aboutsummaryrefslogtreecommitdiff
path: root/doc/cxx/parser/guide/index.xhtml
blob: 65d8e0f4e176377ae21d0b2d409b36288fe4c994 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>
  <title>Embedded C++/Parser Mapping Getting Started Guide</title>

  <meta name="copyright" content="&copy; 2005-2017 Code Synthesis Tools CC"/>
  <meta name="keywords" content="xsd,xml,schema,c++,mapping,data,binding,parser,validation,embedded,mobile"/>
  <meta name="description" content="Embedded C++/Parser Mapping Getting Started Guide"/>

  <link rel="stylesheet" type="text/css" href="../../../default.css" />

<style type="text/css">
  pre {
    padding    : 0 0 0 0em;
    margin     : 0em 0em 0em 0;

    font-size  : 102%
  }

  body {
    min-width: 48em;
  }

  h1 {
    font-weight: bold;
    font-size: 200%;
    line-height: 1.2em;
  }

  h2 {
    font-weight : bold;
    font-size   : 150%;

    padding-top : 0.8em;
  }

  h3 {
    font-size   : 140%;
    padding-top : 0.8em;
  }

  /* Adjust indentation for three levels. */
  #container {
    max-width: 48em;
  }

  #content {
    padding: 0 0.1em 0 4em;
    /*background-color: red;*/
  }

  #content h1 {
    margin-left: -2.06em;
  }

  #content h2 {
    margin-left: -1.33em;
  }

  /* Title page */

  #titlepage {
    padding: 2em 0 1em 0;
    border-bottom: 1px solid black;
  }

  #titlepage .title {
    font-weight: bold;
    font-size: 200%;
    text-align: center;
  }

  #titlepage #first-title {
    padding: 1em 0 0.4em 0;
  }

  #titlepage #second-title {
    padding: 0.4em 0 2em 0;
  }

  /* Lists */
  ul.list li {
    padding-top      : 0.3em;
    padding-bottom   : 0.3em;
  }

  ol.steps {
    padding-left     : 1.8em;
  }

  ol.steps li {
    padding-top      : 0.3em;
    padding-bottom   : 0.3em;
  }


  div.img {
    text-align: center;
    padding: 2em 0 2em 0;
  }

  /*  */
  dl dt {
    padding   : 0.8em 0 0 0;
  }

  /* TOC */
  table.toc {
    border-style      : none;
    border-collapse   : separate;
    border-spacing    : 0;

    margin            : 0.2em 0 0.2em 0;
    padding           : 0 0 0 0;
  }

  table.toc tr {
    padding           : 0 0 0 0;
    margin            : 0 0 0 0;
  }

  table.toc * td, table.toc * th {
    border-style      : none;
    margin            : 0 0 0 0;
    vertical-align    : top;
  }

  table.toc * th {
    font-weight       : normal;
    padding           : 0em 0.1em 0em 0;
    text-align        : left;
    white-space       : nowrap;
  }

  table.toc * table.toc th {
    padding-left      : 1em;
  }

  table.toc * td {
    padding           : 0em 0 0em 0.7em;
    text-align        : left;
  }

  /* Built-in table */
  #builtin {
    margin: 2em 0 2em 0;

    border-collapse   : collapse;
    border            : 1px solid;
    border-color      : #000000;

    font-size        : 11px;
    line-height      : 14px;
  }

  #builtin th, #builtin td {
    border: 1px solid;
    padding           : 0.9em 0.9em 0.7em 0.9em;
  }

  #builtin th {
    background : #cde8f6;
  }

  #builtin td {
    text-align: left;
  }

  /* XML Schema features table. */
  #features {
    margin: 2em 0 2em 0;

    border-collapse   : collapse;
    border            : 1px solid;
    border-color      : #000000;

    font-size        : 11px;
    line-height      : 14px;
  }

  #features th, #features td {
    border: 1px solid;
    padding           : 0.6em 0.6em 0.6em 0.6em;
  }

  #features th {
    background : #cde8f6;
  }

  #features td {
    text-align: left;
  }
</style>


</head>

<body>
<div id="container">
  <div id="content">

  <div class="noprint">

  <div id="titlepage">
    <div class="title" id="first-title">Embedded C++/Parser Mapping</div>
    <div class="title" id="second-title">Getting Started Guide</div>

  <p>Copyright &copy; 2005-2017 CODE SYNTHESIS TOOLS CC</p>

  <p>Permission is granted to copy, distribute and/or modify this
     document under the terms of the
     <a href="http://www.codesynthesis.com/licenses/fdl-1.2.txt">GNU Free
     Documentation License, version 1.2</a>; with no Invariant Sections,
     no Front-Cover Texts and no Back-Cover Texts.
  </p>

  <p>This document is available in the following formats:
     <a href="http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/index.xhtml">XHTML</a>,
     <a href="http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/cxx-parser-e-guide.pdf">PDF</a>, and
     <a href="http://www.codesynthesis.com/projects/xsde/documentation/cxx/parser/guide/cxx-parser-e-guide.ps">PostScript</a>.</p>

  </div>

  <h1>Table of Contents</h1>

  <table class="toc">
    <tr>
      <th></th><td><a href="#0">Preface</a>
        <table class="toc">
          <tr><th></th><td><a href="#0.1">About This Document</a></td></tr>
          <tr><th></th><td><a href="#0.2">More Information</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>1</th><td><a href="#1">Introduction</a>
        <table class="toc">
          <tr><th>1.1</th><td><a href="#1.1">Mapping Overview</a></td></tr>
          <tr><th>1.2</th><td><a href="#1.2">Benefits</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>2</th><td><a href="#2">Hello World Example</a>
        <table class="toc">
          <tr><th>2.1</th><td><a href="#2.1">Writing XML Document and Schema</a></td></tr>
          <tr><th>2.2</th><td><a href="#2.2">Translating Schema to C++</a></td></tr>
          <tr><th>2.3</th><td><a href="#2.3">Implementing Application Logic</a></td></tr>
          <tr><th>2.4</th><td><a href="#2.4">Compiling and Running</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>3</th><td><a href="#3">Parser Skeletons</a>
        <table class="toc">
          <tr><th>3.1</th><td><a href="#3.1">Implementing the Gender Parser</a></td></tr>
          <tr><th>3.2</th><td><a href="#3.2">Implementing the Person Parser</a></td></tr>
          <tr><th>3.3</th><td><a href="#3.3">Implementing the People Parser</a></td></tr>
          <tr><th>3.4</th><td><a href="#3.4">Connecting the Parsers Together</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>4</th><td><a href="#4">Type Maps</a>
        <table class="toc">
          <tr><th>4.1</th><td><a href="#4.1">Object Model</a></td></tr>
          <tr><th>4.2</th><td><a href="#4.2">Type Map File Format</a></td></tr>
          <tr><th>4.3</th><td><a href="#4.3">Parser Implementations</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>5</th><td><a href="#5">Mapping Configuration</a>
        <table class="toc">
          <tr><th>5.1</th><td><a href="#5.1">Standard Template Library</a></td></tr>
          <tr><th>5.2</th><td><a href="#5.2">Input/Output Stream Library</a></td></tr>
          <tr><th>5.3</th><td><a href="#5.3">C++ Exceptions</a></td></tr>
          <tr><th>5.4</th><td><a href="#5.4">XML Schema Validation</a></td></tr>
	  <tr><th>5.5</th><td><a href="#5.5">64-bit Integer Type</a></td></tr>
	  <tr><th>5.6</th><td><a href="#5.6">Parser Reuse</a></td></tr>
	  <tr><th>5.7</th><td><a href="#5.7">Support for Polymorphism</a></td></tr>
	  <tr><th>5.8</th><td><a href="#5.8">Custom Allocators</a></td></tr>
          <tr><th>5.9</th><td><a href="#5.9">A Minimal Example</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>6</th><td><a href="#6">Built-In XML Schema Type Parsers</a>
        <table class="toc">
          <tr><th>6.1</th><td><a href="#6.1"><code>QName</code> Parser</a></td></tr>
          <tr><th>6.2</th><td><a href="#6.2"><code>NMTOKENS</code> and <code>IDREFS</code> Parsers</a></td></tr>
          <tr><th>6.3</th><td><a href="#6.3"><code>base64Binary</code> and <code>hexBinary</code> Parsers</a></td></tr>
	  <tr><th>6.4</th><td><a href="#6.4">Time Zone Representation</a></td></tr>
	  <tr><th>6.5</th><td><a href="#6.5"><code>date</code> Parser</a></td></tr>
	  <tr><th>6.6</th><td><a href="#6.6"><code>dateTime</code> Parser</a></td></tr>
	  <tr><th>6.7</th><td><a href="#6.7"><code>duration</code> Parser</a></td></tr>
	  <tr><th>6.8</th><td><a href="#6.8"><code>gDay</code> Parser</a></td></tr>
	  <tr><th>6.9</th><td><a href="#6.9"><code>gMonth</code> Parser</a></td></tr>
	  <tr><th>6.10</th><td><a href="#6.10"><code>gMonthDay</code> Parser</a></td></tr>
	  <tr><th>6.11</th><td><a href="#6.11"><code>gYear</code> Parser</a></td></tr>
	  <tr><th>6.12</th><td><a href="#6.12"><code>gYearMonth</code> Parser</a></td></tr>
	  <tr><th>6.13</th><td><a href="#6.13"><code>time</code> Parser</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>7</th><td><a href="#7">Document Parser and Error Handling</a>
        <table class="toc">
          <tr><th>7.1</th><td><a href="#7.1">Document Parser</a></td></tr>
          <tr><th>7.2</th><td><a href="#7.2">Exceptions</a></td></tr>
          <tr><th>7.3</th><td><a href="#7.3">Error Codes</a></td></tr>
	  <tr><th>7.4</th><td><a href="#7.4">Reusing Parsers after an Error</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th></th><td><a href="#A">Appendix A &mdash; Supported XML Schema Constructs</a></td>
    </tr>

  </table>
  </div>

  <h1><a name="0">Preface</a></h1>

  <h2><a name="0.1">About This Document</a></h2>

  <p>The goal of this document is to provide you with an
     understanding of the C++/Parser programming model and allow you
     to efficiently evaluate XSD/e against your project's technical
     requirements. As such, this document is intended for embedded
     C++ developers and software architects who are looking for an
     embedded XML processing solution. Prior experience with XML
     and C++ is required to understand this document. Basic
     understanding of XML Schema is advantageous but not expected
     or required.
  </p>


  <h2><a name="0.2">More Information</a></h2>

  <p>Beyond this guide, you may also find the following sources of
     information useful:</p>

  <ul class="list">
    <li><a href="http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml">XSD/e
        Compiler Command Line Manual</a></li>

    <li>The <code>INSTALL</code> file in the XSD/e distribution provides
        build instructions for various platforms.</li>

    <li>The <code>examples/cxx/parser/</code> directory in the XSD/e
        distribution contains a collection of examples and a README
        file with an overview of each example.</li>

    <li>The <a href="http://www.codesynthesis.com/mailman/listinfo/xsde-users">xsde-users</a>
        mailing list is the place to ask technical questions about XSD/e and the
        Embedded C++/Parser mapping. Furthermore, the
        <a href="http://www.codesynthesis.com/pipermail/xsde-users/">archives</a>
        may already have answers to some of your questions.</li>

  </ul>

  <!-- Introduction -->

  <h1><a name="1">1 Introduction</a></h1>

  <p>Welcome to CodeSynthesis XSD/e and the Embedded C++/Parser mapping.
     XSD/e is a dependency-free W3C XML Schema to C++ compiler for mobile,
     embedded, and light-weight applications. Embedded C++/Parser is an
     XML Schema to C++ mapping that represents an XML vocabulary as a set
     of parser skeletons which you can implement to perform XML processing
     as required by your application logic.
  </p>

  <h2><a name="1.1">1.1 Mapping Overview</a></h2>

  <p>The Embedded C++/Parser mapping provides event-driven, stream-oriented
     XML parsing, XML Schema validation, and C++ data binding. It was
     specifically designed and optimized for mobile and embedded
     systems where hardware constraints require high efficiency and
     economical use of resources. As a result, the generated
     parsers are 2-10 times faster than general-purpose validating
     XML parsers while at the same time maintaining extremely low static
     and dynamic memory footprints. For example, a validating parser
     executable can be as small as 120KB in size. The size can be
     further reduced by disabling support for XML Schema validation.
  </p>

  <p>The generated code and the runtime library are also highly-portable
     and, in their minimal configuration, can be used without STL, RTTI,
     iostream, C++ exceptions, and C++ templates.</p>

  <p>To speed up application development, the C++/Parser mapping
     can be instructed to generate sample parser implementations
     and a test driver which can then be filled with the application
     logic code. The mapping also provides a wide range of
     mechanisms for controlling and customizing the generated code.</p>

  <p>The next chapter shows how to create a simple application
     that uses the Embedded C++/Parser mapping to parse, validate,
     and extract data from a simple XML instance document. The
     following chapters describe the Embedded C++/Parser mapping
     in more detail.</p>

  <h2><a name="1.2">1.2 Benefits</a></h2>

  <p>Traditional XML access APIs such as Document Object Model (DOM)
     or Simple API for XML (SAX) as well as general-purpose XML Schema
     validators have a number of drawbacks that make them less suitable
     for creating mobile and embedded XML processing applications. These
     drawbacks include:
  </p>

  <ul class="list">
    <li>Text-based representation results in inefficient use of
        resources.</li>

    <li>Extra validation code that is not used by the application.</li>

    <li>Generic representation of XML in terms of elements, attributes,
        and text forces an application developer to write a substantial
        amount of bridging code that identifies and transforms pieces
        of information encoded in XML to a representation more suitable
        for consumption by the application logic.</li>

    <li>String-based flow control defers error detection to runtime.
        It also reduces code readability and maintainability.</li>

    <li>Lack of type safety because all information is represented
        as text.</li>

    <li>Resulting applications are hard to debug, change, and
        maintain.</li>
  </ul>

  <p>In contrast, statically-typed, vocabulary-specific parser
     skeletons produced by the Embedded C++/Parser mapping use
     native data representations (for example, integers are passed as
     integers, not as text) and include validation code only for
     XML Schema constructs that are used in the application. This
     results in efficient use of resources and compact object code.</p>

  <p>Furthermore, the parser skeletons allow you to operate in your
     domain terms instead of the generic elements, attributes, and
     text. Static typing helps catch errors at compile-time rather
     than at run-time. Automatic code generation frees you for more
     interesting tasks (such as doing something useful with the
     information stored in the XML documents) and minimizes the
     effort needed to adapt your applications to changes in the
     document structure. To summarize, the C++/Parser mapping has
     the following key advantages over generic XML access APIs:</p>

  <ul class="list">
    <li><b>Ease of use.</b> The generated code hides all the complexity
        associated with recreating the document structure, maintaining the
        dispatch state, and converting the data from the text representation
        to data types suitable for manipulation by the application logic.
        Parser skeletons also provide a convenient mechanism for building
        custom in-memory representations.</li>

    <li><b>Natural representation.</b> The generated parser skeletons
        implement parser callbacks as virtual functions with names
        corresponding to elements and attributes in XML. As a result,
        you process the XML data using your domain vocabulary instead
        of generic elements, attributes, and text.
    </li>

    <li><b>Concise code.</b> With a separate parser skeleton for each
        XML Schema type, the application implementation is
        simpler and thus easier to read and understand.</li>

    <li><b>Safety.</b> The XML data is delivered to parser callbacks as
        statically typed objects. The parser callbacks themselves are virtual
        functions. This helps catch programming errors at compile-time
        rather than at runtime.</li>

    <li><b>Maintainability.</b> Automatic code generation minimizes the
        effort needed to adapt the application to changes in the
        document structure. With static typing, the C++ compiler
        can pin-point the places in the application code that need to be
        changed.</li>

   <li><b>Efficiency.</b> The generated parser skeletons use native
       data representations and combine data extraction, validation,
       and even dispatching in a single step. This makes them much
       more efficient than traditional architectures with separate
       stages for validation and data extraction/dispatch.</li>
  </ul>


  <!-- Hello World Example -->


  <h1><a name="2">2 Hello World Example</a></h1>

  <p>In this chapter we will examine how to parse a very simple XML
     document using the XSD/e-generated C++/Parser skeletons.

     All the code presented in this chapter is based on the <code>hello</code>
     example which can be found in the <code>examples/cxx/parser/</code>
     directory of the XSD/e distribution.</p>

  <h2><a name="2.1">2.1 Writing XML Document and Schema</a></h2>

  <p>First, we need to get an idea about the structure
     of the XML documents we are going to process. Our
     <code>hello.xml</code>, for example, could look like this:</p>

      <pre class="xml">
&lt;?xml version="1.0"?>
&lt;hello>

  &lt;greeting>Hello&lt;/greeting>

  &lt;name>sun&lt;/name>
  &lt;name>moon&lt;/name>
  &lt;name>world&lt;/name>

&lt;/hello>
      </pre>

  <p>Then we can write a description of the above XML in the
     XML Schema language and save it into <code>hello.xsd</code>:</p>

      <pre class="xml">
&lt;?xml version="1.0"?>
&lt;xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

  &lt;xs:complexType name="hello">
    &lt;xs:sequence>
      &lt;xs:element name="greeting" type="xs:string"/>
      &lt;xs:element name="name" type="xs:string" maxOccurs="unbounded"/>
    &lt;/xs:sequence>
  &lt;/xs:complexType>

  &lt;xs:element name="hello" type="hello"/>

&lt;/xs:schema>
      </pre>

  <p>Even if you are not familiar with the XML Schema language, it
     should be easy to connect declarations in <code>hello.xsd</code>
     to elements in <code>hello.xml</code>. The <code>hello</code> type
     is defined as a sequence of the nested <code>greeting</code> and
     <code>name</code> elements. Note that the term sequence in XML
     Schema means that elements should appear in a particular order
     as opposed to appearing multiple times. The <code>name</code>
     element has its <code>maxOccurs</code> property set to
     <code>unbounde</code> which means it can appear multiple times
     in an XML document. Finally, the globally-defined <code>hello</code>
     element prescribes the root element for our vocabulary. For an
     easily-approachable introduction to XML Schema refer to
     <a href="http://www.w3.org/TR/xmlschema-0/">XML Schema Part 0:
     Primer</a>.</p>

  <p>The above schema is a specification of our vocabulary; it tells
     everybody what valid XML instances of our vocabulary should look
     like. The next step is to compile this schema to generate C++ parser
     skeletons.</p>

  <h2><a name="2.2">2.2 Translating Schema to C++</a></h2>

  <p>Now we are ready to translate our <code>hello.xsd</code> to C++ parser
     skeletons. To do this we invoke the XSD/e compiler from a terminal
     (UNIX) or a command prompt (Windows):
  </p>

  <pre class="terminal">
$ xsde cxx-parser hello.xsd
  </pre>

  <p>The XSD/e compiler produces two C++ files: <code>hello-pskel.hxx</code>
     and <code>hello-pskel.cxx</code>. The following code fragment is taken
     from <code>hello-pskel.hxx</code>; it should give you an idea about what
     gets generated:
  </p>

  <pre class="c++">
class hello_pskel
{
public:
  // Parser callbacks. Override them in your implementation.
  //
  virtual void
  pre ();

  virtual void
  greeting (const std::string&amp;);

  virtual void
  name (const std::string&amp;);

  virtual void
  post_hello ();

  // Parser construction API.
  //
  void
  greeting_parser (xml_schema::string_pskel&amp;);

  void
  name_parser (xml_schema::string_pskel&amp;);

  void
  parsers (xml_schema::string_pskel&amp; /* greeting */,
           xml_schema::string_pskel&amp; /* name */);

private:
  ...
};
  </pre>

  <p>The first four member functions shown above are called parser
     callbacks. You would normally override them in your implementation
     of the parser to do something useful. Let's go through all of
     them one by one.</p>

  <p>The <code>pre()</code> function is an initialization callback. It is
    called when a new element of type <code>hello</code> is about
    to be parsed. You would normally use this function to allocate a new
    instance of the resulting type or clear accumulators that are used
    to gather information during parsing. The default implementation
    of this function does nothing.</p>

  <p>The <code>post_hello()</code> function is a finalization callback. Its
     name is constructed by adding the parser skeleton name to the
     <code>post_</code> prefix. The finalization callback is called when
     parsing of the element is complete and the result, if any, should
     be returned. Note that in our case the return type of
     <code>post_hello()</code> is <code>void</code> which means there
     is nothing to return. More on parser return types later.
  </p>

  <p>You may be wondering why the finalization callback is called
     <code>post_hello()</code> instead of <code>post()</code> just
     like <code>pre()</code>. The reason for this is that
     finalization callbacks can have different return types and
     result in function signature clashes across inheritance
     hierarchies. To prevent this, the signatures of finalization
     callbacks are made unique by adding the type name to their names.</p>

  <p>The <code>greeting()</code> and <code>name()</code> functions are
     called when the <code>greeting</code> and <code>name</code> elements
     have been parsed, respectively. Their arguments are of type
     <code>std::string</code> and contain the data extracted from XML.</p>

  <p>The last three functions are for connecting parsers to each other.
     For example, there is a predefined parser for built-in XML Schema type
     <code>string</code> in the XSD/e runtime. We will be using
     it to parse the contents of <code>greeting</code> and
     <code>name</code> elements, as shown in the next section.</p>

  <h2><a name="2.3">2.3 Implementing Application Logic</a></h2>

  <p>At this point we have all the parts we need to do something useful
     with the information stored in XML documents. The first step is
     to implement the parser:
  </p>

  <pre class="c++">
#include &lt;iostream>
#include "hello-pskel.hxx"

class hello_pimpl: public hello_pskel
{
public:
  virtual void
  greeting (const std::string&amp; g)
  {
    greeting_ = g;
  }

  virtual void
  name (const std::string&amp; n)
  {
    std::cout &lt;&lt; greeting_ &lt;&lt; ", " &lt;&lt; n &lt;&lt; "!" &lt;&lt; std::endl;
  }

private:
  std::string greeting_;
};
  </pre>

  <p>We left both <code>pre()</code> and <code>post_hello()</code> with the
     default implementations; we don't have anything to initialize or
     return. The rest is pretty straightforward: we store the greeting
     in a member variable and later, when parsing names, use it to
     say hello.</p>

  <p>An observant reader my ask what happens if the <code>name</code>
     element comes before <code>greeting</code>? Don't we need to
     make sure <code>greeting_</code> was initialized and report
     an error otherwise? The answer is no, we don't have to do
     any of this. The <code>hello_pskel</code> parser skeleton
     performs validation of XML according to the schema from which
     it was generated. As a result, it will check the order
     of the <code>greeting</code> and <code>name</code> elements
     and report an error if it is violated.</p>

  <p>Now it is time to put this parser implementation to work:</p>

  <pre class="c++">
using namespace std;

int
main (int argc, char* argv[])
{
  try
  {
    // Construct the parser.
    //
    xml_schema::string_pimpl string_p;
    hello_pimpl hello_p;

    hello_p.greeting_parser (string_p);
    hello_p.name_parser (string_p);

    // Parse the XML instance.
    //
    xml_schema::document_pimpl doc_p (hello_p, "hello");

    hello_p.pre ();
    doc_p.parse (argv[1]);
    hello_p.post_hello ();
  }
  catch (const xml_schema::parser_exception&amp; e)
  {
    cerr &lt;&lt; argv[1] &lt;&lt; ":" &lt;&lt; e.line () &lt;&lt; ":" &lt;&lt; e.column ()
         &lt;&lt; ": " &lt;&lt; e.text () &lt;&lt; endl;
    return 1;
  }
}
  </pre>

  <p>The first part of this code snippet instantiates individual parsers
     and assembles them into a complete vocabulary parser.
     <code>xml_schema::string_pimpl</code> is an implementation of a parser
     for built-in XML Schema type <code>string</code>. It is provided by
     the XSD/e runtime along with parsers for other built-in types (for
     more information on the built-in parsers see <a href="#6">Chapter 6,
     "Built-In XML Schema Type Parsers"</a>). We use <code>string_pimpl</code>
     to parse the <code>greeting</code> and <code>name</code> elements as
     indicated by the calls to <code>greeting_parser()</code> and
     <code>name_parser()</code>.
  </p>

  <p>Then we instantiate a document parser (<code>doc_p</code>). The
     first argument to its constructor is the parser for
     the root element (<code>hello_p</code> in our case). The
     second argument is the root element name.
   </p>

  <p>The final piece is the calls to <code>pre()</code>, <code>parse()</code>,
     and <code>post_hello()</code>. The call to <code>parse()</code>
     perform the actual XML parsing while the calls to <code>pre()</code> and
     <code>post_hello()</code> make sure that the parser for the root
     element can perform proper initialization and cleanup.</p>

  <p>While our parser implementation and test driver are pretty small and
     easy to write by hand, for bigger XML vocabularies it can be a
     substantial effort. To help with this task XSD/e can automatically
     generate sample parser implementations and a test driver from your
     schemas. You can request the generation of a sample implementation with
     empty function bodies by specifying the <code>--generate-noop-impl</code>
     option. Or you can generate a sample implementation that prints the
     data store in XML by using the <code>--generate-print-impl</code>
     option. To request the generation of a test driver you can use the
     <code>--generate-test-driver</code> option. For more information
     on these options refer to the
     <a href="http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml">XSD/e
     Compiler Command Line Manual</a>. The <code>'generated'</code> example
     in the XSD/e distribution shows the sample implementation generation
     feature in action.</p>


  <h2><a name="2.4">2.4 Compiling and Running</a></h2>

  <p>After saving all the parts from the previous section in
     <code>driver.cxx</code>, we are ready to compile our first
     application and run it on the test XML document. On UNIX
     this can be done with the following commands:
  </p>

  <pre class="terminal">
$ c++ -I.../libxsde -c driver.cxx hello-pskel.cxx
$ c++ -o driver driver.o hello-pskel.o .../libxsde/xsde/libxsde.a
$ ./driver hello.xml
Hello, sun!
Hello, moon!
Hello, world!
  </pre>

  <p>Here <code>.../libxsde</code> represents the path to the
     <code>libxsde</code> directory in the XSD/e distribution.
     We can also test the error handling. To test XML well-formedness
     checking, we can try to parse <code>hello-pskel.hxx</code>:</p>

  <pre class="terminal">
$ ./driver hello-pskel.hxx
hello-pskel.hxx:1:0: not well-formed (invalid token)
  </pre>

  <p>We can also try to parse a valid XML but not from our
     vocabulary, for example <code>hello.xsd</code>:</p>

  <pre class="terminal">
$ ./driver hello.xsd
hello.xsd:2:57: unexpected element encountered
  </pre>


  <!-- Chapater 3 -->


  <h1><a name="3">3 Parser Skeletons</a></h1>

  <p>As we have seen in the previous chapter, the XSD/e compiler generates
     a parser skeleton class for each type defined in XML Schema. In
     this chapter we will take a closer look at different functions
     that comprise a parser skeleton as well as the way to connect
     our implementations of these parser skeletons to create a complete
     parser.</p>

  <p>In this and subsequent chapters we will use the following schema
     that describes a collection of person records. We save it in
     <code>people.xsd</code>:</p>

  <pre class="xml">
&lt;?xml version="1.0"?>
&lt;xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

  &lt;xs:simpleType name="gender">
    &lt;xs:restriction base="xs:string">
      &lt;xs:enumeration value="male"/>
      &lt;xs:enumeration value="female"/>
    &lt;/xs:restriction>
  &lt;/xs:simpleType>

  &lt;xs:complexType name="person">
    &lt;xs:sequence>
      &lt;xs:element name="first-name" type="xs:string"/>
      &lt;xs:element name="last-name" type="xs:string"/>
      &lt;xs:element name="gender" type="gender"/>
      &lt;xs:element name="age" type="xs:short"/>
    &lt;/xs:sequence>
  &lt;/xs:complexType>

  &lt;xs:complexType name="people">
    &lt;xs:sequence>
      &lt;xs:element name="person" type="person" maxOccurs="unbounded"/>
    &lt;/xs:sequence>
  &lt;/xs:complexType>

  &lt;xs:element name="people" type="people"/>

&lt;/xs:schema>
  </pre>

  <p>A sample XML instance to go along with this schema is saved
     in <code>people.xml</code>:</p>

  <pre class="xml">
&lt;?xml version="1.0"?>
&lt;people>
  &lt;person>
    &lt;first-name>John&lt;/first-name>
    &lt;last-name>Doe&lt;/last-name>
    &lt;gender>male&lt;/gender>
    &lt;age>32&lt;/age>
  &lt;/person>
  &lt;person>
    &lt;first-name>Jane&lt;/first-name>
    &lt;last-name>Doe&lt;/last-name>
    &lt;gender>female&lt;/gender>
    &lt;age>28&lt;/age>
  &lt;/person>
&lt;/people>
  </pre>

  <p>Compiling <code>people.xsd</code> with the XSD/e compiler results
     in three parser skeletons being generated: <code>gender_pskel</code>,
     <code>person_pskel</code>, and <code>people_pskel</code>. We are going
     to examine and implement each of them in the subsequent sections.</p>

  <h2><a name="3.1">3.1 Implementing the Gender Parser</a></h2>

  <p>The generated <code>gender_pskel</code> parser skeleton looks like
     this:</p>

  <pre class="c++">
class gender_pskel: public xml_schema::string_pskel
{
public:
  gender_pskel (xml_schema::string_pskel* base_impl);

  // Parser callbacks. Override them in your implementation.
  //
  virtual void
  pre ();

  virtual void
  post_gender ();
};
  </pre>

  <p>Notice that <code>gender_pskel</code> inherits from
     <code>xml_schema::string_pskel</code> which is a parser skeleton
     for built-in XML Schema type <code>string</code> and is
     predefined in the XSD/e runtime library. This is an example
     of the general rule that parser skeletons follow: if a type
     in XML Schema inherits from another then there will be an
     equivalent inheritance between the corresponding parser
     skeleton classes. The <code>gender_pskel</code> class also
     declares a constructor which expects a pointer to the base
     parser skeleton. We will discuss the purpose of this
     constructor shortly.</p>

  <p>The <code>pre()</code> and <code>post_gender()</code> callbacks
     should look familiar from the previous chapter. Let's now
     implement the parser. Our implementation will simply print
     the gender to <code>cout</code>:</p>


  <pre class="c++">
class gender_pimpl: public gender_pskel
{
public:
  gender_pimpl ()
    : gender_pskel (&amp;base_impl_)
  {
  }

  virtual void
  post_gender ()
  {
    std::string s = post_string ();
    cout &lt;&lt; "gender: " &lt;&lt; s &lt;&lt; endl;
  }

private:
  xml_schema::string_pimpl base_impl_;
};
  </pre>

  <p>While the code is quite short, there is a lot going on. First,
     notice that we define a member variable <code>base_impl_</code>
     of type <code>xml_schema::string_pimpl</code> and then pass
     it to the <code>gender_pskel</code>'s constructor. We have
     encountered <code>xml_schema::string_pimpl</code> already; it is an
     implementation of the <code>xml_schema::string_pskel</code> parser
     skeleton for built-in XML Schema type <code>string</code>. By
     passing <code>base_impl_</code> to the <code>gender_pskel</code>'s
     constructor we provide an implementation for the part of the
     parser skeleton that is inherited from <code>string_pskel</code>.</p>

  <p>This is another common theme in the C++/Parser programming model:
     reusing implementations of the base parsers in the derived ones.
     In our case, <code>string_pimpl</code> will do all the dirty work
     of extracting the data and we can just get it at the end with the
     call to <code>post_string()</code>. For more information on parser
     implementation reuse refer to <a href="#5.6">Section 5.6,
     "Parser Reuse"</a>.</p>

  <p>In case you are curious, here are the definitions for
     <code>xml_schema::string_pskel</code> and
     <code>xml_schema::string_pimpl</code>:</p>

  <pre class="c++">
namespace xml_schema
{
  class string_pskel: public parser_simple_content
  {
  public:
    virtual std::string
    post_string () = 0;
  };

  class string_pimpl: public string_pskel
  {
  public:
    virtual void
    _pre ();

    virtual void
    _characters (const xml_schema::ro_string&amp;);

    virtual std::string
    post_string ();

  protected:
    std::string str_;
  };
}
  </pre>

  <p>There are three new pieces in this code that we haven't seen yet.
     Those are the <code>parser_simple_content</code> class and
     the <code>_pre()</code> and <code>_characters()</code> functions.
     The <code>parser_simple_content</code> class is defined in the XSD/e
     runtime and is a base class for all parser skeletons that conform
     to the simple content model in XML Schema. Types with the
     simple content model cannot have nested elements&mdash;only text
     and attributes. There is also the <code>parser_complex_content</code>
     class which corresponds to the complex content mode (types with
     nested elements, for example, <code>person</code> from
     <code>people.xsd</code>).</p>

  <p>The <code>_pre()</code> function is a parser callback. Remember we
     talked about the <code>pre()</code> and <code>post_*()</code> callbacks
     in the previous chapter? There are actually two more callbacks
     with similar roles: <code>_pre()</code> and <code>_post ()</code>.
     As a result, each parser skeleton has four special callbacks:</p>

  <pre class="c++">
  virtual void
  pre ();

  virtual void
  _pre ();

  virtual void
  _post ();

  virtual void
  post_name ();
  </pre>

  <p><code>pre()</code> and <code>_pre()</code> are initialization
     callbacks. They get called in that order before a new instance of the type
     is about to be parsed. The difference between <code>pre()</code> and
     <code>_pre()</code> is conventional: <code>pre()</code> can
     be completely overridden by a derived parser. The derived
     parser can also override <code>_pre()</code> but has to always call
     the original version. This allows you to partition initialization
     into customizable and required parts.</p>

  <p>Similarly, <code>_post()</code> and <code>post_name()</code> are
     finalization callbacks with exactly the same semantics:
    <code>post_name()</code> can be completely overridden by the derived
     parser while the original <code>_post()</code> should always be called.
  </p>

  <p>The final bit we need to discuss in this section is the
     <code>_characters()</code> function. As you might have guessed, it
     is also a callback. A low-level one that delivers raw character content
     for the type being parsed. You will seldom need to use this callback
     directly. Using implementations for the built-in parsers provided by
     the XSD/e runtime is usually a simpler and more convenient
     alternative.</p>

  <p>At this point you might be wondering why some <code>post_*()</code>
     callbacks, for example <code>post_string()</code>, return some data
     while others, for example <code>post_gender()</code>, have
     <code>void</code> as a return type. This is a valid concern
     and it will be addressed in the next chapter.</p>

  <h2><a name="3.2">3.2 Implementing the Person Parser</a></h2>

  <p>The generated <code>person_pskel</code> parser skeleton looks like
     this:</p>

  <pre class="c++">
class person_pskel: public xml_schema::parser_complex_content
{
public:
  // Parser callbacks. Override them in your implementation.
  //
  virtual void
  pre ();

  virtual void
  first_name (const std::string&amp;);

  virtual void
  last_name (const std::string&amp;);

  virtual void
  gender ();

  virtual void
  age (short);

  virtual void
  post_person ();

  // Parser construction API.
  //
  void
  first_name_parser (xml_schema::string_pskel&amp;);

  void
  last_name_parser (xml_schema::string_pskel&amp;);

  void
  gender_parser (gender_pskel&amp;);

  void
  age_parser (xml_schema::short_pskel&amp;);

  void
  parsers (xml_schema::string_pskel&amp; /* first-name */,
           xml_schema::string_pskel&amp; /* last-name */,
           gender_pskel&amp;             /* gender */,
           xml_schema::short_pskel&amp;  /* age */);
};
  </pre>


  <p>As you can see, we have a parser callback for each of the nested
     elements found in the <code>person</code> XML Schema type.
     The implementation of this parser is straightforward:</p>

  <pre class="c++">
class person_pimpl: public person_pskel
{
public:
  virtual void
  first_name (const std::string&amp; n)
  {
    cout &lt;&lt; "first: " &lt;&lt; f &lt;&lt; endl;
  }

  virtual void
  last_name (const std::string&amp; l)
  {
    cout &lt;&lt; "last: " &lt;&lt; l &lt;&lt; endl;
  }

  virtual void
  age (short a)
  {
    cout &lt;&lt; "age: " &lt;&lt; a &lt;&lt; endl;
  }
};
  </pre>

  <p>Notice that we didn't override the <code>gender()</code> callback
     because all the printing is done by <code>gender_pimpl</code>.</p>

  <h2><a name="3.3">3.3 Implementing the People Parser</a></h2>

  <p>The generated <code>people_pskel</code> parser skeleton looks like
     this:</p>

  <pre class="c++">
class people_pskel: public xml_schema::parser_complex_content
{
public:
  // Parser callbacks. Override them in your implementation.
  //
  virtual void
  pre ();

  virtual void
  person ();

  virtual void
  post_people ();

  // Parser construction API.
  //
  void
  person_parser (person_pskel&amp;);

  void
  parsers (person_pskel&amp; /* person */);
};
  </pre>

  <p>The <code>person()</code> callback will be called after parsing each
     <code>person</code> element. While <code>person_pimpl</code> does
     all the printing, one useful thing we can do in this callback is to
     print an extra newline after each person record so that our
     output is more readable:</p>

  <pre class="c++">
class people_pimpl: public people_pskel
{
public:
  virtual void
  person ()
  {
    cout &lt;&lt; endl;
  }
};
  </pre>

  <p>Now it is time to put everything together.</p>


  <h2><a name="3.4">3.4 Connecting the Parsers Together</a></h2>

  <p>At this point we have all the individual parsers implemented
     and can proceed to assemble them into a complete parser
     for our XML vocabulary. The first step is to instantiate
     all the individual parsers that we will need:</p>

  <pre class="c++">
xml_schema::short_pimpl short_p;
xml_schema::string_pimpl string_p;

gender_pimpl gender_p;
person_pimpl person_p;
people_pimpl people_p;
  </pre>

  <p>Notice that our schema uses two built-in XML Schema types:
     <code>string</code> for the <code>first-name</code> and
     <code>last-name</code> elements as well as <code>short</code>
     for <code>age</code>. We will use predefined parsers that
     come with the XSD/e runtime to handle these types. The next
     step is to connect all the individual parsers. We do this
     with the help of functions defined in the parser
     skeletons and marked with the "Parser Construction API"
     comment. One way to do it is to connect each individual
     parser by calling the <code>*_parser()</code> functions:</p>

  <pre class="c++">
person_p.first_name_parser (string_p);
person_p.last_name_parser (string_p);
person_p.gender_parser (gender_p);
person_p.age_parser (short_p);

people_p.person_parser (person_p);
  </pre>

  <p>You might be wondering what happens if you do not provide
     a parser by not calling one of the <code>*_parser()</code> functions.
     In that case the corresponding XML content will be skipped,
     including validation. This is an efficient way to ignore parts
     of the document that you are not interested in.</p>


  <p>An alternative, shorter, way to connect the parsers is by using
     the <code>parsers()</code> functions which connects all the parsers
     for a given type at once:</p>

  <pre class="c++">
person_p.parsers (string_p, string_p, gender_p, short_p);
people_p.parsers (person_p);
  </pre>

  <p>The following figure illustrates the resulting connections. Notice
     the correspondence between return types of the <code>post_*()</code>
     functions and argument types of element callbacks that are connected
     by the arrows.</p>

  <!-- align=center is needed for html2ps -->
  <div class="img" align="center"><img src="figure-1.png"/></div>

  <p>The last step is the construction of the document parser and
     invocation of the complete parser on our sample XML instance:</p>

  <pre class="c++">
xml_schema::document_pimpl doc_p (people_p, "people");

people_p.pre ();
doc_p.parse ("people.xml");
people_p.post_people ();
  </pre>

  <p>Let's consider <code>xml_schema::document_pimpl</code> in
     more detail. While the exact definition of this class
     varies depending on the mapping configuration, here is
     the part relevant to our example:</p>

  <pre class="c++">
namespace xml_schema
{
  class document_pimpl
  {
  public:
    document_pimpl (xml_schema::parser_base&amp;,
                    const std::string&amp; root_element_name);

    document_pimpl (xml_schema::parser_base&amp;,
                    const std::string&amp; root_element_namespace,
                    const std::string&amp; root_element_name);

    void
    parse (const std::string&amp; file);

    void
    parse (std::istream&amp;);

    void
    parse (const void* data, size_t size, bool last);
  };
}
  </pre>

   <p><code>xml_schema::document_pimpl</code> is a root parser for
     the vocabulary. The first argument to its constructors is the
     parser for the type of the root element (<code>people_pimpl</code>
     in our case). Because a type parser is only concerned with
     the element's content and not with the element's name, we need
     to specify the root element name somewhere. That's
     what is passed as the second and third arguments to the
     <code>document_pimpl</code>'s constructors.</p>

   <p>There are also three overloaded <code>parse()</code> function
      defined in the <code>document_pimpl</code> class. The first version
      parses a local file identified by a name. The second version
      reads the data from an input stream. The last version allows
      you to parse the data directly from a buffer, one chunk at a
      time. You can call this function multiple times with the final
      call having the <code>last</code> argument set to true. For more
      information on the <code>xml_schema::document_pimpl</code> class
      refer to <a href="#7">Chapter 7, "Document Parser and Error
      Handling"</a>.</p>

   <p>Let's now consider a step-by-step list of actions that happen
      as we parse through <code>people.xml</code>. The content of
      <code>people.xml</code> is repeated below for convenience.</p>

  <pre class="xml">
&lt;?xml version="1.0"?>
&lt;people>
  &lt;person>
    &lt;first-name>John&lt;/first-name>
    &lt;last-name>Doe&lt;/last-name>
    &lt;gender>male&lt;/gender>
    &lt;age>32&lt;/age>
  &lt;/person>
  &lt;person>
    &lt;first-name>Jane&lt;/first-name>
    &lt;last-name>Doe&lt;/last-name>
    &lt;gender>female&lt;/gender>
    &lt;age>28&lt;/age>
  &lt;/person>
&lt;/people>
  </pre>


   <ol class="steps">
     <li><code>people_p.pre()</code> is called from
         <code>main()</code>. We did not provide any implementation
         for this callback so this call is a no-op.</li>

     <li><code>doc_p.parse("people.xml")</code> is called from
         <code>main()</code>. The parser opens the file and starts
         parsing its content.</li>

     <li>The parser encounters the root element. <code>doc_p</code>
         verifies that the root element is correct and calls
         <code>_pre()</code> on <code>people_p</code> which is also
         a no-op. Parsing is now delegated to <code>people_p</code>.</li>

     <li>The parser encounters the <code>person</code> element.
         <code>people_p</code> determines that <code>person_p</code>
         is responsible for parsing this element. <code>pre()</code>
         and <code>_pre()</code> callbacks are called on <code>person_p</code>.
         Parsing is now delegated to <code>person_p</code>.</li>

     <li>The parser encounters the <code>first-name</code> element.
         <code>person_p</code> determines that <code>string_p</code>
         is responsible for parsing this element. <code>pre()</code>
         and <code>_pre()</code> callbacks are called on <code>string_p</code>.
         Parsing is now delegated to <code>string_p</code>.</li>

     <li>The parser encounters character content consisting of
         <code>"John"</code>. The <code>_characters()</code> callback is
         called on <code>string_p</code>.</li>

     <li>The parser encounters the end of <code>first-name</code>
         element. The <code>_post()</code> and <code>post_string()</code>
         callbacks are called on <code>string_p</code>. The
         <code>first_name()</code> callback is called on <code>person_p</code>
         with the return value of <code>post_string()</code>. The
         <code>first_name()</code> implementation prints
         <code>"first: John"</code> to <code>cout</code>.
         Parsing is now returned to <code>person_p</code>.</li>

     <li>Steps analogous to 5-7 are performed for the <code>last-name</code>,
         <code>gender</code>, and <code>age</code> elements.</li>

     <li>The parser encounters the end of <code>person</code>
         element. The <code>_post()</code> and <code>post_person()</code>
         callbacks are called on <code>person_p</code>. The
         <code>person()</code> callback is called on <code>people_p</code>.
         The <code>person()</code> implementation prints a new line
         to <code>cout</code>. Parsing is now returned to
         <code>people_p</code>.</li>

     <li>Steps 4-9 are performed for the second <code>person</code>
         element.</li>

     <li>The parser encounters the end of <code>people</code>
         element. The <code>_post()</code> callback is called on
         <code>people_p</code>. The <code>doc_p.parse("people.xml")</code>
         call returns to <code>main()</code>.</li>

     <li><code>people_p.post_people()</code> is called from
         <code>main()</code> which is a no-op.</li>

   </ol>


  <!-- Chpater 4 -->


  <h1><a name="4">4 Type Maps</a></h1>

  <p>There are many useful things you can do inside parser callbacks as they
     are right now. There are, however, times when you want to propagate
     some information from one parser to another or to the caller of the
     parser. One common task that would greatly benefit from such a
     possibility is building a tree-like in-memory object model of the
     data stored in XML. During execution, each individual sub-parser
     would create a sub-tree and return it to its <em>parent</em> parser
     which can then incorporate this sub-tree into the whole tree.</p>

  <p>In this chapter we will discuss the mechanisms offered by the
     C++/Parser mapping for returning information from individual
     parsers and see how to use them to build an object model
     of our people vocabulary.</p>

  <h2><a name="4.1">4.1 Object Model</a></h2>

  <p>An object model for our person record example could
     look like this (saved in the <code>people.hxx</code> file):</p>

  <pre class="c++">
#include &lt;string>
#include &lt;vector>

enum gender
{
  male,
  female
};

class person
{
public:
  person (const std::string&amp; first,
          const std::string&amp; last,
          ::gender gender,
          short age)
    : first_ (first), last_ (last),
      gender_ (gender), age_ (age)
  {
  }

  const std::string&amp;
  first () const
  {
    return first_;
  }

  const std::string&amp;
  last () const
  {
    return last_;
  }

  ::gender
  gender () const
  {
    return gender_;
  }

  short
  age () const
  {
    return age_;
  }

private:
  std::string first_;
  std::string last_;
  ::gender gender_;
  short age_;
};

typedef std::vector&lt;person> people;
  </pre>

  <p>While it is clear which parser is responsible for which part of
     the object model, it is not exactly clear how, for
     example, <code>gender_pimpl</code> will deliver <code>gender</code>
     to <code>person_pimpl</code>. You might have noticed that
     <code>string_pimpl</code> manages to deliver its value to the
     <code>first_name()</code> callback of <code>person_pimpl</code>. Let's
     see how we can utilize the same mechanism to propagate our
     own data.</p>

  <p>There is a way to tell the XSD/e compiler that you want to
     exchange data between parsers. More precisely, for each
     type defined in XML Schema, you can tell the compiler two things.
     First, the return type of the <code>post_*()</code> callback
     in the parser skeleton generated for this type. And, second,
     the argument type for callbacks corresponding to elements and
     attributes of this type. For example, for XML Schema type
     <code>gender</code> we can specify the return type for
     <code>post_gender()</code> in the <code>gender_pskel</code>
     skeleton and the argument type for the <code>gender()</code> callback
     in the <code>person_pskel</code> skeleton. As you might have guessed,
     the generated code will then pass the return value from the
     <code>post_*()</code> callback as an argument to the element or
     attribute callback.</p>

  <p>The way to tell the XSD/e compiler about these XML Schema to
     C++ mappings is with type map files. Here is a simple type
     map for the <code>gender</code> type from the previous paragraph.</p>

  <pre class="type-map">
include "people.hxx";
gender ::gender ::gender;
  </pre>

  <p>The first line indicates that the generated code must include
     <code>people.hxx</code> in order to get the definition for the
     <code>gender</code> type. The second line specifies that both
     argument and return types for the <code>gender</code>
     XML Schema type should be the <code>::gender</code> C++ enum
     (we use fully-qualified C++ names to avoid name clashes).
     The next section will describe the type map format in detail.
     We save this type map in <code>people.map</code> and
     then translate our schemas with the <code>--type-map</code>
     option to let the XSD/e compiler know about our type map:</p>

  <pre class="terminal">
$ xsde cxx-parser --type-map people.map people.xsd
  </pre>

  <p>If we now look at the generated <code>people-pskel.hxx</code>,
     we will see the following changes in the <code>gender_pskel</code> and
     <code>person_pskel</code> skeletons:</p>

  <pre class="c++">
#include "people.hxx"

class gender_pskel: public xml_schema::string_pskel
{
  virtual ::gender
  post_gender () = 0;

  ...
};

class person_pskel: public xml_schema::parser_complex_content
{
  virtual void
  gender (::gender);

  ...
};
  </pre>

  <p>Notice that <code>#include "people.hxx"</code> was added to
     the generated header file from the type map to provide the
     definition for the <code>gender</code> enum.</p>

  <h2><a name="4.2">4.2 Type Map File Format</a></h2>

  <p>Type map files are used to define a mapping between XML Schema
     and C++ types. The compiler uses this information
     to determine return types of <code>post_*()</code>
     callbacks in parser skeletons corresponding to XML Schema
     types as well as argument types for callbacks corresponding
     to elements and attributes of these types.</p>

  <p>The compiler has a set of predefined mapping rules that map the
     built-in XML Schema types to suitable C++ types (discussed
     below) and all other types to <code>void</code>.
     By providing your own type maps you can override these predefined
     rules. The format of the type map file is presented below:
  </p>

  <pre class="type-map">
namespace &lt;schema-namespace> [&lt;cxx-namespace>]
{
  (include &lt;file-name>;)*
  ([type] &lt;schema-type> &lt;cxx-ret-type> [&lt;cxx-arg-type>];)*
}
  </pre>

  <p>Both <code><i>&lt;schema-namespace></i></code> and
     <code><i>&lt;schema-type></i></code> are regex patterns while
     <code><i>&lt;cxx-namespace></i></code>,
     <code><i>&lt;cxx-ret-type></i></code>, and
     <code><i>&lt;cxx-arg-type></i></code> are regex pattern
     substitutions. All names can be optionally enclosed in
     <code>"&nbsp;"</code>, for example, to include white-spaces.</p>

  <p><code><i>&lt;schema-namespace></i></code> determines XML
     Schema namespace. Optional <code><i>&lt;cxx-namespace></i></code>
     is prefixed to every C++ type name in this namespace declaration.
     <code><i>&lt;cxx-ret-type></i></code> is a C++ type name that is
     used as a return type for the <code>post_*()</code> callback.
     Optional <code><i>&lt;cxx-arg-type></i></code> is an argument
     type for callbacks corresponding to elements and attributes
     of this type. If <code><i>&lt;cxx-arg-type></i></code> is not
     specified, it defaults to <code><i>&lt;cxx-ret-type></i></code>
     if <code><i>&lt;cxx-ret-type></i></code> ends with <code>*</code> or
     <code>&amp;</code> (that is, it is a pointer or a reference) and
     <code>const&nbsp;<i>&lt;cxx-ret-type></i>&amp;</code>
     otherwise.
     <code><i>&lt;file-name></i></code> is a file name either in the
     <code>"&nbsp;"</code> or <code>&lt;&nbsp;></code> format
     and is added with the <code>#include</code> directive to
     the generated code.</p>

  <p>The <code><b>#</b></code> character starts a comment that ends
     with a new line or end of file. To specify a name that contains
     <code><b>#</b></code> enclose it in <code><b>"&nbsp;"</b></code>.
     For example:</p>

  <pre>
namespace http://www.example.com/xmlns/my my
{
  include "my.hxx";

  # Pass apples by value.
  #
  apple apple;

  # Pass oranges as pointers.
  #
  orange orange_t*;
}
  </pre>

  <p>In the example above, for the
     <code>http://www.example.com/xmlns/my#orange</code>
     XML Schema type, the <code>my::orange_t*</code> C++ type will
     be used as both return and argument types.</p>

  <p>Several namespace declarations can be specified in a single
     file. The namespace declaration can also be completely
     omitted to map types in a schema without a namespace. For
     instance:</p>

  <pre class="type-map">
include "my.hxx";
apple apple;

namespace http://www.example.com/xmlns/my
{
  orange "const orange_t*";
}
  </pre>

  <p>The compiler has a number of predefined mapping rules for
     the built-in XML Schema types which can be presented as the
     following map files:</p>

  <pre class="type-map">
namespace http://www.w3.org/2001/XMLSchema
{
  boolean bool bool;

  byte "signed char" "signed char";
  unsignedByte "unsigned char" "unsigned char";

  short short short;
  unsignedShort "unsigned short" "unsigned short";

  int int int;
  unsignedInt "unsigned int" "unsigned int";

  long "long long" "long long";
  unsignedLong "unsigned long long" "unsigned long long";

  integer long long;

  negativeInteger long long;
  nonPositiveInteger long long;

  positiveInteger "unsigned long" "unsigned long";
  nonNegativeInteger "unsigned long" "unsigned long";

  float float float;
  double double double;
  decimal double double;

  NMTOKENS xml_schema::string_sequence*;
  IDREFS xml_schema::string_sequence*;

  base64Binary xml_schema::buffer*;
  hexBinary xml_schema::buffer*;

  date xml_schema::date;
  dateTime xml_schema::date_time;
  duration xml_schema::duration;
  gDay xml_schema::gday;
  gMonth xml_schema::gmonth;
  gMonthDay xml_schema::gmonth_day;
  gYear xml_schema::gyear;
  gYearMonth xml_schema::gyear_month;
  time xml_schema::time;
}
  </pre>

  <p>If STL is enabled (<a href="#5.1">Section 5.1, "Standard Template
     Library"</a>), the following mapping is used for the string-based
     XML Schema built-in types:</p>

  <pre class="type-map">
namespace http://www.w3.org/2001/XMLSchema
{
  include &lt;string>;

  anySimpleType std::string;

  string std::string;
  normalizedString std::string;
  token std::string;
  Name std::string;
  NMTOKEN std::string;
  NCName std::string;
  ID std::string;
  IDREF std::string;
  language std::string;
  anyURI std::string;

  QName xml_schema::qname;
}
  </pre>

  <p>Otherwise, a C string-based mapping is used:</p>

  <pre class="type-map">
namespace http://www.w3.org/2001/XMLSchema
{
  anySimpleType char*;

  string char*;
  normalizedString char*;
  token char*;
  Name char*;
  NMTOKEN char*;
  NCName char*;
  ID char*;
  IDREF char*;
  language char*;
  anyURI char*;

  QName xml_schema::qname*;
}
  </pre>

  <p>For more information about the mapping of the built-in XML Schema types
     to C++ types refer to <a href="#6">Chapter 6, "Built-In XML Schema Type
     Parsers"</a>. The last predefined rule maps anything that wasn't
     mapped by previous rules to <code>void</code>:</p>

  <pre class="type-map">
namespace .*
{
  .* void void;
}
  </pre>


  <p>When you provide your own type maps with the
     <code>--type-map</code> option, they are evaluated first. This
     allows you to selectively override any
     of the predefined rules. Note also that if you change the mapping
     of a built-in XML Schema type then it becomes your responsibility
     to provide the corresponding parser skeleton and implementation
     in the <code>xml_schema</code> namespace. You can include the
     custom definitions into the generated header file using the
     <code>--hxx-prologue-*</code> options.</p>

  <h2><a name="4.3">4.3 Parser Implementations</a></h2>

  <p>With the knowledge from the previous section, we can proceed
     with creating a type map that maps types in the <code>people.xsd</code>
     schema to our object model classes in
     <code>people.hxx</code>. In fact, we already have the beginning
     of our type map file in <code>people.map</code>. Let's extend
     it with the rest of the types:</p>

  <pre class="type-map">
include "people.hxx";

gender ::gender ::gender;
person ::person;
people ::people;
  </pre>

  <p>A few things to note about this type map. We did not
     provide the argument types for <code>person</code> and
     <code>people</code> because the default constant reference is
     exactly what we need. We also did not provide any mappings
     for built-in XML Schema types <code>string</code> and
     <code>short</code> because they are handled by the predefined
     rules and we are happy with the result. Note also that
     all C++ types are fully qualified. This is done to avoid
     potential name conflicts in the generated code. Now we can
     recompile our schema and move on to implementing the parsers:</p>

  <pre class="terminal">
$ xsde cxx-parser --type-map people.map people.xsd
  </pre>

  <p>Here is the implementation of our three parsers in full. One
     way to save typing when implementing your own parsers is
     to open the generated code and copy the signatures of parser
     callbacks into your code. Or you could always auto generate the
     sample implementations and fill them with your code.</p>

  <pre class="c++">
#include "people-pskel.hxx"

class gender_pimpl: public gender_pskel
{
public:
  gender_pimpl ()
    : gender_pskel (&amp;base_impl_)
  {
  }

  virtual ::gender
  post_gender ()
  {
    return post_string () == "male" ? male : female;
  }

private:
  xml_schema::string_pimpl base_impl_;
};

class person_pimpl: public person_pskel
{
public:
  virtual void
  first_name (const std::string&amp; f)
  {
    first_ = f;
  }

  virtual void
  last_name (const std::string&amp; l)
  {
    last_ = l;
  }

  virtual void
  gender (::gender g)
  {
    gender_ = g;
  }

  virtual void
  age (short a)
  {
    age_ = a;
  }

  virtual ::person
  post_person ()
  {
    return ::person (first_, last_, gender_, age_);
  }

private:
  std::string first_;
  std::string last_;
  ::gender gender_;
  short age_;
};

class people_pimpl: public people_pskel
{
public:
  virtual void
  person (const ::person&amp; p)
  {
    people_.push_back (p);
  }

  virtual ::people
  post_people ()
  {
    ::people r;
    r.swap (people_);
    return r;
  }

private:
  ::people people_;
};
  </pre>

  <p>This code fragment should look familiar by now. Just note that
     all the <code>post_*()</code> callbacks now have return types instead
     of <code>void</code>. Here is the implementation of the test
     driver for this example:</p>

  <pre class="c++">
#include &lt;iostream>

using namespace std;

int
main (int argc, char* argv[])
{
  // Construct the parser.
  //
  xml_schema::short_pimpl short_p;
  xml_schema::string_pimpl string_p;

  gender_pimpl gender_p;
  person_pimpl person_p;
  people_pimpl people_p;

  person_p.parsers (string_p, string_p, gender_p, short_p);
  people_p.parsers (person_p);

  // Parse the document to obtain the object model.
  //
  xml_schema::document_pimpl doc_p (people_p, "people");

  people_p.pre ();
  doc_p.parse (argv[1]);
  people ppl = people_p.post_people ();

  // Print the object model.
  //
  for (people::iterator i (ppl.begin ()); i != ppl.end (); ++i)
  {
    cout &lt;&lt; "first:  " &lt;&lt; i->first () &lt;&lt; endl
         &lt;&lt; "last:   " &lt;&lt; i->last () &lt;&lt; endl
         &lt;&lt; "gender: " &lt;&lt; (i->gender () == male ? "male" : "female") &lt;&lt; endl
         &lt;&lt; "age:    " &lt;&lt; i->age () &lt;&lt; endl
         &lt;&lt; endl;
  }
}
  </pre>

  <p>The parser creation and assembly part is exactly the same as in
     the previous chapter. The parsing part is a bit different:
     <code>post_people()</code> now has a return value which is the
     complete object model. We store it in the
     <code>ppl</code> variable. The last bit of the code simply iterates
     over the <code>people</code> vector and prints the information
     for each person. We save the last two code fragments to
     <code>driver.cxx</code> and proceed to compile and test
     our new application:</p>


  <pre class="terminal">
$ c++ -I.../libxsde -c driver.cxx people-pskel.cxx
$ c++ -o driver driver.o people-pskel.o .../libxsde/xsde/libxsde.a
$ ./driver people.xml
first:  John
last:   Doe
gender: male
age:    32

first:  Jane
last:   Doe
gender: female
age:    28
  </pre>


  <!-- Mapping Configuration -->


  <h1><a name="5">5 Mapping Configuration</a></h1>

  <p>The Embedded C++/Parser mapping has a number of configuration
     parameters that determine the overall properties and behavior
     of the generated code, such as the use of Standard Template
     Library (STL), Input/Output Stream Library (iostream), C++
     exceptions, XML Schema validation, 64-bit integer types, parser
     implementation reuse styles, and support for XML Schema polymorphism.
     Previous chapters assumed that the use of STL, iostream, C++
     exceptions, and XML Schema validation were enabled.
     This chapter will discuss the changes in the Embedded C++/Parser
     programming model that result from the changes to these configuration
     parameters. A complete example that uses the minimal mapping
     configuration is presented at the end of this chapter.</p>

  <p>In order to enable or disable a particular feature, the corresponding
     configuration parameter should be set accordingly in the XSD/e runtime
     library as well as specified during schema compilation with the XSD/e
     command line options as described in the
     <a href="http://www.codesynthesis.com/projects/xsde/documentation/xsde.xhtml">XSD/e
     Compiler Command Line Manual</a>.
  </p>

  <p>While the XML documents can use various encodings, the Embedded
     C++/Parser mapping always delivers character data to the application
     in the same encoding. The application encoding can either be UTF-8
     (default) or ISO-8859-1. To select a particular encoding, configure
     the XSD/e runtime library accordingly and pass the <code>--char-encoding</code>
     option to the XSD/e compiler when translating your schemas.</p>

  <p>When using ISO-8859-1 as the application encoding, XML documents
     being parsed may contain characters with Unicode values greater
     than 0xFF which are unrepresentable in the ISO-8859-1 encoding.
     By default, in such situations parsing will terminate with
     an error. However, you can suppress the error by providing a
     replacement character that should be used instead of
     unrepresentable characters, for example:</p>

  <pre class="c++">
xml_schema::iso8859_1::unrep_char ('?');
  </pre>

  <p>To revert to the default behavior, set the replacement character
     to <code>'\0'</code>.</p>

  <p>The Embedded C++/Parser mapping includes built-in support for XML
     documents encoded in UTF-8, UTF-16, ISO-8859-1, and US-ASCII.
     Other encodings can be supported by providing application-specific
     decoder functions.</p>

  <h2><a name="5.1">5.1 Standard Template Library</a></h2>

  <p>To disable the use of STL you will need to configure the XSD/e
     runtime without support for STL as well as pass the
     <code>--no-stl</code> option to the XSD/e compiler when
     translating your schemas. When STL is disabled, all string-based
     XML Schema types are mapped to C-style <code>char*</code> instead
     of <code>std::string</code>, as described in
     <a href="#4.2">Section 4.2, "Type Map File Format"</a>. The
     following code fragment shows changes in the
     signatures of <code>first_name()</code> and <code>last_name()</code>
     callbacks from the person record example.</p>

  <pre class="c++">
class person_pskel
{
public:
  virtual void
  first_name (char*);

  virtual void
  last_name (char*);

  ...
};
  </pre>

  <p>Note that it is your responsibility to eventually release the memory
     associated with these strings using operator <code>delete[]</code>.
  </p>

  <h2><a name="5.2">5.2 Input/Output Stream Library</a></h2>

  <p>To disable the use of iostream you will need to configure the
     XSD/e runtime library without support for iostream as well as
     pass the <code>--no-iostream</code> option to the XSD/e compiler
     when translating your schemas. When iostream is disabled, the
     following two <code>parse()</code> functions in the
     <code>xml_schema::document_pimpl</code> class become unavailable:</p>

  <pre class="c++">
  void
  parse (const std::string&amp; file);

  void
  parse (std::istream&amp;);
  </pre>

  <p>Leaving you with only one function in the form:</p>

  <pre class="c++">
  void
  parse (const void* data, size_t size, bool last);
  </pre>

  <p>See <a href="#7.1">Section 7.1, "Document Parser"</a>
     for more information on the semantics of these functions.</p>

  <h2><a name="5.3">5.3 C++ Exceptions</a></h2>

  <p>To disable the use of C++ exceptions, you will need to configure
     the XSD/e runtime without support for exceptions as well as pass
     the <code>--no-exceptions</code> option to the XSD/e compiler
     when translating your schemas. When C++ exceptions are disabled,
     the error conditions are indicated with error codes instead of
     exceptions, as described in <a href="#7.3">Section 7.3,
     "Error Codes"</a>.
  </p>

  <h2><a name="5.4">5.4 XML Schema Validation</a></h2>

  <p>To disable support for XML Schema validation, you will need to
     configure the XSD/e runtime accordingly as well as pass
     the <code>--suppress-validation</code> option to the XSD/e compiler
     when translating your schemas. Disabling XML Schema validation
     allows to further increase the parsing performance and
     reduce footprint in cases where XML instances are known to be
     valid.
  </p>

  <h2><a name="5.5">5.5 64-bit Integer Type</a></h2>

  <p>By default the 64-bit <code>long</code> and <code>unsignedLong</code>
     XML Schema built-in types are mapped to the 64-bit <code>long long</code>
     and <code>unsigned long long</code> fundamental C++ types. To
     disable the use of these types in the mapping you will need to
     configure the XSD/e runtime accordingly as well as pass
     the <code>--no-long-long</code> option to the XSD/e compiler
     when translating your schemas. When the use of 64-bit integral
     C++ types is disabled the <code>long</code> and
     <code>unsignedLong</code> XML Schema built-in types are mapped
     to <code>long</code> and <code>unsigned long</code> fundamental
     C++ types.</p>

  <h2><a name="5.6">5.6 Parser Reuse</a></h2>

  <p>When one type in XML Schema inherits from another, it is
     often desirable to be able to reuse the parser implementation
     corresponding to the base type in the parser implementation
     corresponding to the derived type. XSD/e provides support
     for two parser reuse styles: the so-called <em>mixin</em>
     (generated when the <code>--reuse-style-mixin</code> option
     is specified) and <em>tiein</em> (generated by default) styles.</p>

  <p>The compiler can also be instructed not to generate any support
     for parser reuse with the <code>--reuse-style-none</code> option.
     This is mainly useful to further reduce the generated code size
     when your vocabulary does not use inheritance or when you plan
     to implement each parser from scratch. Note also that the
     XSD/e runtime should be configured in accordance with the
     parser reuse style used in the generated code. The remainder
     of this section discusses the mixin and tiein parser reuse
     styles in more detail.</p>


  <p>To provide concrete examples for each reuse style we will use the
     following schema fragment:</p>

  <pre class="xml">
&lt;xs:complexType name="person">
  &lt;xs:sequence>
    &lt;xs:element name="first-name" type="xs:string"/>
    &lt;xs:element name="last-name" type="xs:string"/>
    &lt;xs:element name="age" type="xs:short"/>
  &lt;/xs:sequence>
&lt;/xs:complexType>

&lt;xs:complexType name="emplyee">
  &lt;complexContent>
    &lt;extension base="person">
      &lt;xs:sequence>
        &lt;xs:element name="position" type="xs:string"/>
        &lt;xs:element name="salary" type="xs:unsignedLong"/>
      &lt;/xs:sequence>
    &lt;/extension>
  &lt;/complexContent>
&lt;/xs:complexType>
  </pre>

  <p>The mixin parser reuse style uses the C++ mixin idiom that
     relies on multiple and virtual inheritance. Because
     virtual inheritance can result in a significant object
     code size increase, this reuse style should be considered
     when such an overhead is acceptable and/or the vocabulary
     consists of only a handful of types. When the mixin reuse
     style is used, the generated parser skeletons use virtual
     inheritance, for example:</p>

  <pre class="c++">
class person_pskel: public virtual parser_complex_content
{
  ...
};

class employee_pskel: public virtual person_pskel
{
  ...
};
  </pre>


  <p>When you implement the base parser you also need to use
     virtual inheritance. The derived parser is implemented
     by inheriting from both the derived parser skeleton and
     the base parser implementation (that is, <em>mixing in</em>
     the base parser implementation), for example:</p>

  <pre class="c++">
class person_pimpl: public virtual person_pskel
{
  ...
};

class employee_pimpl: public employee_pskel,
                      public person_pimpl
{
  ...
};
  </pre>


  <p>The tiein parser reuse style uses delegation and normally
     results in a significantly smaller object code while being
     almost as convenient to use as the mixin style. When the
     tiein reuse style is used, the generated derived parser
     skeleton declares a constructor which allows you to specify
     the implementation of the base parser:</p>

  <pre class="c++">
class person_pskel: public parser_complex_content
{
  ...
};

class employee_pskel: public person_pskel
{
public:
  employee_pskel (person_pskel* base_impl)

  ...
};
  </pre>

  <p>If you pass the implementation of the base parser to this
     constructor then the generated code will transparently
     forward all the callbacks corresponding to the base parser
     skeleton to this implementation. You can also pass
     <code>0</code> to this constructor in which case you will
     need to implement the derived parser from scratch. The
     following example shows how we could implement the
     <code>person</code> and <code>employee</code> parsers
     using the tiein style:</p>

  <pre class="c++">
class person_pimpl: public person_pskel
{
  ...
};

class employee_pimpl: public employee_pskel
{
public:
  employee_pimpl ()
    : employee_pskel (&amp;base_impl_)
  {
  }

  ...

private:
  person_pimpl base_impl_;
};
  </pre>

  <p>Note that you cannot use the <em>tied in</em> base parser
     instance (<code>base_impl_</code> in the above code) for
     parsing anything except the derived type.</p>

  <p>The ability to override the base parser callbacks in the
     derived parser is also available in the tiein style. For
     example, the following code fragment shows how we can
     override the <code>age()</code> callback if we didn't
     like the implementation provided by the base parser:</p>

  <pre class="c++">
class employee_pimpl: public employee_pskel
{
public:
  employee_pimpl ()
    : employee_pskel (&amp;base_impl_)
  {
  }

  virtual void
  age (short a)
  {
    ...
  }

  ...

private:
  person_pimpl base_impl_;
};
  </pre>

  <p>In the above example the <code>age</code> element will be
     handled by <code>emplyee_pimpl</code> while the <code>first-name</code>
     and <code>last-name</code> callbacks will still go to
     <code>base_impl_</code>.</p>

  <p>It is also possible to inherit from the base parser implementation
     instead of declaring it as a member variable. This can be useful
     if you need to access protected members in the base implementation
     or need to override a virtual function that is not part of
     the parser skeleton interface. Note, however, that in this case
     you will need to resolve a number of ambiguities with explicit
     qualifications or using-declarations. For example:</p>


  <pre class="c++">
class person_pimpl: public person_pskel
{
  ...
protected:
  virtual person*
  create ()
  {
    return new person ();
  }
};

class employee_pimpl: public employee_pskel,
                      public person_pimpl
{
public:
  employee_pimpl ()
    : employee_pskel (static_cast&lt;person_pimpl*> (this))
  {
  }

  // Resolve ambiguities.
  //
  using emplyee_pskel::parsers;

  ...

protected:
  virtual employee*
  create ()
  {
    return new employee ();
  }
};
  </pre>


  <h2><a name="5.7">5.7 Support for Polymorphism</a></h2>

  <p>By default the XSD/e compiler generates non-polymorphic code. If your
     vocabulary uses XML Schema polymorphism in the form of <code>xsi:type</code>
     and/or substitution groups, then you will need to configure the XSD/e
     runtime with support for polymorphism, compile your schemas with the
     <code>--generate-polymorphic</code> option to produce polymorphism-aware
     code, as well as pass <code>true</code> as the last argument to the
     <code>xml_schema::document_pimpl</code>'s constructors. If some of your
     schemas do not require support for polymorphism then you can compile
     them with the <code>--runtime-polymorphic</code> option and still
     use the XSD/e runtime configured with polymorphism support.
  </p>

  <p>When using the polymorphism-aware generated code, you can specify
     several parsers for a single element by passing a parser map
     instead of an individual parser to the parser connection function
     for the element. One of the parsers will then be looked up and used
     depending on the <code>xsi:type</code> attribute value or an element
     name from a substitution group. Consider the following schema as an
     example:</p>

  <pre class="xml">
&lt;xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

  &lt;xs:complexType name="person">
    &lt;xs:sequence>
      &lt;xs:element name="name" type="xs:string"/>
    &lt;/xs:sequence>
  &lt;/xs:complexType>

  &lt;!-- substitution group root -->
  &lt;xs:element name="person" type="person"/>

  &lt;xs:complexType name="superman">
    &lt;xs:complexContent>
      &lt;xs:extension base="person">
        &lt;xs:attribute name="can-fly" type="xs:boolean"/>
      &lt;/xs:extension>
    &lt;/xs:complexContent>
  &lt;/xs:complexType>

  &lt;xs:element name="superman"
              type="superman"
              substitutionGroup="person"/>

  &lt;xs:complexType name="batman">
    &lt;xs:complexContent>
      &lt;xs:extension base="superman">
        &lt;xs:attribute name="wing-span" type="xs:unsignedInt"/>
      &lt;/xs:extension>
    &lt;/xs:complexContent>
  &lt;/xs:complexType>

  &lt;xs:element name="batman"
              type="batman"
              substitutionGroup="superman"/>

  &lt;xs:complexType name="supermen">
    &lt;xs:sequence>
      &lt;xs:element ref="person" maxOccurs="unbounded"/>
    &lt;/xs:sequence>
  &lt;/xs:complexType>

  &lt;xs:element name="supermen" type="supermen"/>

&lt;/xs:schema>
  </pre>

  <p>Conforming XML documents can use the <code>superman</code>
     and <code>batman</code> types in place of the <code>person</code>
     type either by specifying the type with the <code>xsi:type</code>
     attributes or by using the elements from the substitution
     group, for instance:</p>


  <pre class="xml">
&lt;supermen xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

  &lt;person>
    &lt;name>John Doe&lt;/name>
  &lt;/person>

  &lt;superman can-fly="false">
    &lt;name>James "007" Bond&lt;/name>
  &lt;/superman>

  &lt;superman can-fly="true" wing-span="10" xsi:type="batman">
    &lt;name>Bruce Wayne&lt;/name>
  &lt;/superman>

&lt;/supermen>
  </pre>

  <p>To print the data stored in such XML documents we can implement
     the parsers as follows:</p>

  <pre class="c++">
class person_pimpl: public person_pskel
{
public:
  virtual void
  pre ()
  {
    cout &lt;&lt; "starting to parse person" &lt;&lt; endl;
  }

  virtual void
  name (const std::string&amp; v)
  {
    cout &lt;&lt; "name: " &lt;&lt; v &lt;&lt; endl;
  }

  virtual void
  post_person ()
  {
    cout &lt;&lt; "finished parsing person" &lt;&lt; endl;
  }
};

class superman_pimpl: public superman_pskel
{
public:
  superman_pimpl ()
    : superman_pskel (&amp;base_impl_)
  {
  }

  virtual void
  pre ()
  {
    cout &lt;&lt; "starting to parse superman" &lt;&lt; endl;
  }

  virtual void
  can_fly (bool v)
  {
    cout &lt;&lt; "can-fly: " &lt;&lt; v &lt;&lt; endl;
  }

  virtual void
  post_person ()
  {
    post_superman ();
  }

  virtual void
  post_superman ()
  {
    cout &lt;&lt; "finished parsing superman" &lt;&lt; endl
  }

private:
  person_pimpl base_impl_;
};

class batman_pimpl: public batman_pskel
{
public:
  batman_pimpl ()
    : batman_pskel (&amp;base_impl_)
  {
  }

  virtual void
  pre ()
  {
    cout &lt;&lt; "starting to parse batman" &lt;&lt; endl;
  }

  virtual void
  wing_span (unsigned int v)
  {
    cout &lt;&lt; "wing-span: " &lt;&lt; v &lt;&lt; endl;
  }

  virtual void
  post_person ()
  {
    post_superman ();
  }

  virtual void
  post_superman ()
  {
    post_batman ();
  }

  virtual void
  post_batman ()
  {
    cout &lt;&lt; "finished parsing batman" &lt;&lt; endl;
  }

private:
  superman_pimpl base_impl_;
};
  </pre>

  <p>Note that because the derived type parsers (<code>superman_pskel</code>
     and <code>batman_pskel</code>) are called via the <code>person_pskel</code>
     interface, we have to override the <code>post_person()</code> virtual
     function in <code>superman_pimpl</code> and <code>batman_pimpl</code>
     to call <code>post_superman()</code> and the <code>post_superman()</code>
     virtual function in <code>batman_pimpl</code> to call
     <code>post_batman()</code> (when the mixin parser reuse style is used
     it is not necessary to override <code>post_person()</code>
     in <code>batman_pimpl</code> since the suitable implementation
     is inherited from <code>superman_pimpl</code>).</p>

  <p>The following code fragment shows how to connect the parsers together.
     Notice that for the <code>person</code> element in the <code>supermen_p</code>
     parser we specify a parser map instead of a specific parser and we pass
     <code>true</code> as the last argument to the document parser constructor
     to indicate that we are parsing potentially-polymorphic XML documents:</p>

  <pre class="c++">
int
main (int argc, char* argv[])
{
  // Construct the parser.
  //
  xml_schema::string_pimpl string_p;
  xml_schema::boolean_pimpl boolean_p;
  xml_schema::unsigned_int_pimpl unsigned_int_p;

  person_pimpl person_p;
  superman_pimpl superman_p;
  batman_pimpl batman_p;

  xml_schema::parser_map_impl person_map (5); // 5 hashtable buckets
  supermen_pimpl supermen_p;

  person_p.parsers (string_p);
  superman_p.parsers (string_p, boolean_p);
  batman_p.parsers (string_p, boolean_p, unsigned_int_p);

  // Here we are specifying several parsers that can be used to
  // parse the person element.
  //
  person_map.insert (person_p);
  person_map.insert (superman_p);
  person_map.insert (batman_p);

  supermen_p.person_parser (person_map);

  // Parse the XML document. The last argument to the document's
  // constructor indicates that we are parsing polymorphic XML
  // documents.
  //
  xml_schema::document_pimpl doc_p (supermen_p, "supermen", true);

  supermen_p.pre ();
  doc_p.parse (argv[1]);
  supermen_p.post_supermen ();
}
  </pre>

  <p>When polymorphism-aware code is generated, each element's
     <code>*_parser()</code> function is overloaded to also accept
     an object of the <code>xml_schema::parser_map</code> type.
     For example, the <code>supermen_pskel</code> class from the
     above example looks like this:</p>

  <pre class="c++">
class supermen_pskel: public xml_schema::parser_complex_content
{
public:

  ...

  // Parser construction API.
  //
  void
  parsers (person_pskel&amp;);

  // Individual element parsers.
  //
  void
  person_parser (person_pskel&amp;);

  void
  person_parser (xml_schema::parser_map&amp;);

  ...
};
  </pre>

  <p>Note that you can specify both the individual (static) parser and
     the parser map. The individual parser will be used when the static
     element type and the dynamic type of the object being parsed are
     the same. This is the case, for example, when there is no
     <code>xsi:type</code> attribute and the element hasn't been
     substituted. Because the individual parser for an element is
     cached and no map lookup is necessary, it makes sense to specify
     both the individual parser and the parser map when most of the
     objects being parsed are of the static type and optimal
     performance is important. The following code fragment shows
     how to change the above example to set both the individual
     parser and the parser map:</p>

  <pre class="c++">
int
main (int argc, char* argv[])
{
  ...

  // Here we are specifying several parsers that can be used to
  // parse the person element.
  //
  person_map.insert (superman_p);
  person_map.insert (batman_p);

  supermen_p.person_parser (person_p);
  supermen_p.person_parser (person_map);

  ...
}
  </pre>


  <p>The <code>xml_schema::parser_map</code> interface and the
     <code>xml_schema::parser_map_impl</code> default implementation
     are presented below:</p>

  <pre class="c++">
namespace xml_schema
{
  class parser_map
  {
  public:
    virtual parser_base*
    find (const char* type) const = 0;

    virtual void
    reset () const = 0;
  };

  class parser_map_impl: public parser_map
  {
  public:
    parser_map_impl (size_t buckets);

    void
    insert (parser_base&amp;);

    virtual parser_base*
    find (const char* type) const;

    virtual void
    reset () const;

  private:
    parser_map_impl (const parser_map_impl&amp;);

    parser_map_impl&amp;
    operator= (const parser_map_impl&amp;);

    ...
  };
}
  </pre>

  <p>The <code>type</code> argument in the <code>find()</code> virtual
     function is the type name and namespace from the xsi:type attribute
     (the namespace prefix is resolved to the actual XML namespace)
     or the type of an element from the substitution group in the form
     <code>"&lt;name>&nbsp;&lt;namespace>"</code> with the space and the
     namespace part absent if the type does not have a namespace.
     You can obtain a parser's dynamic type in the same format
     using the <code>_dynamic_type()</code> function. The static
     type can be obtained by calling the static <code>_static_type()</code>
     function, for example <code>person_pskel::_static_type()</code>.
     Both functions return a C string (<code>const char*</code>) which
     is valid for as long as the application is running. The
     <code>reset()</code> virtual function is used to reset
     the parsers contained in the map (as opposed to resetting or
     clearing the map itself). For more information on parser
     resetting refer to <a href="#7.4">Section 7.4, "Reusing Parsers
     after an Error"</a>. The following example shows how we can
     implement our own parser map using <code>std::map</code>:</p>


  <pre class="c++">
#include &lt;map>
#include &lt;string>

class parser_map: public xml_schema::parser_map
{
public:
 void
 insert (xml_schema::parser_base&amp; p)
 {
   map_[p._dynamic_type ()] = &amp;p;
 }

 virtual xml_schema::parser_base*
 find (const char* type) const
 {
   map::const_iterator i = map_.find (type);
   return i != map_.end () ? i->second : 0;
 }

 virtual void
 reset () const
 {
   for (map::const_iterator i (map_.begin ()), e (map_.end ());
        i != e; ++i)
   {
     xml_schema::parser_base* p = i->second;
     p->_reset ();
   }
 }

private:
  typedef std::map&lt;std::string, xml_schema::parser_base*> map;
  map map_;
};
  </pre>

  <p>The XSD/e runtime provides the default implementation for the
     <code>xml_schema::parser_map</code> interface,
     <code>xml_schema::parser_map_impl</code>, which is a hashmap.
     It requires that you specify the number of buckets it will contain
     and it does not support automatic table resizing. To obtain good
     performance the elements to buckets ratio should be between 0.7 and
     0.9. It is also recommended to use prime numbers for bucket counts:
     53, 97, 193, 389, 769, 1543, 3079, 6151, 12289, 24593, 49157, 98317,
     196613, 393241.
  </p>

  <p>If C++ exceptions are disabled (<a href="#5.3">Section 5.3,
     "C++ Exceptions"</a>), the <code>xml_schema::parser_map_impl</code>
     class has the following additional error querying API. It can be used
     to detect the out of memory errors after calls to the
     <code>parser_map_impl</code>'s constructor and <code>insert()</code>
     function.</p>

  <pre class="c++">
namespace xml_schema
{
  class parser_map_impl: public parser_map
  {
  public:
    enum error
    {
      error_none,
      error_no_memory
    };

    error
    _error () const;

    ...
  };
}
  </pre>

  <p>To support polymorphic parsing the XSD/e runtime and generated code
     maintain a number of hashmaps that contain substitution and, if
     XML Schema validation is enabled (<a href="#5.4">Section 5.4,
     "XML Schema Validation"</a>), inheritance information. Because
     the number of elements in these hashmaps depends on the schemas
     being compiled and thus is fairly static, these hashmaps do not
     perform automatic table resizing and instead the number of buckets
     is specified when the XSD/e runtime is configured. To obtain good
     performance the elements to buckets ratio in these hashmaps should
     be between 0.7 and 0.9. The recommended way to ensure this range
     is to add diagnostics code to your application as shown in the
     following example:</p>

  <pre class="c++">
int
main ()
{
  // Check that the load in substitution and inheritance hashmaps
  // is not too high.
  //
#ifndef NDEBUG
  float load = xml_schema::parser_smap_elements ();
  load /= xml_schema::parser_smap_buckets ();

  if (load > 0.8)
  {
    cerr &lt;&lt; "substitution hashmap load is " &lt;&lt; load &lt;&lt; endl;
    cerr &lt;&lt; "time to increase XSDE_PARSER_SMAP_BUCKETS" &lt;&lt; endl;
  }

  load = xml_schema::parser_imap_elements ();
  load /= xml_schema::parser_imap_buckets ();

  if (load > 0.8)
  {
    cerr &lt;&lt; "inheritance hashmap load is " &lt;&lt; load &lt;&lt; endl;
    cerr &lt;&lt; "time to increase XSDE_PARSER_IMAP_BUCKETS" &lt;&lt; endl;
  }
#endif

  ...
}
  </pre>

  <p>Most of the code presented in this section is taken from the
     <code>polymorphism</code> example which can be found in the
     <code>examples/cxx/parser/</code> directory of the XSD/e distribution.
     Handling of <code>xsi:type</code> and substitution groups when used
     on root elements requires a number of special actions as shown in
     the <code>polyroot</code> example.</p>

  <h2><a name="5.8">5.8 Custom Allocators</a></h2>

  <p>By default the XSD/e runtime and generated code use
     the standard operators <code>new</code> and <code>delete</code>
     to manage dynamic memory. However, it is possible to instead
     use custom allocator functions provided by your application.
     To achieve this, configure the XSD/e runtime library to use
     custom allocator functions as well as pass the
     <code>--custom-allocator</code> option to the XSD/e compiler
     when translating your schemas. The signatures of the custom
     allocator functions that should be provided by your application
     are listed below. Their semantics should be equivalent to the
     standard C <code>malloc()</code>, <code>realloc()</code>, and
     <code>free()</code> functions.</p>

  <pre class="c++">
extern "C" void*
xsde_alloc (size_t);

extern "C" void*
xsde_realloc (void*, size_t);

extern "C" void
xsde_free (void*);
  </pre>

  <p>Note also that when custom allocators are enabled, any
     dynamically-allocated object of which the XSD/e runtime
     or generated code assume ownership should be allocated
     using the custom allocation function. Similarly, if your
     application assumes ownership of any dynamically-allocated
     object returned by the XSD/e runtime or the generated code,
     then such an object should be disposed of using the custom
     deallocation function. To help with these tasks the generated
     <code>xml_schema</code> namespace defines the following two
     helper functions and, if C++ exceptions are enabled, automatic
     pointer class:</p>

  <pre class="c++">
namespace xml_schema
{
  void*
  alloc (size_t);

  void
  free (void*);

  struct alloc_guard
  {
    alloc_guard (void*);
    ~alloc_guard ();

    void*
    get () const;

    void
    release ();

  private:
    ...
  };
}
  </pre>

  <p>If C++ exceptions are disabled, these functions are equivalent
     to <code>xsde_alloc()</code> and <code>xsde_free()</code>.
     If exceptions are enabled, <code>xml_schema::alloc()</code>
     throws <code>std::bad_alloc</code> on memory allocation failure.</p>

  <p>The following code fragment shows how to create and destroy a
     dynamically-allocated object with custom allocators when C++
     exceptions are disabled:</p>

  <pre class="c++">
void* v = xml_schema::alloc (sizeof (type));

if (v == 0)
{
  // Handle out of memory condition.
}

type* x = new (v) type (1, 2);

...

if (x)
{
  x->~type ();
  xml_schema::free (x);
}
  </pre>

  <p>The equivalent code fragment for configurations with C++ exceptions
     enabled is shown below:</p>

  <pre class="c++">
xml_schema::alloc_guard g (xml_schema::alloc (sizeof (type)));
type* x = new (g.get ()) type (1, 2);
g.release ();

...

if (x)
{
  x->~type ();
  xml_schema::free (x);
}
  </pre>

  <h2><a name="5.9">5.9 A Minimal Example</a></h2>

  <p>The following example is a re-implementation of the person
     records example presented in <a href="#3">Chapter 3,
     "Parser Skeletons"</a>. It is intended to work
     without STL, iostream, and C++ exceptions. It can be found in
     the <code>examples/cxx/parser/minimal/</code> directory of the
     XSD/e distribution. The <code>people.xsd</code> schema is
     compiled with the <code>--no-stl</code>, <code>--no-iostream</code>,
     and <code>--no-exceptions</code> options. The following listing
     presents the implementation of parser skeletons and the test
     driver in full.</p>

  <pre class="c++">
#include &lt;stdio.h>

#include "people-pskel.hxx"

class gender_pimpl: public gender_pskel
{
public:
  gender_pimpl ()
    : gender_pskel (&amp;base_impl_)
  {
  }

  virtual void
  post_gender ()
  {
    char* s = post_string ();
    printf ("gender: %s\n", s);
    delete[] s;
  }

private:
  xml_schema::string_pimpl base_impl_;
};

class person_pimpl: public person_pskel
{
public:
  virtual void
  first_name (char* n)
  {
    printf ("first: %s\n", n);
    delete[] n;
  }

  virtual void
  last_name (char* n)
  {
    printf ("last: %s\n", n);
    delete[] n;
  }

  virtual void
  age (short a)
  {
    printf ("age: %hd\n", a);
  }
};

class people_pimpl: public people_pskel
{
public:
  virtual void
  person ()
  {
    // Add an extra newline after each person record.
    //
    printf ("\n");
  }
};

int
main (int argc, char* argv[])
{
  // Construct the parser.
  //
  xml_schema::short_pimpl short_p;
  xml_schema::string_pimpl string_p;

  gender_pimpl gender_p;
  person_pimpl person_p;
  people_pimpl people_p;

  person_p.parsers (string_p, string_p, gender_p, short_p);
  people_p.parsers (person_p);

  // Open the file.
  //
  FILE* f = fopen (argv[1], "rb");

  if (f == 0)
  {
    fprintf (stderr, "%s: unable to open\n", argv[1]);
    return 1;
  }

  // Parse.
  //
  typedef xml_schema::parser_error error;
  error e;
  bool io_error = false;

  do
  {
    xml_schema::document_pimpl doc_p (people_p, "people");
    if (e = doc_p._error ())
      break;

    people_p.pre ();
    if (e = people_p._error ())
      break;

    char buf[4096];
    do
    {
      size_t s = fread (buf, 1, sizeof (buf), f);

      if (s != sizeof (buf) &amp;&amp; ferror (f))
      {
        io_error = true;
        break;
      }

      doc_p.parse (buf, s, feof (f) != 0);
      e = doc_p._error ();

    } while (!e &amp;&amp; !feof (f));

    if (io_error || e)
      break;

    people_p.post_people ();
    e = people_p._error ();

  } while (false);

  fclose (f);

  // Handle errors.
  //

  if (io_error)
  {
    fprintf (stderr, "%s: read failure\n", argv[1]);
    return 1;
  }

  if (e)
  {
    switch (e.type ())
    {
    case error::sys:
      {
        fprintf (stderr, "%s: %s\n", argv[1], e.sys_text ());
        break;
      }
    case error::xml:
      {
        fprintf (stderr, "%s:%lu:%lu: %s\n",
                 argv[1], e.line (), e.column (), e.xml_text ());
        break;
      }
    case error::schema:
      {
        fprintf (stderr, "%s:%lu:%lu: %s\n",
                 argv[1], e.line (), e.column (), e.schema_text ());
        break;
      }
    case error::app:
      {
        fprintf (stderr, "%s:%lu:%lu: application error %d\n",
                 argv[1], e.line (), e.column (), e.app_code ());
        break;
      }
    default:
      break;
    }
    return 1;
  }
  return 0;
}
  </pre>


  <!-- Built-in XML Schema Type Parsers -->


  <h1><a name="6">6 Built-In XML Schema Type Parsers</a></h1>

  <p>The XSD/e runtime provides parser implementations for all built-in
     XML Schema types as summarized in the following table. Declarations
     for these types are automatically included into each generated
     header file. As a result you don't need to include any headers
     to gain access to these parser implementations.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="builtin" border="1">
    <tr>
      <th>XML Schema type</th>
      <th>Parser implementation in the <code>xml_schema</code> namespace</th>
      <th>Parser return type</th>
    </tr>

    <tr>
      <th colspan="3">anyType and anySimpleType types</th>
    </tr>
    <tr>
      <td><code>anyType</code></td>
      <td><code>any_type_pimpl</code></td>
      <td><code>void</code></td>
    </tr>
    <tr>
      <td><code>anySimpleType</code></td>
      <td><code>any_simple_type_pimpl</code></td>
      <td><code>std::string</code> or <code>char*</code><br/>
          <a href="#5.1">Section 5.1, "Standard Template Library"</a></td>
    </tr>

    <tr>
      <th colspan="3">fixed-length integral types</th>
    </tr>
    <!-- 8-bit -->
    <tr>
      <td><code>byte</code></td>
      <td><code>byte_pimpl</code></td>
      <td><code>signed&nbsp;char</code></td>
    </tr>
    <tr>
      <td><code>unsignedByte</code></td>
      <td><code>unsigned_byte_pimpl</code></td>
      <td><code>unsigned&nbsp;char</code></td>
    </tr>

    <!-- 16-bit -->
    <tr>
      <td><code>short</code></td>
      <td><code>short_pimpl</code></td>
      <td><code>short</code></td>
    </tr>
    <tr>
      <td><code>unsignedShort</code></td>
      <td><code>unsigned_short_pimpl</code></td>
      <td><code>unsigned&nbsp;short</code></td>
    </tr>

    <!-- 32-bit -->
    <tr>
      <td><code>int</code></td>
      <td><code>int_pimpl</code></td>
      <td><code>int</code></td>
    </tr>
    <tr>
      <td><code>unsignedInt</code></td>
      <td><code>unsigned_int_pimpl</code></td>
      <td><code>unsigned&nbsp;int</code></td>
    </tr>

    <!-- 64-bit -->
    <tr>
      <td><code>long</code></td>
      <td><code>long_pimpl</code></td>
      <td><code>long&nbsp;long</code> or <code>long</code><br/>
          <a href="#5.5">Section 5.5, "64-bit Integer Type"</a></td>
    </tr>
    <tr>
      <td><code>unsignedLong</code></td>
      <td><code>unsigned_long_pimpl</code></td>
      <td><code>unsigned&nbsp;long&nbsp;long</code> or
          <code>unsigned&nbsp;long</code><br/>
          <a href="#5.5">Section 5.5, "64-bit Integer Type"</a></td>
    </tr>

    <tr>
      <th colspan="3">arbitrary-length integral types</th>
    </tr>
    <tr>
      <td><code>integer</code></td>
      <td><code>integer_pimpl</code></td>
      <td><code>long</code></td>
    </tr>
    <tr>
      <td><code>nonPositiveInteger</code></td>
      <td><code>non_positive_integer_pimpl</code></td>
      <td><code>long</code></td>
    </tr>
    <tr>
      <td><code>nonNegativeInteger</code></td>
      <td><code>non_negative_integer_pimpl</code></td>
      <td><code>unsigned&nbsp;long</code></td>
    </tr>
    <tr>
      <td><code>positiveInteger</code></td>
      <td><code>positive_integer_pimpl</code></td>
      <td><code>unsigned&nbsp;long</code></td>
    </tr>
    <tr>
      <td><code>negativeInteger</code></td>
      <td><code>negative_integer_pimpl</code></td>
      <td><code>long</code></td>
    </tr>

    <tr>
      <th colspan="3">boolean types</th>
    </tr>
    <tr>
      <td><code>boolean</code></td>
      <td><code>boolean_pimpl</code></td>
      <td><code>bool</code></td>
    </tr>

    <tr>
      <th colspan="3">fixed-precision floating-point types</th>
    </tr>
    <tr>
      <td><code>float</code></td>
      <td><code>float_pimpl</code></td>
      <td><code>float</code></td>
    </tr>
    <tr>
      <td><code>double</code></td>
      <td><code>double_pimpl</code></td>
      <td><code>double</code></td>
    </tr>

    <tr>
      <th colspan="3">arbitrary-precision floating-point types</th>
    </tr>
    <tr>
      <td><code>decimal</code></td>
      <td><code>decimal_pimpl</code></td>
      <td><code>double</code></td>
    </tr>

    <tr>
      <th colspan="3">string-based types</th>
    </tr>
    <tr>
      <td><code>string</code></td>
      <td><code>string_pimpl</code></td>
      <td><code>std::string</code> or <code>char*</code><br/>
          <a href="#5.1">Section 5.1, "Standard Template Library"</a></td>
    </tr>
    <tr>
      <td><code>normalizedString</code></td>
      <td><code>normalized_string_pimpl</code></td>
      <td><code>std::string</code> or <code>char*</code><br/>
          <a href="#5.1">Section 5.1, "Standard Template Library"</a></td>
    </tr>
    <tr>
      <td><code>token</code></td>
      <td><code>token_pimpl</code></td>
      <td><code>std::string</code> or <code>char*</code><br/>
          <a href="#5.1">Section 5.1, "Standard Template Library"</a></td>
    </tr>
    <tr>
      <td><code>Name</code></td>
      <td><code>name_pimpl</code></td>
      <td><code>std::string</code> or <code>char*</code><br/>
          <a href="#5.1">Section 5.1, "Standard Template Library"</a></td>
    </tr>
    <tr>
      <td><code>NMTOKEN</code></td>
      <td><code>nmtoken_pimpl</code></td>
      <td><code>std::string</code> or <code>char*</code><br/>
          <a href="#5.1">Section 5.1, "Standard Template Library"</a></td>
    </tr>
    <tr>
      <td><code>NCName</code></td>
      <td><code>ncname_pimpl</code></td>
      <td><code>std::string</code> or <code>char*</code><br/>
          <a href="#5.1">Section 5.1, "Standard Template Library"</a></td>
    </tr>

    <tr>
      <td><code>language</code></td>
      <td><code>language_pimpl</code></td>
      <td><code>std::string</code> or <code>char*</code><br/>
          <a href="#5.1">Section 5.1, "Standard Template Library"</a></td>
    </tr>

    <tr>
      <th colspan="3">qualified name</th>
    </tr>
    <tr>
      <td><code>QName</code></td>
      <td><code>qname_pimpl</code></td>
      <td><code>xml_schema::qname</code> or <code>xml_schema::qname*</code><br/>
          <a href="#6.1">Section 6.1, "<code>QName</code> Parser"</a></td>
    </tr>

    <tr>
      <th colspan="3">ID/IDREF types</th>
    </tr>
    <tr>
      <td><code>ID</code></td>
      <td><code>id_pimpl</code></td>
      <td><code>std::string</code> or <code>char*</code><br/>
          <a href="#5.1">Section 5.1, "Standard Template Library"</a></td>
    </tr>
    <tr>
      <td><code>IDREF</code></td>
      <td><code>idref_pimpl</code></td>
      <td><code>std::string</code> or <code>char*</code><br/>
          <a href="#5.1">Section 5.1, "Standard Template Library"</a></td>
    </tr>

    <tr>
      <th colspan="3">list types</th>
    </tr>
    <tr>
      <td><code>NMTOKENS</code></td>
      <td><code>nmtokens_pimpl</code></td>
      <td><code>xml_schema::string_sequence*</code><br/><a href="#6.2">Section
          6.2, "<code>NMTOKENS</code> and <code>IDREFS</code> Parsers"</a></td>
    </tr>
    <tr>
      <td><code>IDREFS</code></td>
      <td><code>idrefs_pimpl</code></td>
      <td><code>xml_schema::string_sequence*</code><br/><a href="#6.2">Section
          6.2, "<code>NMTOKENS</code> and <code>IDREFS</code> Parsers"</a></td>
    </tr>

    <tr>
      <th colspan="3">URI types</th>
    </tr>
    <tr>
      <td><code>anyURI</code></td>
      <td><code>uri_pimpl</code></td>
      <td><code>std::string</code> or <code>char*</code><br/>
          <a href="#5.1">Section 5.1, "Standard Template Library"</a></td>
    </tr>

    <tr>
      <th colspan="3">binary types</th>
    </tr>
    <tr>
      <td><code>base64Binary</code></td>
      <td><code>base64_binary_pimpl</code></td>
      <td><code>xml_schema::buffer*</code><br/>
          <a href="#6.3">Section 6.3, "<code>base64Binary</code> and
          <code>hexBinary</code> Parsers"</a></td>
    </tr>
    <tr>
      <td><code>hexBinary</code></td>
      <td><code>hex_binary_pimpl</code></td>
      <td><code>xml_schema::buffer*</code><br/>
          <a href="#6.3">Section 6.3, "<code>base64Binary</code> and
          <code>hexBinary</code> Parsers"</a></td>
    </tr>

    <tr>
      <th colspan="3">date/time types</th>
    </tr>
    <tr>
      <td><code>date</code></td>
      <td><code>date_pimpl</code></td>
      <td><code>xml_schema::date</code><br/><a href="#6.5">Section 6.5,
          "<code>date</code> Parser"</a></td>
    </tr>
    <tr>
      <td><code>dateTime</code></td>
      <td><code>date_time_pimpl</code></td>
      <td><code>xml_schema::date_time</code><br/><a href="#6.6">Section 6.6,
          "<code>dateTime</code> Parser"</a></td>
    </tr>
    <tr>
      <td><code>duration</code></td>
      <td><code>duration_pimpl</code></td>
      <td><code>xml_schema::duration</code><br/><a href="#6.7">Section 6.7,
          "<code>duration</code> Parser"</a></td>
    </tr>
    <tr>
      <td><code>gDay</code></td>
      <td><code>gday_pimpl</code></td>
      <td><code>xml_schema::gday</code><br/><a href="#6.8">Section 6.8,
          "<code>gDay</code> Parser"</a></td>
    </tr>
    <tr>
      <td><code>gMonth</code></td>
      <td><code>gmonth_pimpl</code></td>
      <td><code>xml_schema::gmonth</code><br/><a href="#6.9">Section 6.9,
          "<code>gMonth</code> Parser"</a></td>
    </tr>
    <tr>
      <td><code>gMonthDay</code></td>
      <td><code>gmonth_day_pimpl</code></td>
      <td><code>xml_schema::gmonth_day</code><br/><a href="#6.10">Section 6.10,
          "<code>gMonthDay</code> Parser"</a></td>
    </tr>
    <tr>
      <td><code>gYear</code></td>
      <td><code>gyear_pimpl</code></td>
      <td><code>xml_schema::gyear</code><br/><a href="#6.11">Section 6.11,
          "<code>gYear</code> Parser"</a></td>
    </tr>
    <tr>
      <td><code>gYearMonth</code></td>
      <td><code>gyear_month_pimpl</code></td>
      <td><code>xml_schema::gyear_month</code><br/><a href="#6.12">Section
          6.12, "<code>gYearMonth</code> Parser"</a></td>
    </tr>
    <tr>
      <td><code>time</code></td>
      <td><code>time_pimpl</code></td>
      <td><code>xml_schema::time</code><br/><a href="#6.13">Section 6.13,
          "<code>time</code> Parser"</a></td>
    </tr>

  </table>

  <h2><a name="6.1">6.1 <code>QName</code> Parser</a></h2>

  <p>The return type of the <code>qname_pimpl</code> parser implementation
     is either <code>xml_schema::qname</code> when STL is enabled
     (<a href="#5.1">Section 5.1, "Standard Template Library"</a>) or
     <code>xml_schema::qname*</code> when STL is disabled. The
     <code>qname</code> class represents an XML qualified name. When the
     return type is <code>xml_schema::qname*</code>, the returned
     object is dynamically allocated with operator <code>new</code>
     and should eventually be deallocated with operator <code>delete</code>.
     With STL enabled, the <code>qname</code> type has the following
     interface:</p>

  <pre class="c++">
namespace xml_schema
{
  class qname
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    qname ();

    explicit
    qname (const std::string&amp; name);
    qname (const std::string&amp; prefix, const std::string&amp; name);

    void
    swap (qname&amp;);

    const std::string&amp;
    prefix () const;

    std::string&amp;
    prefix ();

    void
    prefix (const std::string&amp;);

    const std::string&amp;
    name () const;

    std::string&amp;
    name ();

    void
    name (const std::string&amp;);
  };

  bool
  operator== (const qname&amp;, const qname&amp;);

  bool
  operator!= (const qname&amp;, const qname&amp;);
}
  </pre>

  <p>When STL is disabled and C++ exceptions are enabled
     (<a href="#5.3">Section 5.3, "C++ Exceptions"</a>), the
     <code>qname</code> type has the following interface:</p>

  <pre class="c++">
namespace xml_schema
{
  class qname
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    qname ();

    explicit
    qname (char* name);
    qname (char* prefix, char* name);

    void
    swap (qname&amp;);

  private:
    qname (const qname&amp;);

    qname&amp;
    operator= (const qname&amp;);

  public:
    char*
    prefix ();

    const char*
    prefix () const;

    void
    prefix (char*);

    void
    prefix_copy (const char*);

    char*
    prefix_detach ();

  public:
    char*
    name ();

    const char*
    name () const;

    void
    name (char*);

    void
    name_copy (const char*);

    char*
    name_detach ();
  };

  bool
  operator== (const qname&amp;, const qname&amp;);

  bool
  operator!= (const qname&amp;, const qname&amp;);
}
</pre>

  <p>The modifier functions and constructors that have the <code>char*</code>
     argument assume ownership of the passed strings which should be allocated
     with operator <code>new char[]</code> and will be deallocated with
     operator <code>delete[]</code> by the <code>qname</code> object.
     If you detach the underlying prefix or name strings, then they
     should eventually be deallocated with operator <code>delete[]</code>.
     </p>

  <p>Finally, if both STL and C++ exceptions are disabled, the
     <code>qname</code> type has the following interface:</p>

  <pre class="c++">
namespace xml_schema
{
  class qname
  {
  public:
    enum error
    {
      error_none,
      error_no_memory
    };

    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    qname ();

    explicit
    qname (char* name);
    qname (char* prefix, char* name);

    void
    swap (qname&amp;);

  private:
    qname (const qname&amp;);

    qname&amp;
    operator= (const qname&amp;);

  public:
    char*
    prefix ();

    const char*
    prefix () const;

    void
    prefix (char*);

    error
    prefix_copy (const char*);

    char*
    prefix_detach ();

  public:
    char*
    name ();

    const char*
    name () const;

    void
    name (char*);

    error
    name_copy (const char*);

    char*
    name_detach ();
  };

  bool
  operator== (const qname&amp;, const qname&amp;);

  bool
  operator!= (const qname&amp;, const qname&amp;);
}
  </pre>

  <h2><a name="6.2">6.2 <code>NMTOKENS</code> and <code>IDREFS</code> Parsers</a></h2>

  <p>The return type of the <code>nmtokens_pimpl</code> and
     <code>idrefs_pimpl</code> parser implementations is
     <code>xml_schema::string_sequence*</code>.
     The returned object is dynamically allocated with operator
     <code>new</code> and should eventually be deallocated with
     operator <code>delete</code>. With STL and C++ exceptions enabled
     (<a href="#5.1">Section 5.1, "Standard Template Library"</a>,
      <a href="#5.3">Section 5.3, "C++ Exceptions"</a>), the
     <code>string_sequence</code> type has the following interface:</p>

  <pre class="c++">
namespace xml_schema
{
  class string_sequence
  {
  public:
    typedef std::string         value_type;
    typedef std::string*        pointer;
    typedef const std::string*  const_pointer;
    typedef std::string&amp;        reference;
    typedef const std::string&amp;  const_reference;

    typedef size_t              size_type;
    typedef ptrdiff_t           difference_type;

    typedef std::string*        iterator;
    typedef const std::string*  const_iterator;

  public:
    string_sequence ();

    void
    swap (string_sequence&amp;);

  private:
    string_sequence (string_sequence&amp;);

    string_sequence&amp;
    operator= (string_sequence&amp;);

  public:
    iterator
    begin ();

    const_iterator
    begin () const;

    iterator
    end ();

    const_iterator
    end () const;

    std::string&amp;
    front ();

    const std::string&amp;
    front () const;

    std::string&amp;
    back ();

    const std::string&amp;
    back () const;

    std::string&amp;
    operator[] (size_t);

    const std::string&amp;
    operator[] (size_t) const;

  public:
    bool
    empty () const;

    size_t
    size () const;

    size_t
    capacity () const;

    size_t
    max_size () const;

  public:
    void
    clear ();

    void
    pop_back ();

    iterator
    erase (iterator);

    void
    push_back (const std::string&amp;);

    iterator
    insert (iterator, const std::string&amp;);

    void
    reserve (size_t);
  };

  bool
  operator== (const string_sequence&amp;, const string_sequence&amp;);

  bool
  operator!= (const string_sequence&amp;, const string_sequence&amp;);
}
  </pre>

  <p>When STL is enabled and C++ exceptions are disabled, the signatures
     of the <code>push_back()</code>, <code>insert()</code>, and
     <code>reserve()</code> functions change as follows:</p>

  <pre class="c++">
namespace xml_schema
{
  class string_sequence
  {
  public:
    enum error
    {
      error_none,
      error_no_memory
    };

    ...

  public:
    error
    push_back (const std::string&amp;);

    error
    insert (iterator, const std::string&amp;);

    error
    insert (iterator, const std::string&amp;, iterator&amp; result);

    error
    reserve (size_t);
  };
}
  </pre>

  <p>When STL is disabled and C++ exceptions are enabled, the
     <code>string_sequence</code> type has the following interface:</p>

  <pre class="c++">
namespace xml_schema
{
  class string_sequence
  {
  public:
    typedef char*         value_type;
    typedef char**        pointer;
    typedef const char**  const_pointer;
    typedef char*         reference;
    typedef const char*   const_reference;

    typedef size_t        size_type;
    typedef ptrdiff_t     difference_type;

    typedef char** iterator;
    typedef const char* const* const_iterator;

    string_sequence ();

    void
    swap (string_sequence&amp;);

  private:
    string_sequence (string_sequence&amp;);

    string_sequence&amp;
    operator= (string_sequence&amp;);

  public:
    iterator
    begin ();

    const_iterator
    begin () const;

    iterator
    end ();

    const_iterator
    end () const;

    char*
    front ();

    const char*
    front () const;

    char*
    back ();

    const char*
    back () const;

    char*
    operator[] (size_t);

    const char*
    operator[] (size_t) const;

  public:
    bool
    empty () const;

    size_t
    size () const;

    size_t
    capacity () const;

    size_t
    max_size () const;

  public:
    void
    clear ();

    void
    pop_back ();

    iterator
    erase (iterator);

    void
    push_back (char*);

    void
    push_back_copy (const char*);

    iterator
    insert (iterator, char*);

    void
    reserve (size_t);

    // Detach a string from the sequence at a given position.
    // The string pointer at this position in the sequence is
    // set to 0.
    //
    char*
    detach (iterator);
  };

  bool
  operator== (const string_sequence&amp;, const string_sequence&amp;);

  bool
  operator!= (const string_sequence&amp;, const string_sequence&amp;);
}
  </pre>

  <p>The <code>push_back()</code> and <code>insert()</code> functions
     assume ownership of the passed string which should be allocated
     with operator <code>new char[]</code> and will be deallocated
     with operator <code>delete[]</code> by the <code>string_sequence</code>
     object. These two functions free the passed object if the reallocation
     of the underlying sequence buffer fails. The <code>push_back_copy()</code>
     function makes a copy of the passed string.
     If you detach the underlying element string, then it should
     eventually be deallocated with operator <code>delete[]</code>.</p>

  <p>When both STL and C++ exceptions are disabled, the signatures
     of the <code>push_back()</code>, <code>push_back_copy()</code>,
     <code>insert()</code>, and <code>reserve()</code> functions change
     as follows:</p>

  <pre class="c++">
namespace xml_schema
{
  class string_sequence
  {
  public:
    enum error
    {
      error_none,
      error_no_memory
    };

    ...

  public:
    error
    push_back (char*);

    error
    push_back_copy (const char*);

    error
    insert (iterator, char*);

    error
    insert (iterator, char*, iterator&amp; result);

    error
    reserve (size_t);
  };
}
  </pre>


  <h2><a name="6.3">6.3 <code>base64Binary</code> and <code>hexBinary</code> Parsers</a></h2>

  <p>The return type of the <code>base64_binary_pimpl</code> and
     <code>hex_binary_pimpl</code> parser implementations is
     <code>xml_schema::buffer*</code>. The returned object is
     dynamically allocated with operator <code>new</code> and
     should eventually be deallocated with operator <code>delete</code>.
     With C++ exceptions enabled (<a href="#5.3">Section 5.3, "C++
     Exceptions"</a>), the <code>buffer</code> type has the following
     interface:</p>

  <pre class="c++">
namespace xml_schema
{
  class buffer
  {
  public:
    class bounds {}; // Out of bounds exception.

  public:
    buffer ();

    explicit
    buffer (size_t size);
    buffer (size_t size, size_t capacity);
    buffer (const void* data, size_t size);
    buffer (const void* data, size_t size, size_t capacity);

    enum ownership_value { assume_ownership };

    // This constructor assumes ownership of the memory passed.
    //
    buffer (void* data, size_t size, size_t capacity, ownership_value);

  private:
    buffer (const buffer&amp;);

    buffer&amp;
    operator= (const buffer&amp;);

  public:
    void
    attach (void* data, size_t size, size_t capacity);

    void*
    detach ();

    void
    swap (buffer&amp;);

  public:
    size_t
    capacity () const;

    bool
    capacity (size_t);

  public:
    size_t
    size () const;

    bool
    size (size_t);

  public:
    const char*
    data () const;

    char*
    data ();

    const char*
    begin () const;

    char*
    begin ();

    const char*
    end () const;

    char*
    end ();
  };

  bool
  operator== (const buffer&amp;, const buffer&amp;);

  bool
  operator!= (const buffer&amp;, const buffer&amp;);
}
  </pre>

  <p>The last constructor and the <code>attach()</code> member function
     make the <code>buffer</code> instance assume the ownership of the
     memory block pointed to by the <code>data</code> argument and
     eventually release it by calling <code>operator delete()</code>.
     The <code>detach()</code> member function detaches and returns the
     underlying memory block which should eventually be released by
     calling <code>operator delete()</code>.
  </p>

  <p>The <code>capacity()</code> and <code>size()</code> modifier functions
     return <code>true</code> if the underlying buffer has moved. The
     <code>bounds</code> exception is thrown if the constructor or
     <code>attach()</code> member function arguments violate the
     <code>(size&nbsp;&lt;=&nbsp;capacity)</code> constraint.</p>

  <p>If C++ exceptions are disabled, the <code>buffer</code> type has
     the following interface:</p>

  <pre class="c++">
namespace xml_schema
{
  class buffer
  {
  public:
    enum error
    {
      error_none,
      error_bounds,
      error_no_memory
    };

    buffer ();

  private:
    buffer (const buffer&amp;);

    buffer&amp;
    operator= (const buffer&amp;);

  public:
    error
    attach (void* data, size_t size, size_t capacity);

    void*
    detach ();

    void
    swap (buffer&amp;);

  public:
    size_t
    capacity () const;

    error
    capacity (size_t);

    error
    capacity (size_t, bool&amp; moved);

  public:
    size_t
    size () const;

    error
    size (size_t);

    error
    size (size_t, bool&amp; moved);

  public:
    const char*
    data () const;

    char*
    data ();

    const char*
    begin () const;

    char*
    begin ();

    const char*
    end () const;

    char*
    end ();
  };

  bool
  operator== (const buffer&amp;, const buffer&amp;);

  bool
  operator!= (const buffer&amp;, const buffer&amp;);
}
  </pre>

  <h2><a name="6.4">6.4 Time Zone Representation</a></h2>

  <p>The <code>date</code>, <code>dateTime</code>, <code>gDay</code>,
     <code>gMonth</code>, <code>gMonthDay</code>, <code>gYear</code>,
     <code>gYearMonth</code>, and <code>time</code> XML Schema built-in
     types all include an optional time zone component. The following
     <code>xml_schema::time_zone</code> base class is used to represent
     this information:</p>

  <pre class="c++">
namespace xml_schema
{
  class time_zone
  {
  public:
    time_zone ();
    time_zone (short hours, short minutes);

    bool
    zone_present () const;

    void
    zone_reset ();

    short
    zone_hours () const;

    void
    zone_hours (short);

    short
    zone_minutes () const;

    void
    zone_minutes (short);
  };

  bool
  operator== (const time_zone&amp;, const time_zone&amp;);

  bool
  operator!= (const time_zone&amp;, const time_zone&amp;);
}
  </pre>

  <p>The <code>zone_present()</code> accessor function returns <code>true</code>
     if the time zone is specified. The <code>zone_reset()</code> modifier
     function resets the time zone object to the <em>not specified</em>
     state. If the time zone offset is negative then both hours and
     minutes components are represented as negative integers.</p>

  <h2><a name="6.5">6.5 <code>date</code> Parser</a></h2>

 <p>The return type of the <code>date_pimpl</code> parser implementation
     is <code>xml_schema::date</code> which represents a year, a day, and a month
     with an optional time zone. Its interface is presented below. For
     more information on the base <code>xml_schema::time_zone</code>
     class refer to <a href="#6.4">Section 6.4, "Time Zone
     Representation"</a>.</p>

  <pre class="c++">
namespace xml_schema
{
  class date: public time_zone
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    date ();

    date (int year, unsigned short month, unsigned short day);

    date (int year, unsigned short month, unsigned short day,
          short zone_hours, short zone_minutes);

    int
    year () const;

    void
    year (int);

    unsigned short
    month () const;

    void
    month (unsigned short);

    unsigned short
    day () const;

    void
    day (unsigned short);
  };

  bool
  operator== (const date&amp;, const date&amp;);

  bool
  operator!= (const date&amp;, const date&amp;);
}
  </pre>

  <h2><a name="6.6">6.6 <code>dateTime</code> Parser</a></h2>

  <p>The return type of the <code>date_time_pimpl</code> parser implementation
     is <code>xml_schema::date_time</code> which represents a year, a month, a day,
     hours, minutes, and seconds with an optional time zone. Its interface
     is presented below. For more information on the base
     <code>xml_schema::time_zone</code> class refer to <a href="#6.4">Section
     6.4, "Time Zone Representation"</a>.</p>

  <pre class="c++">
namespace xml_schema
{
  class date_time: public time_zone
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    date_time ();

    date_time (int year, unsigned short month, unsigned short day,
               unsigned short hours, unsigned short minutes,
               double seconds);

    date_time (int year, unsigned short month, unsigned short day,
               unsigned short hours, unsigned short minutes,
               double seconds, short zone_hours, short zone_minutes);

    int
    year () const;

    void
    year (int);

    unsigned short
    month () const;

    void
    month (unsigned short);

    unsigned short
    day () const;

    void
    day (unsigned short);

    unsigned short
    hours () const;

    void
    hours (unsigned short);

    unsigned short
    minutes () const;

    void
    minutes (unsigned short);

    double
    seconds () const;

    void
    seconds (double);
  };

  bool
  operator== (const date_time&amp;, const date_time&amp;);

  bool
  operator!= (const date_time&amp;, const date_time&amp;);
}
  </pre>

  <h2><a name="6.7">6.7 <code>duration</code> Parser</a></h2>

  <p>The return type of the <code>duration_pimpl</code> parser implementation
     is <code>xml_schema::duration</code> which represents a potentially
     negative duration in the form of years, months, days, hours, minutes,
     and seconds. Its interface is presented below.</p>

  <pre class="c++">
namespace xml_schema
{
  class duration
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    duration ();

    duration (bool negative,
              unsigned int years, unsigned int months, unsigned int days,
              unsigned int hours, unsigned int minutes, double seconds);

    bool
    negative () const;

    void
    negative (bool);

    unsigned int
    years () const;

    void
    years (unsigned int);

    unsigned int
    months () const;

    void
    months (unsigned int);

    unsigned int
    days () const;

    void
    days (unsigned int);

    unsigned int
    hours () const;

    void
    hours (unsigned int);

    unsigned int
    minutes () const;

    void
    minutes (unsigned int);

    double
    seconds () const;

    void
    seconds (double);
  };

  bool
  operator== (const duration&amp;, const duration&amp;);

  bool
  operator!= (const duration&amp;, const duration&amp;);
}
  </pre>


  <h2><a name="6.8">6.8 <code>gDay</code> Parser</a></h2>

  <p>The return type of the <code>gday_pimpl</code> parser implementation
     is <code>xml_schema::gday</code> which represents a day of the month with
     an optional time zone. Its interface is presented below. For
     more information on the base <code>xml_schema::time_zone</code>
     class refer to <a href="#6.4">Section 6.4, "Time Zone
     Representation"</a>.</p>

  <pre class="c++">
namespace xml_schema
{
  class gday: public time_zone
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    gday ();

    explicit
    gday (unsigned short day);

    gday (unsigned short day, short zone_hours, short zone_minutes);

    unsigned short
    day () const;

    void
    day (unsigned short);
  };

  bool
  operator== (const gday&amp;, const gday&amp;);

  bool
  operator!= (const gday&amp;, const gday&amp;);
}
  </pre>

  <h2><a name="6.9">6.9 <code>gMonth</code> Parser</a></h2>

  <p>The return type of the <code>gmonth_pimpl</code> parser implementation
     is <code>xml_schema::gmonth</code> which represents a month of the year
     with an optional time zone. Its interface is presented below. For
     more information on the base <code>xml_schema::time_zone</code>
     class refer to <a href="#6.4">Section 6.4, "Time Zone
     Representation"</a>.</p>

  <pre class="c++">
namespace xml_schema
{
  class gmonth: public time_zone
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    gmonth ();

    explicit
    gmonth (unsigned short month);

    gmonth (unsigned short month,
            short zone_hours, short zone_minutes);

    unsigned short
    month () const;

    void
    month (unsigned short);
  };

  bool
  operator== (const gmonth&amp;, const gmonth&amp;);

  bool
  operator!= (const gmonth&amp;, const gmonth&amp;);
}
  </pre>

  <h2><a name="6.10">6.10 <code>gMonthDay</code> Parser</a></h2>

  <p>The return type of the <code>gmonth_day_pimpl</code> parser implementation
     is <code>xml_schema::gmonth_day</code> which represents a day and a month of
     the year with an optional time zone. Its interface is presented below.
     For more information on the base <code>xml_schema::time_zone</code>
     class refer to <a href="#6.4">Section 6.4, "Time Zone
     Representation"</a>.</p>

  <pre class="c++">
namespace xml_schema
{
  class gmonth_day: public time_zone
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    gmonth_day ();

    gmonth_day (unsigned short month, unsigned short day);

    gmonth_day (unsigned short month, unsigned short day,
                short zone_hours, short zone_minutes);

    unsigned short
    month () const;

    void
    month (unsigned short);

    unsigned short
    day () const;

    void
    day (unsigned short);
  };

  bool
  operator== (const gmonth_day&amp;, const gmonth_day&amp;);

  bool
  operator!= (const gmonth_day&amp;, const gmonth_day&amp;);
}
  </pre>

  <h2><a name="6.11">6.11 <code>gYear</code> Parser</a></h2>

  <p>The return type of the <code>gyear_pimpl</code> parser implementation
     is <code>xml_schema::gyear</code> which represents a year with
     an optional time zone. Its interface is presented below.
     For more information on the base <code>xml_schema::time_zone</code>
     class refer to <a href="#6.4">Section 6.4, "Time Zone
     Representation"</a>.</p>

  <pre class="c++">
namespace xml_schema
{
  class gyear: public time_zone
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    gyear ();

    explicit
    gyear (int year);

    gyear (int year, short zone_hours, short zone_minutes);

    int
    year () const;

    void
    year (int);
  };

  bool
  operator== (const gyear&amp;, const gyear&amp;);

  bool
  operator!= (const gyear&amp;, const gyear&amp;);
}
  </pre>

  <h2><a name="6.12">6.12 <code>gYearMonth</code> Parser</a></h2>

  <p>The return type of the <code>gyear_month_pimpl</code> parser implementation
     is <code>xml_schema::gyear_month</code> which represents a year and a month
     with an optional time zone. Its interface is presented below.
     For more information on the base <code>xml_schema::time_zone</code>
     class refer to <a href="#6.4">Section 6.4, "Time Zone
     Representation"</a>.</p>

  <pre class="c++">
namespace xml_schema
{
  class gyear_month: public time_zone
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    gyear_month ();

    gyear_month (int year, unsigned short month);

    gyear_month (int year, unsigned short month,
                 short zone_hours, short zone_minutes);

    int
    year () const;

    void
    year (int);

    unsigned short
    month () const;

    void
    month (unsigned short);
  };

  bool
  operator== (const gyear_month&amp;, const gyear_month&amp;);

  bool
  operator!= (const gyear_month&amp;, const gyear_month&amp;);
}
  </pre>


  <h2><a name="6.13">6.13 <code>time</code> Parser</a></h2>

 <p>The return type of the <code>time_pimpl</code> parser implementation
    is <code>xml_schema::time</code> which represents hours, minutes,
    and seconds with an optional time zone. Its interface is presented below.
    For more information on the base <code>xml_schema::time_zone</code>
    class refer to <a href="#6.4">Section 6.4, "Time Zone
    Representation"</a>.</p>

  <pre class="c++">
namespace xml_schema
{
  class time: public time_zone
  {
  public:
    // The default constructor creates an uninitialized object.
    // Use modifiers to initialize it.
    //
    time ();

    time (unsigned short hours, unsigned short minutes, double seconds);

    time (unsigned short hours, unsigned short minutes, double seconds,
          short zone_hours, short zone_minutes);

    unsigned short
    hours () const;

    void
    hours (unsigned short);

    unsigned short
    minutes () const;

    void
    minutes (unsigned short);

    double
    seconds () const;

    void
    seconds (double);
  };

  bool
  operator== (const time&amp;, const time&amp;);

  bool
  operator!= (const time&amp;, const time&amp;);
}
  </pre>


  <!-- Error Handling -->


  <h1><a name="7">7 Document Parser and Error Handling</a></h1>

  <p>In this chapter we will discuss the <code>xml_schema::document_pimpl</code>
     type, the error handling mechanisms provided by the mapping, as well
     as how to reuse a parser after an error has occurred.</p>

  <p>There are four categories of errors that can result from running
     a parser on an XML instance: system, xml, schema, and application.
     The system category contains memory allocation and file/stream
     operation errors. The xml category is for XML parsing and
     well-formedness checking errors. Similarly, the schema category is
     for XML Schema validation errors.  Finally, the application category
     is for application logic errors that you may want to propagate
     from parser implementations to the caller of the parser.
  </p>

  <p>The C++/Parser mapping supports two methods of reporting errors:
     using C++ exceptions and with error codes. The method used depends
     on whether or not you have configured the XSD/e runtime and
     the generated code with C++ exceptions enabled, as described
     in <a href="#5.3">Section 5.3, "C++ Exceptions"</a>.</p>

  <h2><a name="7.1">7.1 Document Parser</a></h2>

  <p>The <code>xml_schema::document_pimpl</code> parser is a root parser for
     the vocabulary. As mentioned in <a href="#3.4">Section 3.4,
     "Connecting the Parsers Together"</a>, its interface varies depending
     on the mapping configuration (<a href="#5">Chapter 5, "Mapping
     Configuration"</a>). When STL and the iostream library are
     enabled, the <code>xml_schema::document_pimpl</code> class has the
     following interface:</p>

  <pre class="c++">
namespace xml_schema
{
  class parser_base;

  class document_pimpl
  {
  public:
    document_pimpl (parser_base&amp;,
                    const char* root_element_name);

    document_pimpl (parser_base&amp;,
                    const char* root_element_namespace,
                    const char* root_element_name);

    document_pimpl (parser_base&amp;,
                    const std::string&amp; root_element_name);

    document_pimpl (parser_base&amp;,
                    const std::string&amp; root_element_namespace,
                    const std::string&amp; root_element_name);


  public:
    // Parse a local file. The file is accessed with std::ifstream
    // in binary mode. The std::ios_base::failure exception is used
    // to report io errors (badbit and failbit) if exceptions are
    // enabled. Otherwise error codes are used.
    //
    void
    parse (const char* file);

    void
    parse (const std::string&amp; file);

    // Parse std::istream. std::ios_base::failure exception is used
    // to report io errors (badbit and failbit) if exceptions are
    // enabled. Otherwise error codes are used.
    //
    void
    parse (std::istream&amp;);

    // Parse a chunk of input. You can call this function multiple
    // times with the last call having the last argument true.
    //
    void
    parse (const void* data, size_t size, bool last);

    // Low-level Expat-specific parsing API.
    //
    void
    parse_begin (XML_Parser);

    void
    parse_end ();
  };
}
  </pre>

  <p>When the use of STL is disabled, the constructors and the <code>parse()</code>
     function that use <code>std::string</code> in their signatures
     are not available. When the use of iostream is disabled, the
     <code>parse()</code> functions that parse a local file and
     <code>std::istream</code> are not available.</p>

  <p>When support for XML Schema polymorphism is enabled, the
     overloaded <code>document_pimpl</code> constructors have
     additional arguments which control polymorphic parsing.
     For more information refer to <a href="#5.7">Section 5.7,
     "Support for Polymorphism"</a>.
  </p>

  <p>The first argument to all overloaded constructors is the
     parser for the type of the root element. The <code>parser_base</code>
     class is the base type for all parser skeletons. The second and
     third arguments to the <code>document_pimpl</code>'s constructors are
     the root element's name and namespace.</p>

  <p>The <code>parse_begin()</code> and <code>parse_end()</code> functions
     present a low-level, Expat-specific parsing API for maximum control.
     A typical use case would look like this (pseudo-code):</p>

  <pre class="c++">
xxx_pimpl root_p;
document_pimpl doc_p (root_p, "root");

root_p.pre ();
doc_p.parse_begin (xml_parser);

while (more_stuff_to_parse)
{
   // Call XML_Parse or XML_ParseBuffer:
   //
   if (XML_Parse (...) != XML_STATUS_ERROR)
     break;
}

doc_p.parse_end ();
result_type result (root_p.post_xxx ());
  </pre>

  <p>Note that if your vocabulary use XML namespaces, the
     <code>XML_ParserCreateNS()</code> functions should be used to create
     the XML parser. Space (<code>XML_Char (' ')</code>) should be used
     as a separator (the second argument to <code>XML_ParserCreateNS()</code>).
     Furthermore, if XML_Parse or XML_ParseBuffer fail, call
     <code>parse_end()</code> to determine the error which is indicated
     either via exception or set as an error code.
  </p>

  <p>The error handling mechanisms employed by the <code>document_pimpl</code>
     parser are described in <a href="#7.2">Section 7.2, "Exceptions"</a>
     and <a href="#7.3">Section 7.3, "Error Codes"</a>.</p>

  <h2><a name="7.2">7.2 Exceptions</a></h2>

  <p>When C++ exceptions are used for error reporting, the system
     errors are mapped to the standard exceptions. The out of memory
     condition is indicated by throwing an instance
     of <code>std::bad_alloc</code>. The stream operation errors
     are reported by throwing an instance of
     <code>std::ios_base::failure</code>.</p>

  <p>The xml and schema errors are reported by throwing the
     <code>xml_schema::parser_xml</code> and <code>xml_schema::parser_schema</code>
     exceptions, respectively. These two exceptions derive from
     <code>xml_schema::parser_exception</code> which, in turn, derives
     from <code>std::exception</code>. As a result, you can handle
     any error from these two categories by either catching
     <code>std::exception</code>, <code>xml_schema::parser_exception</code>,
     or individual exceptions. The further down the hierarchy you go
     the more detailed error information is available to you. The
     following listing shows the definitions of these exceptions:</p>

  <pre class="c++">
namespace xml_schema
{
  class parser_exception: public std::exception
  {
  public:
    unsigned long
    line () const;

    unsigned long
    column () const;

    virtual const char*
    text () const = 0;

    ...
  };

  std::ostream&amp;
  operator&lt;&lt; (std::ostream&amp;, const parser_exception&amp;);


  typedef &lt;implementation-details> parser_xml_error;

  class parser_xml: public parser_exception
  {
  public:
    parser_xml_error
    code () const;

    virtual const char*
    text () const;

    virtual const char*
    what () const throw ();

    ...
  };


  typedef &lt;implementation-details> parser_schema_error;

  class parser_schema: public parser_exception
  {
  public:
    parser_schema_error
    code () const;

    virtual const char*
    text () const;

    virtual const char*
    what () const throw ();

    ...
  };
}
  </pre>

  <p>The <code>parser_xml_error</code> and <code>parser_schema_error</code>
     are implementation-specific error code types. The
     <code>operator&lt;&lt;</code> defined for the <code>parser_exception</code>
     class simply prints the error description as returned by the
     <code>text()</code> function. The following example shows
     how we can catch these exceptions:</p>

  <pre class="c++">
int
main (int argc, char* argv[])
{
  try
  {
    // Parse argv[1].
  }
  catch (const xml_schema::parser_exception&amp; e)
  {
    cout &lt;&lt; argv[1] &lt;&lt; ":" &lt;&lt; e.line () &lt;&lt; ":" &lt;&lt; e.column ()
         &lt;&lt; ": error: " &lt;&lt; e.text () &lt;&lt; endl;
    return 1;
  }
}
  </pre>

  <p>Finally, for reporting application errors from parsing callbacks, you
     can throw any exceptions of your choice. They are propagated to
     the caller of the parser without any alterations.</p>

  <h2><a name="7.3">7.3 Error Codes</a></h2>

  <p>When C++ exceptions are not available, error codes are used to
     report error conditions. Each parser skeleton and the root
     <code>document_pimpl</code> parser have the following member
     function for querying
     the error status:</p>

  <pre class="c++">
xml_schema::parser_error
_error () const;
  </pre>

  <p>To handle all possible error conditions, you will need to obtain
     the error status after calls to: the <code>document_pimpl</code>'s
     constructor (it performs memory allocations which may fail), the
     root parser <code>pre()</code> callback, each call to the <code>parse()</code>
     function, and, finally, the call to the root parser
     <code>post_*()</code> callback. The definition of
     <code>xml_schema::parser_error</code> class is presented below:</p>

  <pre class="c++">
namespace xml_schema
{
  class sys_error
  {
  public:
    enum value
    {
      none,
      no_memory,
      open_failed,
      read_failed,
      write_failed
    };

    sys_error (value);

    operator value () const;

    static const char*
    text (value);

    ...
  };

  typedef &lt;implementation-details> parser_xml_error;
  typedef &lt;implementation-details> parser_schema_error;

  class parser_error
  {
  public:
    enum error_type
    {
      none,
      sys,
      xml,
      schema,
      app
    };

    error_type
    type () const;

    // Line and column are only available for xml, schema, and
    // app errors.
    //
    unsigned long
    line () const;

    unsigned long
    column () const;

    // Returns true if there is an error so that you can write
    // if (p.error ()) or if (error e = p.error ()).
    //
    typedef void (error::*bool_convertible) ();
    operator bool_convertible () const;

    // system
    //
    sys_error
    sys_code () const;

    const char*
    sys_text () const;

    // xml
    //
    parser_xml_error
    xml_code () const;

    const char*
    xml_text () const;

    // schema
    //
    parser_schema_error
    schema_code () const;

    const char*
    schema_text () const;

    // app
    //
    int
    app_code () const;

    ...
  };
}
  </pre>

  <p>The <code>parser_xml_error</code> and <code>parser_schema_error</code>
     are implementation-specific error code types. The
     <code>parser_error</code> class incorporates four categories of errors
     which you can query by calling the <code>type()</code> function.
     The following example shows how to handle error conditions with
     error codes. It is based on the person record example presented
     in <a href="#3">Chapter 3, "Parser Skeletons"</a>.</p>

  <pre class="c++">
int
main (int argc, char* argv[])
{
  // Construct the parser.
  //
  xml_schema::short_pimpl short_p;
  xml_schema::string_pimpl string_p;

  gender_pimpl gender_p;
  person_pimpl person_p;
  people_pimpl people_p;

  person_p.parsers (string_p, string_p, gender_p, short_p);
  people_p.parsers (person_p);

  // Parse.
  //
  using xml_schema::parser_error;
  parser_error e;

  do
  {
    xml_schema::document_pimpl doc_p (people_p, "people");
    if (e = doc_p._error ())
      break;

    people_p.pre ();
    if (e = people_p._error ())
      break;

    doc_p.parse (argv[1]);
    if (e = doc_p._error ())
      break;

    people_p.post_people ();
    e = people_p._error ();

  } while (false);

  // Handle errors.
  //
  if (e)
  {
    switch (e.type ())
    {
    case parser_error::sys:
      {
        cerr &lt;&lt; argv[1] &lt;&lt; ": error: " &lt;&lt; e.sys_text () &lt;&lt; endl;
        break;
      }
    case parser_error::xml:
      {
        cerr &lt;&lt; argv[1] &lt;&lt; ":" &lt;&lt; e.line () &lt;&lt; ":" &lt;&lt; e.column ()
             &lt;&lt; ": error: " &lt;&lt; e.xml_text () &lt;&lt; endl;
        break;
      }
    case parser_error::schema:
      {
        cerr &lt;&lt; argv[1] &lt;&lt; ":" &lt;&lt; e.line () &lt;&lt; ":" &lt;&lt; e.column ()
             &lt;&lt; ": error: " &lt;&lt; e.schema_text () &lt;&lt; endl;
        break;
      }
    case parser_error::app:
      {
        cerr &lt;&lt; argv[1] &lt;&lt; ":" &lt;&lt; e.line () &lt;&lt; ":" &lt;&lt; e.column ()
             &lt;&lt; ": application error " &lt;&lt; e.app_code () &lt;&lt; endl;
        break;
      }
    }
    return 1;
  }
}
  </pre>

  <p>The error type for application errors is <code>int</code> with
     the value <code>0</code> indicated the absence of error. You can
     set the application error by calling the <code>_app_error()</code>
     function inside a parser callback. For example, if it was invalid to
     have a person younger than 18 in our people catalog, then we could
     have implemented this check as follows: </p>

  <pre class="c++">
class person_pimpl: public person_pskel
{
public:
  virtual void
  age (short a)
  {
    if (a &lt; 18)
      _app_error (1);
  }

  ...
};
  </pre>

  <p>You can also set a system error by calling the <code>_sys_error()</code>
     function inside a parser callback. This function has one argument of type
     <code>xml_schema::sys_error</code> which was presented above. For
     example:</p>

  <pre class="c++">
class person_pimpl: public person_pskel
{
public:
  virtual void
  pre ()
  {
    p_ = new person ();

    if (p_ == 0)
      _sys_error (xml_schema::sys_error::no_memory);
  }

  ...

private:
  person* p_;
};
  </pre>


  <h2><a name="7.4">7.4 Reusing Parsers after an Error</a></h2>

  <p>After a successful execution a parser returns into the initial
     state and can be used to parse another document without any
     extra actions. On the other hand, if an error occurred during
     parsing and you would like to reuse the parser to parse another
     document, you need to explicitly reset it into the initial
     state as shown in the following code fragment:</p>

  <pre class="c++">
int
main ()
{
  ...

  std::vector&lt;std::string> files = ...

  xml_schema::document_pimpl doc_p (people_p, "people");

  for (size_t i = 0; i &lt; files.size (); ++i)
  {
    try
    {
      people_p.pre ();
      doc_p.parse (files[i]);
      people_p.post_people ();
    }
    catch (const xml_schema::parser_exception&amp;)
    {
      doc_p.reset ();
    }
  }
}
  </pre>

  <p>If you do not need to reuse parsers after an error for example
     because your application terminates or you create a new parser
     instance in such situations, then you can avoid generating
     parser reset code by specifying the <code>--suppress-reset</code>
     XSD/e compiler option.</p>

  <p>Your individual parser implementations may also require extra
     actions in order to bring them into a usable state after an
     error. To accomplish this you can override the <code>_reset()</code>
     virtual function as shown below. Notice that when you override the
     <code>_reset()</code> function in your implementation, you should
     always call the base skeleton version to allow it to reset
     its state:</p>

<pre class="c++">
class person_pimpl: public person_pskel
{
public:
  virtual void
  pre ()
  {
    p_ = new person ();
  }

  virtual void
  _reset ()
  {
    person_pskel::_reset ();
    delete p_;
    p_ = 0;
  }

  ...

private:
  person* p_;
};
  </pre>

  <p>Note also that the <code>_reset()</code> mechanism is used only when
     an error has occurred. To make sure that your parser implementations
     arrive at the initial state during successful execution, use the
     initialization (<code>pre()</code> and <code>_pre()</code>) and
     finalization (<code>post_*()</code> and <code>_post()</code>)
     callbacks.</p>

  <!-- Appendix A -->


  <h1><a name="A">Appendix A &mdash; Supported XML Schema Constructs</a></h1>

  <p>The Embedded C++/Parser mapping supports validation of the following
     W3C XML Schema constructs in the generated code.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="features" border="1">
    <tr><th>Construct</th><th>Notes</th></tr>
    <tr><th colspan="2">Structure</th></tr>

    <tr><td>element</td><td></td></tr>
    <tr><td>attribute</td><td></td></tr>

    <tr><td>any</td><td></td></tr>
    <tr><td>anyAttribute</td><td></td></tr>

    <tr><td>all</td><td></td></tr>
    <tr><td>sequence</td><td></td></tr>
    <tr><td>choice</td><td></td></tr>

    <tr><td>complex type, empty content</td><td></td></tr>
    <tr><td>complex type, mixed content</td><td></td></tr>
    <tr><td>complex type, simple content extension</td><td></td></tr>
    <tr><td>complex type, simple content restriction</td><td></td></tr>
    <tr><td>complex type, complex content extension</td><td></td></tr>
    <tr><td>complex type, complex content restriction</td><td></td></tr>

    <tr><td>list</td><td></td></tr>

    <tr><th colspan="2">Facets</th></tr>

    <tr><td>length</td><td>String-based types.</td></tr>
    <tr><td>minLength</td><td>String-based types.</td></tr>
    <tr><td>maxLength</td><td>String-based types.</td></tr>
    <tr><td>pattern</td><td>String-based types.</td></tr>
    <tr><td>whiteSpace</td><td>String-based types.</td></tr>
    <tr><td>enumeration</td><td>String-based types.</td></tr>

    <tr><td>minExclusive</td><td>Integer and floating-point types.</td></tr>
    <tr><td>minInclusive</td><td>Integer and floating-point types.</td></tr>
    <tr><td>maxExclusive</td><td>Integer and floating-point types.</td></tr>
    <tr><td>maxInclusive</td><td>Integer and floating-point types.</td></tr>

    <tr><th colspan="2">Datatypes</th></tr>

    <tr><td>byte</td><td></td></tr>
    <tr><td>unsignedByte</td><td></td></tr>
    <tr><td>short</td><td></td></tr>
    <tr><td>unsignedShort</td><td></td></tr>
    <tr><td>int</td><td></td></tr>
    <tr><td>unsignedInt</td><td></td></tr>
    <tr><td>long</td><td></td></tr>
    <tr><td>unsignedLong</td><td></td></tr>
    <tr><td>integer</td><td></td></tr>
    <tr><td>nonPositiveInteger</td><td></td></tr>
    <tr><td>nonNegativeInteger</td><td></td></tr>
    <tr><td>positiveInteger</td><td></td></tr>
    <tr><td>negativeInteger</td><td></td></tr>

    <tr><td>boolean</td><td></td></tr>

    <tr><td>float</td><td></td></tr>
    <tr><td>double</td><td></td></tr>
    <tr><td>decimal</td><td></td></tr>

    <tr><td>string</td><td></td></tr>
    <tr><td>normalizedString</td><td></td></tr>
    <tr><td>token</td><td></td></tr>
    <tr><td>Name</td><td></td></tr>
    <tr><td>NMTOKEN</td><td></td></tr>
    <tr><td>NCName</td><td></td></tr>
    <tr><td>language</td><td></td></tr>
    <tr><td>anyURI</td><td></td></tr>

    <tr><td>ID</td><td>Identity constraint is not enforced.</td></tr>
    <tr><td>IDREF</td><td>Identity constraint is not enforced.</td></tr>

    <tr><td>NMTOKENS</td><td></td></tr>
    <tr><td>IDREFS</td><td>Identity constraint is not enforced.</td></tr>

    <tr><td>QName</td><td></td></tr>

    <tr><td>base64Binary</td><td></td></tr>
    <tr><td>hexBinary</td><td></td></tr>

    <tr><td>date</td><td></td></tr>
    <tr><td>dateTime</td><td></td></tr>
    <tr><td>duration</td><td></td></tr>
    <tr><td>gDay</td><td></td></tr>
    <tr><td>gMonth</td><td></td></tr>
    <tr><td>gMonthDay</td><td></td></tr>
    <tr><td>gYear</td><td></td></tr>
    <tr><td>gYearMonth</td><td></td></tr>
    <tr><td>time</td><td></td></tr>
  </table>

  </div>
</div>


</body>
</html>