonth</code></a></h2>

  <p>The <code>gMonth</code> built-in XML Schema type is mapped to the
     <code>gmonth</code> class which represents a month of the year
     with an optional time zone. Its interface is presented below. For
     more information on the base <code>xml_schema::time_zone</code>
     class refer to <a href="#5.4">Section 5.4, "Time Zone
     Representation"</a>.</p>

  <pre class="c++">
namespace xml_schema
{
  class gmonth: public time_zone
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    gmonth ();

    explicit
    gmonth (unsigned short month);

    gmonth (unsigned short month,
            short zone_hours, short zone_minutes);

    unsigned short
    month () const;

    void
    month (unsigned short);
  };

  bool
  operator== (const gmonth&amp;, const gmonth&amp;);

  bool
  operator!= (const gmonth&amp;, const gmonth&amp;);
}
  </pre>

  <h2><a name="5.10">5.10 Mapping for <code>gMonthDay</code></a></h2>

  <p>The <code>gMonthDay</code> built-in XML Schema type is mapped to the
     <code>gmonth_day</code> class which represents a day and a month of
     the year with an optional time zone. Its interface is presented below.
     For more information on the base <code>xml_schema::time_zone</code>
     class refer to <a href="#5.4">Section 5.4, "Time Zone
     Representation"</a>.</p>

  <pre class="c++">
namespace xml_schema
{
  class gmonth_day: public time_zone
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    gmonth_day ();

    gmonth_day (unsigned short month, unsigned short day);

    gmonth_day (unsigned short month, unsigned short day,
                short zone_hours, short zone_minutes);

    unsigned short
    month () const;

    void
    month (unsigned short);

    unsigned short
    day () const;

    void
    day (unsigned short);
  };

  bool
  operator== (const gmonth_day&amp;, const gmonth_day&amp;);

  bool
  operator!= (const gmonth_day&amp;, const gmonth_day&amp;);
}
  </pre>

  <h2><a name="5.11">5.11 Mapping for <code>gYear</code></a></h2>

  <p>The <code>gYear</code> built-in XML Schema type is mapped to the
     <code>gyear</code> class which represents a year with
     an optional time zone. Its interface is presented below.
     For more information on the base <code>xml_schema::time_zone</code>
     class refer to <a href="#5.4">Section 5.4, "Time Zone
     Representation"</a>.</p>

  <pre class="c++">
namespace xml_schema
{
  class gyear: public time_zone
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    gyear ();

    explicit
    gyear (int year);

    gyear (int year, short zone_hours, short zone_minutes);

    int
    year () const;

    void
    year (int);
  };

  bool
  operator== (const gyear&amp;, const gyear&amp;);

  bool
  operator!= (const gyear&amp;, const gyear&amp;);
}
  </pre>

  <h2><a name="5.12">5.12 Mapping for <code>gYearMonth</code></a></h2>

  <p>The <code>gYearMonth</code> built-in XML Schema type is mapped to the
     <code>gyear_month</code> class which represents a year and a month
     with an optional time zone. Its interface is presented below.
     For more information on the base <code>xml_schema::time_zone</code>
     class refer to <a href="#5.4">Section 5.4, "Time Zone
     Representation"</a>.</p>

  <pre class="c++">
namespace xml_schema
{
  class gyear_month: public time_zone
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    gyear_month ();

    gyear_month (int year, unsigned short month);

    gyear_month (int year, unsigned short month,
                 short zone_hours, short zone_minutes);

    int
    year () const;

    void
    year (int);

    unsigned short
    month () const;

    void
    month (unsigned short);
  };

  bool
  operator== (const gyear_month&amp;, const gyear_month&amp;);

  bool
  operator!= (const gyear_month&amp;, const gyear_month&amp;);
}
  </pre>


  <h2><a name="5.13">5.13 Mapping for <code>time</code></a></h2>

 <p>The <code>time</code> built-in XML Schema type is mapped to the
    <code>time</code> class which represents hours, minutes,
    and seconds with an optional time zone. Its interface is presented below.
    For more information on the base <code>xml_schema::time_zone</code>
    class refer to <a href="#5.4">Section 5.4, "Time Zone
    Representation"</a>.</p>

  <pre class="c++">
namespace xml_schema
{
  class time: public time_zone
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    time ();

    time (unsigned short hours, unsigned short minutes, double seconds);

    time (unsigned short hours, unsigned short minutes, double seconds,
          short zone_hours, short zone_minutes);

    unsigned short
    hours () const;

    void
    hours (unsigned short);

    unsigned short
    minutes () const;

    void
    minutes (unsigned short);

    double
    seconds () const;

    void
    seconds (double);
  };

  bool
  operator== (const time&amp;, const time&amp;);

  bool
  operator!= (const time&amp;, const time&amp;);
}
  </pre>

  <!-- Parsing and Serialization -->

  <h1><a name="6">6 Parsing and Serialization</a></h1>

  <p>As was mentioned in the introduction, the C++/Hybrid mapping
     uses the C++/Parser and C++/Serializer mappings for XML parsing
     and serialization. If your parsing and serialization requirements
     are fairly basic, for example, parsing from and serializing to
     a file or a memory buffer, then you don't need to concern yourself
     with these two underlying mappings. On the other hand, the C++/Parser
     and C++/Serializer mappings provide well-defined APIs which allow
     a great amount of flexibility that may be useful in certain situations.
     In such cases, you may need to get an understanding of how the
     C++/Parser and C++/Serializer mappings work. See the
     <a href="http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml">Embedded
     C++/Parser Mapping Getting Started Guide</a> and the
     <a href="http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml">Embedded
     C++/Serializer Mapping Getting Started Guide</a> for more detailed
     information on these mappings.</p>

  <p>For each type defined in XML Schema, the C++/Parser and
     C++/Serializer mappings generate a parser skeleton class and
     serializer skeleton class, respectively. These classes manage
     parsing/serialization state, convert data between text
     and C++ types, and perform XML Schema validation, if enabled.
     Parser skeletons deliver the parsed data and serializer
     skeletons request the data to be serialized with callbacks.
     These callbacks are implemented by parser and serializer
     implementation classes that are derived from the skeletons.
     If the application uses the C++/Parser and C++/Serializer
     mappings directly, these implementation classes are normally
     written by the application developer to perform some
     application-specific actions. In case of the C++/Hybrid mapping,
     these implementations are automatically generated by the XSD/e
     compiler to parse XML to object models and to serialize object
     models to XML.
     To request the generation of parser skeletons and
     implementations, you need to specify the <code>--generate-parser</code>
     XSD/e command line option. Similarly, to generate serializer
     skeletons and implementations, you will need to use the
     <code>--generate-serializer</code> option.</p>

  <p>Before an XML document can be parsed or serialized, the
     individual parser and serializer implementations need to
     be instantiated and connected to each other. Again, if the
     application uses the C++/Parser and C++/Serializer mappings
     directly, this is done by the application developer. While
     you can also do this with the generated C++/Hybrid parser and
     serializer implementations, it is easier to request the
     generation of parser and serializer aggregate classes with
     the <code>--generate-aggregate</code> options. Aggregate
     classes instantiate and connect all the necessary individual
     parser and serializer implementations for a particular root
     element or type. Consider again the <code>hello.xsd</code>
     schema from <a href="#2">Chapter 2, "Hello World Example"</a>:</p>

  <pre class="xml">
&lt;?xml version="1.0"?>
&lt;xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

  &lt;xs:complexType name="hello">
    &lt;xs:sequence>
      &lt;xs:element name="greeting" type="xs:string"/>
      &lt;xs:element name="name" type="xs:string" maxOccurs="unbounded"/>
    &lt;/xs:sequence>
  &lt;/xs:complexType>

  &lt;xs:element name="hello" type="hello"/>

&lt;/xs:schema>
  </pre>

  <p>If we compile this schema with the <code>--generate-parser</code>,
     <code>--generate-serializer</code>, and <code>--generate-aggregate</code>
     options, we will have two aggregate classes, <code>hello_paggr</code>
     and <code>hello_saggr</code>, generated for the root <code>hello</code>
     element. The interface of the <code>hello_paggr</code> class is
     presented below:</p>

  <pre class="c++">
class hello_paggr
{
public:
  hello_paggr ();

  void
  pre ();

  hello*
  post ();

  hello_pimpl&amp;
  root_parser ();

  static const char*
  root_name ();

  static const char*
  root_namespace ();
};
  </pre>

  <p>The <code>pre()</code> and <code>post()</code> functions
     call the corresponding callbacks on the root parser
     implementation. The <code>root_parser()</code> function
     returns the root parser implementation. The <code>root_name()</code>
     and <code>root_namespace()</code> functions return the
     root element name and namespace, respectively.</p>

  <p>As was shown in <a href="#2">Chapter 2, "Hello World Example"</a>,
     we can use this parser aggregate to create the document parser
     (supplied by the C++/Parser mapping) and perform the parsing:</p>

  <pre class="c++">
hello_paggr hello_p;
xml_schema::document_pimpl doc_p (hello_p.root_parser (),
                                  hello_p.root_name ());
hello_p.pre ();
doc_p.parse ("hello.xml");
hello* h = hello_p.post ();
  </pre>

  <p>For more information on the <code>document_pimpl</code> class,
     including the other variants of the <code>parse()</code> function
     as well as error handling during parsing, see
     <a href="http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml#7">Chapter 7,
     "Document Parser and Error Handling"</a> in the Embedded C++/Parser
     Mapping Getting Started Guide.</p>

  <p>The interface of the <code>hello_saggr</code> serializer aggregate
     mirrors that of <code>hello_paggr</code> and is presented below:</p>

  <pre class="c++">
class hello_saggr
{
public:
  hello_saggr ();

  void
  pre (const hello&amp;);

  void
  post ();

  hello_simpl&amp;
  root_serializer ();

  static const char*
  root_name ();

  static const char*
  root_namespace ();
};
  </pre>

  <p>The <code>pre()</code> and <code>post()</code> functions
     call the corresponding callbacks on the root serializer
     implementation. The <code>root_serializer()</code> function
     returns the root serializer implementation. The
     <code>root_name()</code> and <code>root_namespace()</code>
     functions return the root element name and namespace,
     respectively.</p>

  <p>As was shown in <a href="#2">Chapter 2, "Hello World Example"</a>,
     we can use this serializer aggregate to create the document
     serializer (supplied by the C++/Serializer mapping) and perform
     the serialization:</p>

  <pre class="c++">
hello_saggr hello_s;
xml_schema::document_simpl doc_s (hello_s.root_serializer (),
                                  hello_s.root_name ());
hello_s.pre (*h);
doc_s.serialize (std::cout);
hello_s.post ();
  </pre>

  <p>For more information on the <code>document_simpl</code> class,
     including the other variants of the <code>serialize()</code>
     function as well as error handling during serialization, see
     <a href="http://www.codesynthesis.com/projects/xsde/documentation/cxx/serializer/guide/index.xhtml#8">Chapter 8,
     "Document Serializer and Error Handling"</a> in the Embedded
     C++/Serializer Mapping Getting Started Guide.</p>

  <h2><a name="6.1">6.1 Customizing Parsers and Serializers</a></h2>

  <p>The C++/Hybrid mapping allows you to customize the generated
     parser and serializer implementations. This mechanism can be
     used, for example, to implement filtering, partially
     event-driven XML processing, as well as parsing of content
     matched by XML Schema wildcards. Filtering allows only parts
     of the XML document to be parsed into the object model or only
     parts of the object model to be serialized to XML. With
     partially event-driven parsing and serialization, we can
     process parts of the document as they become available as
     well as handle documents that are too large to fit into
     memory. This section expects you to have an understanding
     of the C++/Parser and C++/Serializer programming models.</p>

  <p>To request customization of a parser or serializer
     implementation, you will need to specify the
     <code>--custom-parser</code> or <code>--custom-serializer</code>
     option, respectively. The argument format for these two options
     is <code>type[=base[/include]]</code>. The <code>type</code>
     component is the XML Schema type name being customized. Optional
     <code>base</code> is a C++ name that should be given to the
     generated version. It is normally used as a base for the custom
     implementation. Optional <code>include</code> is the header file
     that defines the custom implementation. It is <code>#include</code>'ed
     into the generated code immediately after (if <code>base</code>
     is specified) or instead of the generated version. The following
     examples show how we can use these options:</p>

  <pre class="terminal">
--custom-parser foo
--custom-parser foo=foo_base_pimpl
--custom-parser foo=foo_base_pimpl/foo/foo-custom.hxx
--custom-parser foo=/foo/foo-custom.hxx
  </pre>

  <p>The first version instructs the XSD/e compiler not to generate
     the parser implementation for the <code>foo</code> XML Schema
     type. The second version instructs the compiler to generate
     the parser implementation for type <code>foo</code> but call
     it <code>foo_base_pimpl</code>. The third version is similar to the
     second except that the compiler generates the <code>#include</code>
     directive with the <code>foo/foo-custom.hxx</code> file (which
     presumably defines <code>foo_pimpl</code>) right after the
     <code>foo_base_pimpl</code> class. The last version instructs
     the XSD/e compiler to include <code>foo/foo-custom.hxx</code>
     instead of generating the parser implementation for
     <code>foo</code>. If you omit the last component, then
     you can include the custom parser/serializer definitions
     using one of the prologue or epilogue XSD/e compiler options.
     See the <a href="http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml">XSD/e
     Compiler Command Line Manual</a> for details.</p>

  <p>Once you specify the <code>--custom-parser</code> or
     <code>--custom-serializer</code> option, you will need to
     provide the custom implementation. You have a choice of either
     basing it on the generated version and overriding some
     callbacks or implementing it from scratch.</p>

  <p>In the remainder of this section we will examine how to
     customize the <code>people</code> parser and serializer
     implementations from the example presented in <a href="#4">Chapter 4,
     "Working with Object Models"</a>. Our custom parser
     implementation will filter the records being parsed
     based on a person's age. Similarly, the serializer will
     only serialize records of a specific gender. The code
     presented below is taken from the <code>filter</code>
     example in the XSD/e distribution. Other examples
     related to parser/serializer customization are
     <code>wildcard</code> and <code>streaming</code>.</p>

  <p>First, we compile the <code>people.xsd</code> schema
     and instruct the XSD/e compiler to customize the
     parser and serializer implementations for the <code>people</code>
     XML Schema type:</p>

  <pre class="terminal">
$ xsde cxx-hybrid --generate-parser --generate-serializer \
--custom-parser people=people_base_pimpl/people-custom-pimpl.hxx \
--custom-serializer people=people_base_simpl/people-custom-simpl.hxx \
--generate-aggregate people.xsd
  </pre>

  <p>The custom <code>people_pimpl</code> parser implementation
     is based on the generated version and is saved to
     <code>people-custom-pimpl.hxx</code>:</p>

  <pre class="c++">
class people_pimpl: public people_base_pimpl
{
public:
  void
  age_filter (unsigned short min, unsigned short max)
  {
    min_age_ = min;
    max_age_ = max;
  }

  virtual void
  person (const ::person&amp; p)
  {
    // Check if the age constraints are met.
    //
    unsigned short age = p.age ();

    if (age >= min_age_ &amp;&amp; age &lt;= max_age_)
      people_base_pimpl::person (p);
  }

private:
  unsigned short min_age_;
  unsigned short max_age_;
};
  </pre>

  <p>Here we override the <code>person()</code> callback and,
     if the filter conditions are satisfied, call the original
     version which adds the person record to the object model.
     Note that if the <code>person</code> object model class
     were variable-length, then the instance would be
     dynamically allocated and passed as a pointer. In this
     situation, if we don't use the object, we need to delete it,
     for example:</p>

<pre class="c++">
virtual void
person (const ::person* p)
{
  unsigned short age = p->age ();

  if (age >= min_age_ &amp;&amp; age &lt;= max_age_)
    people_base_pimpl::person (p);
  else
    delete p;
}
  </pre>

  <p>The custom <code>people_simpl</code> parser implementation
     is also based on the generated version and is saved to
     <code>people-custom-simpl.hxx</code>:</p>

  <pre class="c++">
class people_simpl: public people_base_simpl
{
public:
  void
  gender_filter (gender g)
  {
    gender_ = g;
  }

  virtual bool
  person_next ()
  {
    // See if we have any more person records with the gender we
    // are interested in.
    //
    people::person_const_iterator&amp; i = people_base_simpl_state_.person_;
    people::person_const_iterator&amp; e = people_base_simpl_state_.person_end_;

    for (; i != e; ++i)
    {
      if (i->gender () == gender_)
        break;
    }

    return i != e;
  }

private:
  gender gender_;
};
  </pre>

  <p>Here we override the <code>person_next()</code> callback
     where we locate the next record that satisfies the filter
     conditions. Note that we use the serialization state
     provided by the generated <code>people_base_simpl</code>
     implementation.</p>

  <p>The following code fragment shows a test driver that uses
     the above implementations to filter the data during parsing
     and serialization:</p>

  <pre class="c++">
#include &lt;memory>
#include &lt;iostream>

#include "people.hxx"

#include "people-pimpl.hxx"
#include "people-simpl.hxx"

using namespace std;

int
main (int argc, char* argv[])
{
  // Parse.
  //
  people_paggr people_p;
  people_pimpl&amp; root_p = people_p.root_parser ();

  // Initialize the filter.
  //
  root_p.age_filter (1, 30);

  xml_schema::document_pimpl doc_p (root_p, people_p.root_name ());

  people_p.pre ();
  doc_p.parse (argv[1]);
  auto_ptr&lt;people> ppl (people_p.post ());

  // Print what we've got.
  //
  people::person_sequence&amp; ps = ppl->person ();

  for (people::person_iterator i = ps.begin (); i != ps.end (); ++i)
  {
    cerr &lt;&lt; "first:  " &lt;&lt; i->first_name () &lt;&lt; endl
         &lt;&lt; "last:   " &lt;&lt; i->last_name () &lt;&lt; endl
         &lt;&lt; "gender: " &lt;&lt; i->gender () &lt;&lt; endl
         &lt;&lt; "age:    " &lt;&lt; i->age () &lt;&lt; endl
         &lt;&lt; endl;
  }

  // Serialize.
  //
  people_saggr people_s;
  people_simpl&amp; root_s = people_s.root_serializer ();

  // Initialize the filter.
  //
  gender g;
  g.assign ("female");
  root_s.gender_filter (g);

  xml_schema::document_simpl doc_s (root_s, people_s.root_name ());

  people_s.pre (*ppl);
  doc_s.serialize (cout);
  people_s.post ();
}
  </pre>

  <p>If we run this test driver on the following XML document:</p>

  <pre class="xml">
&lt;?xml version="1.0"?>
&lt;people>

  &lt;person>
    &lt;first-name>John&lt;/first-name>
    &lt;last-name>Doe&lt;/last-name>
    &lt;gender>male&lt;/gender>
    &lt;age>32&lt;/age>
  &lt;/person>

  &lt;person>
    &lt;first-name>Jane&lt;/first-name>
    &lt;last-name>Doe&lt;/last-name>
    &lt;gender>female&lt;/gender>
    &lt;age>28&lt;/age>
  &lt;/person>

  &lt;person>
    &lt;first-name>Joe&lt;/first-name>
    &lt;last-name>Dirt&lt;/last-name>
    &lt;gender>male&lt;/gender>
    &lt;age>25&lt;/age>
  &lt;/person>

&lt;/people>
  </pre>

  <p>We will get the following output:</p>

  <pre class="terminal">
first:  Jane
last:   Doe
gender: female
age:    28

first:  Joe
last:   Dirt
gender: male
age:    25

&lt;people>
  &lt;person>
    &lt;first-name>Jane&lt;/first-name>
    &lt;last-name>Doe&lt;/last-name>
    &lt;gender>female&lt;/gender>
    &lt;age>28&lt;/age>
  &lt;/person>
&lt;/people>
  </pre>



  </div>
</div>


</body>
</html>