aboutsummaryrefslogtreecommitdiff
path: root/doc/manual.xhtml
blob: 825e5fea2ddde75f6d1863905a3fb542968f084f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>
  <title>C++ Object Persistence with ODB</title>

  <meta name="copyright" content="&copy; 2009-2015 Code Synthesis Tools CC"/>
  <meta name="keywords" content="odb,c++,object,persistence,ORM,relational,database,RDBMS,ODBMS,OODBMS"/>
  <meta name="description" content="C++ Object Persistence with ODB"/>
  <meta name="revision" content="2.4"/>
  <meta name="version" content="2.4.0"/>

<!--

If you make changes to this document, follow these stylistic rules
for consistency.

 - Don't use 'object' for instances of non-persistent classes. Use
   'instance' instead.

 - Each overloaded function should still be referred to as function.
   When saying that a function is overloaded, use term 'version',
   for example The persist() function has two overloaded versions.
   Don't use version to refer to individual functions, use function
   instead. The same holds for constructors.

 - Use 'object id' and 'object's identifier'. But not other combinations
   of the two.

@@ Check that parts TOCs are up to date.

-->

  <link rel="stylesheet" type="text/css" href="default.css" />

<style type="text/css">
  pre {
    padding    : 0 0 0 0em;
    margin     : 0em 0em 0em 0;

    font-size  : 102%
  }

  body {
    min-width: 48em;
  }

  h1 {
    font-weight: bold;
    font-size: 200%;
    line-height: 1.2em;
  }

  h2 {
    font-weight : bold;
    font-size   : 150%;

    padding-top : 0.8em;
  }

  h3 {
    font-size   : 140%;
    padding-top : 0.8em;
  }

  /* Force page break for both PDF and HTML (when printing). */
  hr.page-break {
    height: 0;
    width: 0;
    border: 0;
    visibility: hidden;

    page-break-after: always;
  }

  /* Adjust indentation for three levels. */
  #container {
    max-width: 48em;
  }

  #content {
    padding: 0 0.1em 0 4em;
    /*background-color: red;*/
  }

  #content h1 {
    margin-left: -2.06em;
  }

  #content h2 {
    margin-left: -1.33em;
  }

  /* Title page */

  #titlepage {
    padding: 2em 0 1em 0;
    border-bottom: 1px solid black;
  }

  #titlepage .title {
    font-weight: bold;
    font-size: 200%;
    text-align: center;
    padding: 1em 0 2em 0;
  }

  #titlepage p {
    padding-bottom: 1em;
  }

  #titlepage #revision {
    padding-bottom: 0em;
  }

  /* Lists */
  ul.list li, ol.list li {
    padding-top      : 0.3em;
    padding-bottom   : 0.3em;
  }

  div.img {
    text-align: center;
    padding: 2em 0 2em 0;
  }

  /*  */
  dl dt {
    padding   : 0.8em 0 0 0;
  }

  /* TOC */
  table.toc {
    border-style      : none;
    border-collapse   : separate;
    border-spacing    : 0;

    margin            : 0.2em 0 0.2em 0;
    padding           : 0 0 0 0;
  }

  table.toc tr {
    padding           : 0 0 0 0;
    margin            : 0 0 0 0;
  }

  table.toc * td, table.toc * th {
    border-style      : none;
    margin            : 0 0 0 0;
    vertical-align    : top;
  }

  table.toc * th {
    font-weight       : normal;
    padding           : 0em 0.1em 0em 0;
    text-align        : left;
    white-space       : nowrap;
  }

  table.toc * table.toc th {
    padding-left      : 1em;
  }

  table.toc * td {
    padding           : 0em 0 0em 0.7em;
    text-align        : left;
  }

  /* operators table */
  #operators {
    margin: 2em 0 2em 0;

    border-collapse   : collapse;
    border            : 1px solid;
    border-color      : #000000;

    font-size        : 11px;
    line-height      : 14px;
  }

  #operators th, #operators td {
    border: 1px solid;
    padding           : 0.9em 0.9em 0.7em 0.9em;
  }

  #operators th {
    background : #cde8f6;
  }

  #operators td {
    text-align: left;
  }

  /* scenarios table */
  .scenarios {
    margin: 2em 0 2em 0;

    border-collapse   : collapse;
    border            : 1px solid;
    border-color      : #000000;

    font-size        : 11px;
    line-height      : 14px;
  }

  .scenarios th, .scenarios td {
    border: 1px solid;
    padding           : 0.9em 0.9em 0.7em 0.9em;
  }

  .scenarios th {
    background : #cde8f6;
  }

  .scenarios td {
    text-align: left;
  }

  /* specifiers table */
  .specifiers {
    margin: 2em 0 2em 0;

    border-collapse   : collapse;
    border            : 1px solid;
    border-color      : #000000;

    font-size        : 11px;
    line-height      : 14px;
  }

  .specifiers th, .specifiers td {
    border: 1px solid;
    padding           : 0.9em 0.9em 0.7em 0.9em;
  }

  .specifiers th {
    background : #cde8f6;
  }

  .specifiers td {
    text-align: left;
  }

  /* mapping table */
  #mapping {
    margin: 2em 0 2em 0;

    border-collapse   : collapse;
    border            : 1px solid;
    border-color      : #000000;

    font-size        : 11px;
    line-height      : 14px;
  }

  #mapping th, #mapping td {
    border: 1px solid;
    padding           : 0.9em 0.9em 0.7em 0.9em;
  }

  #mapping th {
    background : #cde8f6;
  }

  #mapping td {
    text-align: left;
  }

</style>


</head>

<body>
<div id="container">
  <div id="content">

  <div class="noprint">

  <div id="titlepage">
    <div class="title">C++ Object Persistence with ODB</div>

    <p>Copyright &copy; 2009-2015 Code Synthesis Tools CC</p>

    <p>Permission is granted to copy, distribute and/or modify this
    document under the terms of the
    <a href="http://www.codesynthesis.com/licenses/fdl-1.3.txt">GNU Free
    Documentation License, version 1.3</a>; with no Invariant Sections,
    no Front-Cover Texts and no Back-Cover Texts.</p>

    <!-- REMEMBER TO CHANGE VERSIONS IN THE META TAGS ABOVE! -->
    <p id="revision">Revision 2.4, February 2015</p>
    <p>This revision of the manual describes ODB 2.4.0 and is available
    in the following formats:
    <a href="http://www.codesynthesis.com/products/odb/doc/manual.xhtml">XHTML</a>,
    <a href="http://www.codesynthesis.com/products/odb/doc/odb-manual.pdf">PDF</a>, and
    <a href="http://www.codesynthesis.com/products/odb/doc/odb-manual.ps">PostScript</a>.</p>
  </div>

  <hr class="page-break"/>
  <h1>Table of Contents</h1>

  <table class="toc">
    <tr>
      <th></th><td><a href="#0">Preface</a>
        <table class="toc">
          <tr><th></th><td><a href="#0.1">About This Document</a></td></tr>
	  <tr><th></th><td><a href="#0.2">More Information</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th colspan="2"><a href="#I">PART I OBJECT-RELATIONAL MAPPING</a></th>
    </tr>

    <tr>
      <th>1</th><td><a href="#1">Introduction</a>
        <table class="toc">
          <tr><th>1.1</th><td><a href="#1.1">Architecture and Workflow</a></td></tr>
	  <tr><th>1.2</th><td><a href="#1.2">Benefits</a></td></tr>
	  <tr><th>1.3</th><td><a href="#1.3">Supported C++ Standards</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>2</th><td><a href="#2">Hello World Example</a>
        <table class="toc">
          <tr><th>2.1</th><td><a href="#2.1">Declaring Persistent Classes</a></td></tr>
          <tr><th>2.2</th><td><a href="#2.2">Generating Database Support Code</a></td></tr>
          <tr><th>2.3</th><td><a href="#2.3">Compiling and Running</a></td></tr>
          <tr><th>2.4</th><td><a href="#2.4">Making Objects Persistent</a></td></tr>
          <tr><th>2.5</th><td><a href="#2.5">Querying the Database for Objects</a></td></tr>
          <tr><th>2.6</th><td><a href="#2.6">Updating Persistent Objects</a></td></tr>
	  <tr><th>2.7</th><td><a href="#2.7">Defining and Using Views</a></td></tr>
          <tr><th>2.8</th><td><a href="#2.8">Deleting Persistent Objects</a></td></tr>
	  <tr><th>2.9</th><td><a href="#2.9">Changing Persistent Classes</a></td></tr>
	  <tr><th>2.10</th><td><a href="#2.10">Accessing Multiple Databases</a></td></tr>
          <tr><th>2.11</th><td><a href="#2.11">Summary</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>3</th><td><a href="#3">Working with Persistent Objects</a>
        <table class="toc">
          <tr><th>3.1</th><td><a href="#3.1">Concepts and Terminology</a></td></tr>
	  <tr><th>3.2</th><td><a href="#3.2">Declaring Persistent Objects and Values</a></td></tr>
	  <tr><th>3.3</th><td><a href="#3.3">Object and View Pointers</a></td></tr>
          <tr><th>3.4</th><td><a href="#3.4">Database</a></td></tr>
          <tr><th>3.5</th><td><a href="#3.5">Transactions</a></td></tr>
	  <tr><th>3.6</th><td><a href="#3.6">Connections</a></td></tr>
	  <tr><th>3.7</th><td><a href="#3.7">Error Handling and Recovery</a></td></tr>
          <tr><th>3.8</th><td><a href="#3.8">Making Objects Persistent</a></td></tr>
          <tr><th>3.9</th><td><a href="#3.9">Loading Persistent Objects</a></td></tr>
          <tr><th>3.10</th><td><a href="#3.10">Updating Persistent Objects</a></td></tr>
          <tr><th>3.11</th><td><a href="#3.11">Deleting Persistent Objects</a></td></tr>
	  <tr><th>3.12</th><td><a href="#3.12">Executing Native SQL Statements</a></td></tr>
	  <tr><th>3.13</th><td><a href="#3.13">Tracing SQL Statement Execution</a></td></tr>
          <tr><th>3.14</th><td><a href="#3.14">ODB Exceptions</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>4</th><td><a href="#4">Querying the Database</a>
        <table class="toc">
          <tr><th>4.1</th><td><a href="#4.1">ODB Query Language</a></td></tr>
          <tr><th>4.2</th><td><a href="#4.2">Parameter Binding</a></td></tr>
          <tr><th>4.3</th><td><a href="#4.3">Executing a Query</a></td></tr>
          <tr><th>4.4</th><td><a href="#4.4">Query Result</a></td></tr>
	  <tr><th>4.5</th><td><a href="#4.5">Prepared Queries</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>5</th><td><a href="#5">Containers</a>
        <table class="toc">
          <tr><th>5.1</th><td><a href="#5.1">Ordered Containers</a></td></tr>
          <tr><th>5.2</th><td><a href="#5.2">Set and Multiset Containers</a></td></tr>
          <tr><th>5.3</th><td><a href="#5.3">Map and Multimap Containers</a></td></tr>
	  <tr>
            <th>5.4</th><td><a href="#5.4">Change-Tracking Containers</a>
              <table class="toc">
                <tr><th>5.4.1</th><td><a href="#5.4.1">Change-Tracking <code>vector</code></a></td></tr>
              </table>
            </td>
          </tr>
          <tr><th>5.5</th><td><a href="#5.5">Using Custom Containers</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>6</th><td><a href="#6">Relationships</a>
        <table class="toc">
          <tr>
            <th>6.1</th><td><a href="#6.1">Unidirectional Relationships</a>
              <table class="toc">
                <tr><th>6.1.1</th><td><a href="#6.1.1">To-One Relationships</a></td></tr>
		<tr><th>6.1.2</th><td><a href="#6.1.2">To-Many Relationships</a></td></tr>
              </table>
            </td>
          </tr>
	  <tr>
            <th>6.2</th><td><a href="#6.2">Bidirectional Relationships</a>
              <table class="toc">
                <tr><th>6.2.1</th><td><a href="#6.2.1">One-to-One Relationships</a></td></tr>
		<tr><th>6.2.2</th><td><a href="#6.2.2">One-to-Many Relationships</a></td></tr>
		<tr><th>6.2.3</th><td><a href="#6.2.3">Many-to-Many Relationships</a></td></tr>
              </table>
            </td>
          </tr>
	  <tr><th>6.3</th><td><a href="#6.3">Circular Relationships</a></td></tr>
          <tr><th>6.4</th><td><a href="#6.4">Lazy Pointers</a></td></tr>
          <tr><th>6.5</th><td><a href="#6.5">Using Custom Smart Pointers</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>7</th><td><a href="#7">Value Types</a>
        <table class="toc">
	  <tr><th>7.1</th><td><a href="#7.1">Simple Value Types</a></td></tr>
	  <tr>
            <th>7.2</th><td><a href="#7.2">Composite Value Types</a>
              <table class="toc">
		<tr><th>7.2.1</th><td><a href="#7.2.1">Composite Object Ids</a></td></tr>
                <tr><th>7.2.2</th><td><a href="#7.2.2">Composite Value Column and Table Names</a></td></tr>
              </table>
            </td>
          </tr>
	  <tr><th>7.3</th><td><a href="#7.3">Pointers and <code>NULL</code> Value Semantics</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>8</th><td><a href="#8">Inheritance</a>
        <table class="toc">
          <tr><th>8.1</th><td><a href="#8.1">Reuse Inheritance</a></td></tr>
	  <tr>
            <th>8.2</th><td><a href="#8.2">Polymorphism Inheritance</a>
              <table class="toc">
		<tr><th>8.2.1</th><td><a href="#8.2.1">Performance and Limitations</a></td></tr>
              </table>
            </td>
          </tr>
	  <tr><th>8.3</th><td><a href="#8.3">Mixed Inheritance</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>9</th><td><a href="#9">Sections</a>
        <table class="toc">
          <tr><th>9.1</th><td><a href="#9.1">Sections and Inheritance</a></td></tr>
	  <tr><th>9.2</th><td><a href="#9.2">Sections and Optimistic Concurrency</a></td></tr>
	  <tr><th>9.3</th><td><a href="#9.3">Sections and Lazy Pointers</a></td></tr>
	  <tr><th>9.4</th><td><a href="#9.4">Sections and Change-Tracking Containers</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>10</th><td><a href="#10">Views</a>
        <table class="toc">
          <tr><th>10.1</th><td><a href="#10.1">Object Views</a></td></tr>
	  <tr><th>10.2</th><td><a href="#10.2">Object Loading Views</a></td></tr>
	  <tr><th>10.3</th><td><a href="#10.3">Table Views</a></td></tr>
	  <tr><th>10.4</th><td><a href="#10.4">Mixed Views</a></td></tr>
	  <tr><th>10.5</th><td><a href="#10.5">View Query Conditions</a></td></tr>
	  <tr><th>10.6</th><td><a href="#10.6">Native Views</a></td></tr>
	  <tr><th>10.7</th><td><a href="#10.7">Other View Features and Limitations</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>11</th><td><a href="#11">Session</a>
        <table class="toc">
          <tr><th>11.1</th><td><a href="#11.1">Object Cache</a></td></tr>
	  <tr><th>11.2</th><td><a href="#11.2">Custom Sessions</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>12</th><td><a href="#12">Optimistic Concurrency</a></td>
    </tr>

    <tr>
      <th>13</th><td><a href="#13">Database Schema Evolution</a>
        <table class="toc">
          <tr><th>13.1</th><td><a href="#13.1">Object Model Version and Changelog</a></td></tr>
	  <tr><th>13.2</th><td><a href="#13.2">Schema Migration</a></td></tr>
	  <tr>
            <th>13.3</th><td><a href="#13.3">Data Migration</a>
              <table class="toc">
		<tr><th>13.3.1</th><td><a href="#13.3.1">Immediate Data Migration</a></td></tr>
		<tr><th>13.3.2</th><td><a href="#13.3.2">Gradual Data Migration</a></td></tr>
              </table>
            </td>
          </tr>
	  <tr>
            <th>13.4</th><td><a href="#13.4">Soft Object Model Changes</a>
              <table class="toc">
		<tr><th>13.4.1</th><td><a href="#13.4.1">Reuse Inheritance Changes</a></td></tr>
		<tr><th>13.4.2</th><td><a href="#13.4.2">Polymorphism Inheritance Changes</a></td></tr>
              </table>
            </td>
          </tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>14</th><td><a href="#14">ODB Pragma Language</a>
        <table class="toc">
          <tr>
            <th>14.1</th><td><a href="#14.1">Object Type Pragmas</a>
              <table class="toc">
                <tr><th>14.1.1</th><td><a href="#14.1.1"><code>table</code></a></td></tr>
		<tr><th>14.1.2</th><td><a href="#14.1.2"><code>pointer</code></a></td></tr>
		<tr><th>14.1.3</th><td><a href="#14.1.3"><code>abstract</code></a></td></tr>
		<tr><th>14.1.4</th><td><a href="#14.1.4"><code>readonly</code></a></td></tr>
		<tr><th>14.1.5</th><td><a href="#14.1.5"><code>optimistic</code></a></td></tr>
		<tr><th>14.1.6</th><td><a href="#14.1.6"><code>no_id</code></a></td></tr>
		<tr><th>14.1.7</th><td><a href="#14.1.7"><code>callback</code></a></td></tr>
		<tr><th>14.1.8</th><td><a href="#14.1.8"><code>schema</code></a></td></tr>
		<tr><th>14.1.9</th><td><a href="#14.1.9"><code>polymorphic</code></a></td></tr>
		<tr><th>14.1.10</th><td><a href="#14.1.10"><code>session</code></a></td></tr>
		<tr><th>14.1.11</th><td><a href="#14.1.11"><code>definition</code></a></td></tr>
		<tr><th>14.1.12</th><td><a href="#14.1.12"><code>transient</code></a></td></tr>
		<tr><th>14.1.13</th><td><a href="#14.1.13"><code>sectionable</code></a></td></tr>
		<tr><th>14.1.14</th><td><a href="#14.1.14"><code>deleted</code></a></td></tr>
		<tr><th>14.1.15</th><td><a href="#14.1.15"><code>bulk</code></a></td></tr>
              </table>
            </td>
          </tr>
          <tr>
            <th>14.2</th><td><a href="#14.2">View Type Pragmas</a>
              <table class="toc">
		<tr><th>14.2.1</th><td><a href="#14.2.1"><code>object</code></a></td></tr>
                <tr><th>14.2.2</th><td><a href="#14.2.2"><code>table</code></a></td></tr>
		<tr><th>14.2.3</th><td><a href="#14.2.3"><code>query</code></a></td></tr>
		<tr><th>14.2.4</th><td><a href="#14.2.4"><code>pointer</code></a></td></tr>
		<tr><th>14.2.5</th><td><a href="#14.2.5"><code>callback</code></a></td></tr>
		<tr><th>14.2.6</th><td><a href="#14.2.6"><code>definition</code></a></td></tr>
		<tr><th>14.2.7</th><td><a href="#14.2.7"><code>transient</code></a></td></tr>
              </table>
            </td>
          </tr>
          <tr>
            <th>14.3</th><td><a href="#14.3">Value Type Pragmas</a>
              <table class="toc">
                <tr><th>14.3.1</th><td><a href="#14.3.1"><code>type</code></a></td></tr>
		<tr><th>14.3.2</th><td><a href="#14.3.2"><code>id_type</code></a></td></tr>
		<tr><th>14.3.3</th><td><a href="#14.3.3"><code>null</code>/<code>not_null</code></a></td></tr>
		<tr><th>14.3.4</th><td><a href="#14.3.4"><code>default</code></a></td></tr>
		<tr><th>14.3.5</th><td><a href="#14.3.5"><code>options</code></a></td></tr>
		<tr><th>14.3.6</th><td><a href="#14.3.6"><code>readonly</code></a></td></tr>
		<tr><th>14.3.7</th><td><a href="#14.3.7"><code>definition</code></a></td></tr>
		<tr><th>14.3.8</th><td><a href="#14.3.8"><code>transient</code></a></td></tr>
		<tr><th>14.3.9</th><td><a href="#14.3.9"><code>unordered</code></a></td></tr>
		<tr><th>14.3.10</th><td><a href="#14.3.10"><code>index_type</code></a></td></tr>
		<tr><th>14.3.11</th><td><a href="#14.3.11"><code>key_type</code></a></td></tr>
		<tr><th>14.3.12</th><td><a href="#14.3.12"><code>value_type</code></a></td></tr>
		<tr><th>14.3.13</th><td><a href="#14.3.13"><code>value_null</code>/<code>value_not_null</code></a></td></tr>
		<tr><th>14.3.14</th><td><a href="#14.3.14"><code>id_options</code></a></td></tr>
		<tr><th>14.3.15</th><td><a href="#14.3.15"><code>index_options</code></a></td></tr>
		<tr><th>14.3.16</th><td><a href="#14.3.16"><code>key_options</code></a></td></tr>
		<tr><th>14.3.17</th><td><a href="#14.3.17"><code>value_options</code></a></td></tr>
		<tr><th>14.3.18</th><td><a href="#14.3.18"><code>id_column</code></a></td></tr>
		<tr><th>14.3.19</th><td><a href="#14.3.19"><code>index_column</code></a></td></tr>
		<tr><th>14.3.20</th><td><a href="#14.3.20"><code>key_column</code></a></td></tr>
		<tr><th>14.3.21</th><td><a href="#14.3.21"><code>value_column</code></a></td></tr>
              </table>
            </td>
          </tr>
          <tr>
            <th>14.4</th><td><a href="#14.4">Data Member Pragmas</a>
              <table class="toc">
                <tr><th>14.4.1</th><td><a href="#14.4.1"><code>id</code></a></td></tr>
                <tr><th>14.4.2</th><td><a href="#14.4.2"><code>auto</code></a></td></tr>
                <tr><th>14.4.3</th><td><a href="#14.4.3"><code>type</code></a></td></tr>
		<tr><th>14.4.4</th><td><a href="#14.4.4"><code>id_type</code></a></td></tr>
		<tr><th>14.4.5</th><td><a href="#14.4.5"><code>get</code>/<code>set</code>/<code>access</code></a></td></tr>
		<tr><th>14.4.6</th><td><a href="#14.4.6"><code>null</code>/<code>not_null</code></a></td></tr>
		<tr><th>14.4.7</th><td><a href="#14.4.7"><code>default</code></a></td></tr>
		<tr><th>14.4.8</th><td><a href="#14.4.8"><code>options</code></a></td></tr>
		<tr><th>14.4.9</th><td><a href="#14.4.9"><code>column</code> (object, composite value)</a></td></tr>
		<tr><th>14.4.10</th><td><a href="#14.4.10"><code>column</code> (view)</a></td></tr>
		<tr><th>14.4.11</th><td><a href="#14.4.11"><code>transient</code></a></td></tr>
		<tr><th>14.4.12</th><td><a href="#14.4.12"><code>readonly</code></a></td></tr>
		<tr><th>14.4.13</th><td><a href="#14.4.13"><code>virtual</code></a></td></tr>
		<tr><th>14.4.14</th><td><a href="#14.4.14"><code>inverse</code></a></td></tr>
		<tr><th>14.4.15</th><td><a href="#14.4.15"><code>on_delete</code></a></td></tr>
		<tr><th>14.4.16</th><td><a href="#14.4.16"><code>version</code></a></td></tr>
		<tr><th>14.4.17</th><td><a href="#14.4.17"><code>index</code></a></td></tr>
		<tr><th>14.4.18</th><td><a href="#14.4.18"><code>unique</code></a></td></tr>
		<tr><th>14.4.19</th><td><a href="#14.4.19"><code>unordered</code></a></td></tr>
		<tr><th>14.4.20</th><td><a href="#14.4.20"><code>table</code></a></td></tr>
		<tr><th>14.4.21</th><td><a href="#14.4.21"><code>load</code>/<code>update</code></a></td></tr>
		<tr><th>14.4.22</th><td><a href="#14.4.22"><code>section</code></a></td></tr>
		<tr><th>14.4.23</th><td><a href="#14.4.23"><code>added</code></a></td></tr>
		<tr><th>14.4.24</th><td><a href="#14.4.24"><code>deleted</code></a></td></tr>
		<tr><th>14.4.25</th><td><a href="#14.4.25"><code>index_type</code></a></td></tr>
		<tr><th>14.4.26</th><td><a href="#14.4.26"><code>key_type</code></a></td></tr>
		<tr><th>14.4.27</th><td><a href="#14.4.27"><code>value_type</code></a></td></tr>
		<tr><th>14.4.28</th><td><a href="#14.4.28"><code>value_null</code>/<code>value_not_null</code></a></td></tr>
		<tr><th>14.4.29</th><td><a href="#14.4.29"><code>id_options</code></a></td></tr>
		<tr><th>14.4.30</th><td><a href="#14.4.30"><code>index_options</code></a></td></tr>
		<tr><th>14.4.31</th><td><a href="#14.4.31"><code>key_options</code></a></td></tr>
		<tr><th>14.4.32</th><td><a href="#14.4.32"><code>value_options</code></a></td></tr>
		<tr><th>14.4.33</th><td><a href="#14.4.33"><code>id_column</code></a></td></tr>
		<tr><th>14.4.34</th><td><a href="#14.4.34"><code>index_column</code></a></td></tr>
		<tr><th>14.4.35</th><td><a href="#14.4.35"><code>key_column</code></a></td></tr>
		<tr><th>14.4.36</th><td><a href="#14.4.36"><code>value_column</code></a></td></tr>
              </table>
            </td>
          </tr>
	  <tr>
            <th>14.5</th><td><a href="#14.5">Namespace Pragmas</a>
              <table class="toc">
		<tr><th>14.5.1</th><td><a href="#14.5.1"><code>pointer</code></a></td></tr>
		<tr><th>14.5.2</th><td><a href="#14.5.2"><code>table</code></a></td></tr>
                <tr><th>14.5.3</th><td><a href="#14.5.3"><code>schema</code></a></td></tr>
		<tr><th>14.5.4</th><td><a href="#14.5.4"><code>session</code></a></td></tr>
              </table>
            </td>
          </tr>
	  <tr>
            <th>14.6</th><td><a href="#14.6">Object Model Pragmas</a>
              <table class="toc">
		<tr><th>14.6.1</th><td><a href="#14.6.1"><code>version</code></a></td></tr>
              </table>
            </td>
          </tr>
          <tr>
            <th>14.7</th><td><a href="#14.7">Index Definition Pragmas</a></td>
          </tr>
          <tr>
            <th>14.8</th><td><a href="#14.8">Database Type Mapping Pragmas</a></td>
          </tr>
          <tr>
            <th>14.9</th><td><a href="#14.9">C++ Compiler Warnings</a>
              <table class="toc">
                <tr><th>14.9.1</th><td><a href="#14.9.1">GNU C++</a></td></tr>
                <tr><th>14.9.2</th><td><a href="#14.9.2">Visual C++</a></td></tr>
                <tr><th>14.9.3</th><td><a href="#14.9.3">Sun C++</a></td></tr>
		<tr><th>14.9.4</th><td><a href="#14.9.4">IBM XL C++</a></td></tr>
		<tr><th>14.9.5</th><td><a href="#14.9.5">HP aC++</a></td></tr>
		<tr><th>14.9.6</th><td><a href="#14.9.6">Clang</a></td></tr>
              </table>
            </td>
          </tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>15</th><td><a href="#15">Advanced Techniques and Mechanisms</a>
        <table class="toc">
          <tr><th>15.1</th><td><a href="#15.1">Transaction Callbacks</a></td></tr>
	  <tr><th>15.2</th><td><a href="#15.2">Persistent Class Template Instantiations</a></td></tr>
	  <tr><th>15.3</th><td><a href="#15.3">Bulk Database Operations</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th colspan="2"><a href="#II">PART II DATABASE SYSTEMS</a></th>
    </tr>

    <tr>
      <th>16</th><td><a href="#16">Multi-Database Support</a>
        <table class="toc">
          <tr><th>16.1</th><td><a href="#16.1">Static Multi-Database Support</a></td></tr>
          <tr>
            <th>16.2</th><td><a href="#16.2">Dynamic Multi-Database Support</a>
              <table class="toc">
                <tr><th>16.2.2</th><td><a href="#16.2.2">16.2.2 Dynamic Loading of Database Support Code</a></td></tr>
              </table>
            </td>
          </tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>17</th><td><a href="#17">MySQL Database</a>
        <table class="toc">
          <tr>
            <th>17.1</th><td><a href="#17.1">MySQL Type Mapping</a>
              <table class="toc">
                <tr><th>17.1.1</th><td><a href="#17.1.1">String Type Mapping</a></td></tr>
                <tr><th>17.1.2</th><td><a href="#17.1.2">Binary Type Mapping</a></td></tr>
              </table>
            </td>
          </tr>
          <tr><th>17.2</th><td><a href="#17.2">MySQL Database Class</a></td></tr>
          <tr><th>17.3</th><td><a href="#17.3">MySQL Connection and Connection Factory</a></td></tr>
	  <tr><th>17.4</th><td><a href="#17.4">MySQL Exceptions</a></td></tr>
	  <tr>
            <th>17.5</th><td><a href="#17.5">MySQL Limitations</a>
              <table class="toc">
                <tr><th>17.5.1</th><td><a href="#17.5.1">Foreign Key Constraints</a></td></tr>
              </table>
            </td>
          </tr>
          <tr><th>17.6</th><td><a href="#17.6">MySQL Index Definition</a></td></tr>
	  <tr><th>17.7</th><td><a href="#17.7">MySQL Stored Procedures</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>18</th><td><a href="#18">SQLite Database</a>
        <table class="toc">
          <tr>
            <th>18.1</th><td><a href="#18.1">SQLite Type Mapping</a>
              <table class="toc">
                <tr><th>18.1.1</th><td><a href="#18.1.1">String Type Mapping</a></td></tr>
                <tr><th>18.1.2</th><td><a href="#18.1.2">Binary Type Mapping</a></td></tr>
		<tr><th>18.1.3</th><td><a href="#18.1.3">Incremental <code>BLOB</code>/<code>TEXT</code> I/O</a></td></tr>
              </table>
            </td>
          </tr>
          <tr><th>18.2</th><td><a href="#18.2">SQLite Database Class</a></td></tr>
          <tr><th>18.3</th><td><a href="#18.3">SQLite Connection and Connection Factory</a></td></tr>
	  <tr><th>18.4</th><td><a href="#18.4">SQLite Exceptions</a></td></tr>
          <tr>
            <th>18.5</th><td><a href="#18.5">SQLite Limitations</a>
              <table class="toc">
                <tr><th>18.5.1</th><td><a href="#18.5.1">Query Result Caching</a></td></tr>
		<tr><th>18.5.2</th><td><a href="#18.5.2">Automatic Assignment of Object Ids</a></td></tr>
		<tr><th>18.5.3</th><td><a href="#18.5.3">Foreign Key Constraints</a></td></tr>
		<tr><th>18.5.4</th><td><a href="#18.5.4">Constraint Violations</a></td></tr>
		<tr><th>18.5.5</th><td><a href="#18.5.5">Sharing of Queries</a></td></tr>
		<tr><th>18.5.6</th><td><a href="#18.5.6">Forced Rollback</a></td></tr>
		<tr><th>18.5.7</th><td><a href="#18.5.7">Database Schema Evolution</a></td></tr>
              </table>
            </td>
          </tr>
          <tr><th>18.6</th><td><a href="#18.6">SQLite Index Definition</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>19</th><td><a href="#19">PostgreSQL Database</a>
        <table class="toc">
          <tr>
            <th>19.1</th><td><a href="#19.1">PostgreSQL Type Mapping</a>
              <table class="toc">
                <tr><th>19.1.1</th><td><a href="#19.1.1">String Type Mapping</a></td></tr>
                <tr><th>19.1.2</th><td><a href="#19.1.2">Binary Type and <code>UUID</code> Mapping</a></td></tr>
              </table>
            </td>
          </tr>
          <tr><th>19.2</th><td><a href="#19.2">PostgreSQL Database Class</a></td></tr>
          <tr><th>19.3</th><td><a href="#19.3">PostgreSQL Connection and Connection Factory</a></td></tr>
	  <tr><th>19.4</th><td><a href="#19.4">PostgreSQL Exceptions</a></td></tr>
          <tr>
            <th>19.5</th><td><a href="#19.5">PostgreSQL Limitations</a>
              <table class="toc">
                <tr><th>19.5.1</th><td><a href="#19.5.1">Query Result Caching</a></td></tr>
                <tr><th>19.5.2</th><td><a href="#19.5.2">Foreign Key Constraints</a></td></tr>
		<tr><th>19.5.3</th><td><a href="#19.5.3">Unique Constraint Violations</a></td></tr>
		<tr><th>19.5.4</th><td><a href="#19.5.4">Date-Time Format</a></td></tr>
		<tr><th>19.5.5</th><td><a href="#19.5.5">Timezones</a></td></tr>
		<tr><th>19.5.6</th><td><a href="#19.5.6"><code>NUMERIC</code> Type Support</a></td></tr>
              </table>
            </td>
          </tr>
	  <tr><th>19.6</th><td><a href="#19.6">PostgreSQL Index Definition</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>20</th><td><a href="#20">Oracle Database</a>
        <table class="toc">
          <tr>
            <th>20.1</th><td><a href="#20.1">Oracle Type Mapping</a>
              <table class="toc">
                <tr><th>20.1.1</th><td><a href="#20.1.1">String Type Mapping</a></td></tr>
                <tr><th>20.1.2</th><td><a href="#20.1.2">Binary Type Mapping</a></td></tr>
              </table>
            </td>
          </tr>
          <tr><th>20.2</th><td><a href="#20.2">Oracle Database Class</a></td></tr>
          <tr><th>20.3</th><td><a href="#20.3">Oracle Connection and Connection Factory</a></td></tr>
	  <tr><th>20.4</th><td><a href="#20.4">Oracle Exceptions</a></td></tr>
          <tr>
            <th>20.5</th><td><a href="#20.5">Oracle Limitations</a>
              <table class="toc">
                <tr><th>20.5.1</th><td><a href="#20.5.1">Identifier Truncation</a></td></tr>
		<tr><th>20.5.2</th><td><a href="#20.5.2">Query Result Caching</a></td></tr>
		<tr><th>20.5.3</th><td><a href="#20.5.3">Foreign Key Constraints</a></td></tr>
		<tr><th>20.5.4</th><td><a href="#20.5.4">Unique Constraint Violations</a></td></tr>
		<tr><th>20.5.5</th><td><a href="#20.5.5">Large <code>FLOAT</code> and <code>NUMBER</code> Types</a></td></tr>
		<tr><th>20.5.6</th><td><a href="#20.5.6">Timezones</a></td></tr>
		<tr><th>20.5.7</th><td><a href="#20.5.7"><code>LONG</code> Types</a></td></tr>
		<tr><th>20.5.8</th><td><a href="#20.5.8">LOB Types and By-Value Accessors/Modifiers</a></td></tr>
		<tr><th>20.5.9</th><td><a href="#20.5.9">Database Schema Evolution</a></td></tr>
              </table>
            </td>
          </tr>
	  <tr><th>20.6</th><td><a href="#20.6">Oracle Index Definition</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>21</th><td><a href="#21">Microsoft SQL Server Database</a>
        <table class="toc">
          <tr>
            <th>21.1</th><td><a href="#21.1">SQL Server Type Mapping</a>
              <table class="toc">
                <tr><th>21.1.1</th><td><a href="#21.1.1">String Type Mapping</a></td></tr>
                <tr><th>21.1.2</th><td><a href="#21.1.2">Binary Type and <code>UNIQUEIDENTIFIER</code> Mapping</a></td></tr>
		<tr><th>21.1.3</th><td><a href="#21.1.3"><code>ROWVERSION</code> Mapping</a></td></tr>
		<tr><th>21.1.4</th><td><a href="#21.1.4">Long String and Binary Types</a></td></tr>
              </table>
            </td>
          </tr>
          <tr><th>21.2</th><td><a href="#21.2">SQL Server Database Class</a></td></tr>
          <tr><th>21.3</th><td><a href="#21.3">SQL Server Connection and Connection Factory</a></td></tr>
	  <tr><th>21.4</th><td><a href="#21.4">SQL Server Exceptions</a></td></tr>
          <tr>
            <th>21.5</th><td><a href="#21.5">SQL Server Limitations</a>
              <table class="toc">
                <tr><th>21.5.1</th><td><a href="#21.5.1">Query Result Caching</a></td></tr>
		<tr><th>21.5.2</th><td><a href="#21.5.2">Foreign Key Constraints</a></td></tr>
		<tr><th>21.5.3</th><td><a href="#21.5.3">Unique Constraint Violations</a></td></tr>
		<tr><th>21.5.4</th><td><a href="#21.5.4">Multi-threaded Windows Applications</a></td></tr>
		<tr><th>21.5.5</th><td><a href="#21.5.5">Affected Row Count and DDL Statements</a></td></tr>
		<tr><th>21.5.6</th><td><a href="#21.5.6">Long Data and Auto Object Ids, <code>ROWVERSION</code></a></td></tr>
		<tr><th>21.5.7</th><td><a href="#21.5.7">Long Data and By-Value Accessors/Modifiers</a></td></tr>
		<tr><th>21.5.8</th><td><a href="#21.5.8">Bulk Update and <code>ROWVERSION</code></a></td></tr>
              </table>
            </td>
          </tr>
          <tr><th>21.6</th><td><a href="#21.6">SQL Server Index Definition</a></td></tr>
	  <tr><th>21.7</th><td><a href="#21.7">SQL Server Stored Procedures</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th colspan="2"><a href="#III">PART III PROFILES</a></th>
    </tr>

    <tr>
      <th>22</th><td><a href="#22">Profiles Introduction</a></td>
    </tr>

    <tr>
      <th>23</th><td><a href="#23">Boost Profile</a>
        <table class="toc">
          <tr><th>23.1</th><td><a href="#23.1">Smart Pointers Library</a></td></tr>
          <tr><th>23.2</th><td><a href="#23.2">Unordered Containers Library</a></td></tr>
	  <tr><th>23.3</th><td><a href="#23.3">Multi-Index Container Library</a></td></tr>
	  <tr><th>23.4</th><td><a href="#23.4">Optional Library</a></td></tr>
          <tr>
	    <th>23.5</th><td><a href="#23.5">Date Time Library</a>
	      <table class="toc">
	        <tr><th>23.5.1</th><td><a href="#23.5.1">MySQL Database Type Mapping</a></td></tr>
		<tr><th>23.5.2</th><td><a href="#23.5.2">SQLite Database Type Mapping</a></td></tr>
		<tr><th>23.5.3</th><td><a href="#23.5.3">PostgreSQL Database Type Mapping</a></td></tr>
		<tr><th>23.5.4</th><td><a href="#23.5.4">Oracle Database Type Mapping</a></td></tr>
		<tr><th>23.5.5</th><td><a href="#23.5.5">SQL Server Database Type Mapping</a></td></tr>
	      </table>
	    </td>
	  </tr>
          <tr>
	    <th>23.6</th><td><a href="#23.6">Uuid Library</a>
	      <table class="toc">
	        <tr><th>23.6.1</th><td><a href="#23.6.1">MySQL Database Type Mapping</a></td></tr>
		<tr><th>23.6.2</th><td><a href="#23.6.2">SQLite Database Type Mapping</a></td></tr>
		<tr><th>23.6.3</th><td><a href="#23.6.3">PostgreSQL Database Type Mapping</a></td></tr>
		<tr><th>23.6.4</th><td><a href="#23.6.4">Oracle Database Type Mapping</a></td></tr>
		<tr><th>23.6.5</th><td><a href="#23.6.5">SQL Server Database Type Mapping</a></td></tr>
	      </table>
	    </td>
	  </tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>24</th><td><a href="#24">Qt Profile</a>
        <table class="toc">
          <tr>
	    <th>24.1</th><td><a href="#24.1">Basic Types Library</a>
	      <table class="toc">
	        <tr><th>24.1.1</th><td><a href="#24.1.1">MySQL Database Type Mapping</a></td></tr>
		<tr><th>24.1.2</th><td><a href="#24.1.2">SQLite Database Type Mapping</a></td></tr>
		<tr><th>24.1.3</th><td><a href="#24.1.3">PostgreSQL Database Type Mapping</a></td></tr>
		<tr><th>24.1.4</th><td><a href="#24.1.4">Oracle Database Type Mapping</a></td></tr>
		<tr><th>24.1.5</th><td><a href="#24.1.5">SQL Server Database Type Mapping</a></td></tr>
              </table>
	    </td>
	  </tr>
          <tr><th>24.2</th><td><a href="#24.2">Smart Pointers Library</a></td></tr>
          <tr>
	    <th>24.3</th><td><a href="#24.3">Containers Library</a>
	      <table class="toc">
	        <tr><th>24.3.1</th><td><a href="#24.3.1">Change-Tracking <code>QList</code></a></td></tr>
              </table>
	    </td>
	  </tr>
          <tr>
	    <th>24.4</th><td><a href="#24.4">Date Time Library</a>
	      <table class="toc">
	        <tr><th>24.4.1</th><td><a href="#24.4.1">MySQL Database Type Mapping</a></td></tr>
		<tr><th>24.4.2</th><td><a href="#24.4.2">SQLite Database Type Mapping</a></td></tr>
		<tr><th>24.4.3</th><td><a href="#24.4.3">PostgreSQL Database Type Mapping</a></td></tr>
		<tr><th>24.4.4</th><td><a href="#24.4.4">Oracle Database Type Mapping</a></td></tr>
		<tr><th>24.4.5</th><td><a href="#24.4.5">SQL Server Database Type Mapping</a></td></tr>
	      </table>
	    </td>
	  </tr>
        </table>
      </td>
    </tr>

  </table>
  </div>

  <hr class="page-break"/>
  <h1><a name="0">Preface</a></h1>

  <p>As more critical aspects of our lives become dependant on software
     systems, more and more applications are required to save the data
     they work on in persistent and reliable storage. Database management
     systems and, in particular, relational database management systems
     (RDBMS) are commonly used for such storage. However, while the
     application development techniques and programming languages have
     evolved significantly over the past decades, the relational database
     technology in this area stayed relatively unchanged. In particular,
     this led to the now infamous mismatch between the object-oriented
     model used by many modern applications and the relational model still
     used by RDBMS.</p>

  <p>While relational databases may be inconvenient to use from modern
     programming languages, they are still the main choice for many
     applications due to their maturity, reliability, as well as the
     availability of tools and alternative implementations.</p>

  <p>To allow application developers to utilize relational databases
     from their object-oriented applications, a technique called
     object-relational mapping (ORM) is often used. It involves a
     conversion layer that maps between objects in the application's
     memory and their relational representation in the database. While
     the object-relational mapping code can be written manually,
     automated ORM systems are available for most object-oriented
     programming languages in use today.</p>

  <p>ODB is an ORM system for the C++ programming language. It was
     designed and implemented with the following main goals:</p>

  <ul class="list">
    <li>Provide a fully-automatic ORM system. In particular, the
        application developer should not have to manually write any
        mapping code, neither for persistent classes nor for their
        data member. </li>

    <li>Provide clean and easy to use object-oriented persistence
        model and database APIs that support the development of realistic
        applications for a wide variety of domains.</li>

    <li>Provide a portable and thread-safe implementation. ODB should be
        written in standard C++ and capable of persisting any standard
        C++ classes.</li>

    <li>Provide profiles that integrate ODB with type systems of
        widely-used frameworks and libraries such as Qt and Boost.</li>

    <li>Provide a high-performance and low overhead implementation. ODB
        should make efficient use of database and application resources.</li>

  </ul>


  <h2><a name="0.1">About This Document</a></h2>

  <p>The goal of this manual is to provide you with an understanding
     of the object persistence model and APIs which are implemented by ODB.
     As such, this document is intended for C++ application developers and
     software architects who are looking for a C++ object persistence
     solution. Prior experience with C++ is required to understand
     this document. A basic understanding of relational database systems
     is advantageous but not expected or required.</p>


  <h2><a name="0.2">More Information</a></h2>

  <p>Beyond this manual, you may also find the following sources of
     information useful:</p>

  <ul class="list">
    <li><a href="http://www.codesynthesis.com/products/odb/doc/odb.xhtml">ODB
        Compiler Command Line Manual.</a></li>

    <li>The <code>INSTALL</code> files in the ODB source packages provide
        build instructions for various platforms.</li>

    <li>The <code>odb-examples</code> package contains a collection of
        examples and a README file with an overview of each example.</li>

    <li>The <a href="http://www.codesynthesis.com/mailman/listinfo/odb-users">odb-users</a>
        mailing list is the place to ask technical questions about ODB.
        Furthermore, the searchable
        <a href="http://www.codesynthesis.com/pipermail/odb-users/">archives</a>
        may already have answers to some of your questions.</li>

  </ul>


  <!-- PART -->


  <hr class="page-break"/>
  <h1><a name="I">PART I&nbsp;&nbsp;
      <span style="font-weight: normal;">OBJECT-RELATIONAL MAPPING</span></a></h1>

  <p>Part I describes the essential database concepts, APIs, and tools that
     together comprise the object-relational mapping for C++ as implemented
     by ODB. It consists of the following chapters.</p>

  <table class="toc">
    <tr><th>1</th><td><a href="#1">Introduction</a></td></tr>
    <tr><th>2</th><td><a href="#2">Hello World Example</a></td></tr>
    <tr><th>3</th><td><a href="#3">Working with Persistent Objects</a></td></tr>
    <tr><th>4</th><td><a href="#4">Querying the Database</a></td></tr>
    <tr><th>5</th><td><a href="#5">Containers</a></td></tr>
    <tr><th>6</th><td><a href="#6">Relationships</a></td></tr>
    <tr><th>7</th><td><a href="#7">Value Types</a></td></tr>
    <tr><th>8</th><td><a href="#8">Inheritance</a></td></tr>
    <tr><th>10</th><td><a href="#10">Views</a></td></tr>
    <tr><th>11</th><td><a href="#11">Session</a></td></tr>
    <tr><th>12</th><td><a href="#12">Optimistic Concurrency</a></td></tr>
    <tr><th>13</th><td><a href="#13">Database Schema Evolution</a></td></tr>
    <tr><th>14</th><td><a href="#14">ODB Pragma Language</a></td></tr>
  </table>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="1">1 Introduction</a></h1>

  <p>ODB is an object-relational mapping (ORM) system for C++. It provides
     tools, APIs, and library support that allow you to persist C++ objects
     to a relational database (RDBMS) without having to deal with tables,
     columns, or SQL and without manually writing any of the mapping code.</p>

  <p>ODB is highly flexible and customizable. It can either completely
     hide the relational nature of the underlying database or expose
     some of the details as required. For example, you can automatically
     map basic C++ types to suitable SQL types, generate the relational
     database schema for your persistent classes, and use simple, safe,
     and yet powerful object query language instead of SQL. Or you can
     assign SQL types to individual data members, use the existing
     database schema, run native SQL <code>SELECT</code> queries, and
     call stored procedures. In fact, at an extreme, ODB can be used
     as <em>just</em> a convenient way to handle results of native SQL
     queries.</p>

  <p>ODB is not a framework. It does not dictate how you should write
     your application. Rather, it is designed to fit into your
     style and architecture by only handling object persistence
     and not interfering with any other functionality. There is
     no common base type that all persistent classes should derive
     from nor are there any restrictions on the data member types
     in persistent classes. Existing classes can be made persistent
     with a few or no modifications.</p>

  <p>ODB has been designed for high performance and low memory
     overhead. Prepared statements are used to send and receive
     object state in binary format instead of text which reduces
     the load on the application and the database server. Extensive
     caching of connections, prepared statements, and buffers saves
     time and resources on connection establishment, statement parsing,
     and memory allocations. For each supported database system the
     native C API is used instead of ODBC or higher-level wrapper
     APIs to reduce overhead and provide the most efficient implementation
     for each database operation. Finally, persistent classes have
     zero memory overhead. There are no hidden "database" members
     that each class must have nor are there per-object data structures
     allocated by ODB.</p>

  <p>In this chapter we present a high-level overview of ODB.
     We will start with the ODB architecture and then outline the
     workflow of building an application that uses ODB. We will
     then continue by contrasting the drawbacks of the traditional
     way of saving C++ objects to relational databases with the
     benefits of using ODB for object persistence. We conclude the
     chapter by discussing the C++ standards supported by ODB. The
     next chapter takes a more hands-on approach and shows the
     concrete steps necessary to implement object persistence in
     a simple "Hello World" application.</p>

  <h2><a name="1.1">1.1 Architecture and Workflow</a></h2>

  <p>From the application developer's perspective, ODB
     consists of three main components: the ODB compiler, the common
     runtime library, called <code>libodb</code>, and the
     database-specific runtime libraries, called
     <code>libodb-&lt;database></code>, where &lt;database> is
     the name of the database system  this runtime
     is for, for example, <code>libodb-mysql</code>. For instance,
     if the application is going to use the MySQL database for
     object persistence, then the three ODB components that this
     application will use are the ODB compiler, <code>libodb</code>
     and <code>libodb-mysql</code>.</p>

  <p>The ODB compiler generates the database support code for
     persistent classes in your application. The input to the ODB
     compiler is one or more C++ header files defining C++ classes
     that you want to make persistent. For each input header file
     the ODB compiler generates a set of C++ source files implementing
     conversion between persistent C++ classes defined in this
     header and their database representation. The ODB compiler
     can also generate a database schema file that creates tables
     necessary to store the persistent classes.</p>

  <p>The ODB compiler is a real C++ compiler except that it produces
     C++ instead of assembly or machine code. In particular, it is not
     an ad-hoc header pre-processor that is only capable of recognizing
     a subset of C++. ODB is capable of parsing any standard C++ code.</p>

  <p>The common runtime library defines database system-independent
     interfaces that your application can use to manipulate persistent
     objects. The database-specific runtime library provides implementations
     of these interfaces for a concrete database as well as other
     database-specific utilities that are used by the generated code.
     Normally, the application does not use the database-specific
     runtime library directly but rather works with it via the common
     interfaces from <code>libodb</code>. The following diagram shows
     the object persistence architecture of an application that uses
     MySQL as the underlying database system:</p>

  <!-- align=center is needed for html2ps -->
  <div class="img" align="center"><img src="odb-arch.png"/></div>

  <p>The ODB system also defines two special-purpose languages:
     the ODB Pragma Language and ODB Query Language. The ODB Pragma
     Language is used to communicate various properties of persistent
     classes to the ODB compiler by means of special <code>#pragma</code>
     directives embedded in the C++ header files. It controls aspects
     of the object-relational mapping such as names of tables and columns
     that are used for persistent classes and their members or mapping between
     C++ types and database types.</p>

  <p>The ODB Query Language is an object-oriented database query
     language that can be used to search for objects matching
     certain criteria. It is modeled after and is integrated into
     C++ allowing you to write expressive and safe queries that look
     and feel like ordinary C++.</p>

  <p>The use of the ODB compiler to generate database support code
     adds an additional step to your application build sequence. The
     following diagram outlines the typical build workflow of an
     application that uses ODB:</p>

  <!-- align=center is needed for html2ps -->
  <div class="img" align="center"><img src="odb-flow.png"/></div>

  <h2><a name="1.2">1.2 Benefits</a></h2>

  <p>The traditional way of saving C++ objects to relational databases
     requires that you manually write code which converts between the database
     and C++ representations of each persistent class. The actions that
     such code usually performs include conversion between C++ values and
     strings or database types, preparation and execution of SQL queries,
     as well as handling the result sets. Writing this code manually has
     the following drawbacks:</p>

  <ul class="list">
    <li><b>Difficult and time consuming.</b> Writing database conversion
        code for any non-trivial application requires extensive
        knowledge of the specific database system and its APIs.
        It can also take a considerable amount of time to write
        and maintain. Supporting multi-threaded applications can
        complicate this task even further.</li>

    <li><b>Suboptimal performance.</b> Optimal conversion often
        requires writing large amounts of extra code, such as
        parameter binding for prepared statements and caching
        of connections, statements, and buffers. Writing code
        like this in an ad-hoc manner is often too difficult
        and time consuming.</li>

    <li><b>Database vendor lock-in.</b> The conversion code is written for
        a specific database which makes it hard to switch to another
        database vendor.</li>

    <li><b>Lack of type safety.</b> It is easy to misspell column names or
        pass incompatible values in SQL queries. Such errors will
        only be detected at runtime.</li>

    <li><b>Complicates the application.</b> The database conversion code
        often ends up interspersed throughout the application making it
        hard to debug, change, and maintain.</li>
  </ul>

  <p>In contrast, using ODB for C++ object persistence has the
     following benefits:</p>

  <ul class="list">
    <li><b>Ease of use.</b> ODB automatically generates database conversion
        code from your C++ class declarations and allows you to manipulate
        persistent objects using simple and thread-safe object-oriented
        database APIs.</li>

    <li><b>Concise code.</b> With ODB hiding the details of the underlying
        database, the application logic is written using the natural object
        vocabulary instead of tables, columns and SQL. The resulting code
        is simpler and thus easier to read and understand.</li>

    <li><b>Optimal performance.</b> ODB has been designed for high performance
        and low memory overhead. All the available optimization techniques,
        such as prepared statements and extensive connection, statement,
        and buffer caching, are used to provide the most efficient
        implementation for each database operation.</li>

    <li><b>Database portability.</b> Because the database conversion code
        is automatically generated, it is easy to switch from one database
        vendor to another. In fact, it is possible to test your application
        on several database systems before making a choice.</li>

    <li><b>Safety.</b> The ODB object persistence and query APIs are
        statically typed. You use C++ identifiers instead of strings
        to refer to object members and the generated code makes sure
        database and C++ types are compatible. All this helps catch
        programming errors at compile-time rather than at runtime.</li>

    <li><b>Maintainability.</b> Automatic code generation minimizes the
        effort needed to adapt the application to changes in persistent
        classes. The database support code is kept separately from the
        class declarations and application logic. This makes the
        application easier to debug and maintain.</li>
  </ul>

  <p>Overall, ODB provides an easy to use yet flexible and powerful
     object-relational mapping (ORM) system for C++. Unlike other
     ORM implementations for C++ that still require you to write
     database conversion or member registration code for each
     persistent class, ODB keeps persistent classes purely
     declarative. The functional part, the database conversion
     code, is automatically generated by the ODB compiler from
     these declarations.</p>

  <h2><a name="1.3">1.3 Supported C++ Standards</a></h2>

  <p>ODB provides support for ISO/IEC C++ 1998/2003 (C++98/03),
     ISO/IEC TR 19768 C++ Library Extensions (C++ TR1), and
     ISO/IEC C++ 2011 (C++11). While the majority of the examples in
     this manual use C++98/03, support for the new functionality and
     library components introduced in TR1 and C++11 are discussed
     throughout the document. The <code>c++11</code> example in the
     <code>odb-examples</code> package also shows ODB support for
     various C++11 features.</p>

  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="2">2 Hello World Example</a></h1>

  <p>In this chapter we will show how to create a simple C++
     application that relies on ODB for object persistence using
     the traditional "Hello World" example. In particular, we will
     discuss how to declare persistent classes, generate database
     support code, as well as compile and run our application. We
     will also learn how to make objects persistent, load, update
     and delete persistent objects, as well as query the database
     for persistent objects that match certain criteria. The example
     also shows how to define and use views, a mechanism that allows
     us to create projections of persistent objects, database tables,
     or to handle results of native SQL queries or stored procedure
     calls.</p>

  <p>The code presented in this chapter is based on the
     <code>hello</code> example which can be found in the
     <code>odb-examples</code> package of the ODB distribution.</p>

  <h2><a name="2.1">2.1 Declaring Persistent Classes</a></h2>

  <p>In our "Hello World" example we will depart slightly from
     the norm and say hello to people instead of the world. People
     in our application will be represented as objects of C++ class
     <code>person</code> which is saved in <code>person.hxx</code>:</p>

  <pre class="cxx">
// person.hxx
//

#include &lt;string>

class person
{
public:
  person (const std::string&amp; first,
          const std::string&amp; last,
          unsigned short age);

  const std::string&amp; first () const;
  const std::string&amp; last () const;

  unsigned short age () const;
  void age (unsigned short);

private:
  std::string first_;
  std::string last_;
  unsigned short age_;
};
  </pre>

  <p>In order not to miss anyone whom we need to greet, we would like
  to save the <code>person</code> objects in a database. To achieve this
  we declare the <code>person</code> class as persistent:</p>

  <pre class="cxx">
// person.hxx
//

#include &lt;string>

#include &lt;odb/core.hxx>     // (1)

#pragma db object           // (2)
class person
{
  ...

private:
  person () {}              // (3)

  friend class odb::access; // (4)

  #pragma db id auto        // (5)
  unsigned long id_;        // (5)

  std::string first_;
  std::string last_;
  unsigned short age_;
};
  </pre>

  <p>To be able to save the <code>person</code> objects in the database
     we had to make five changes, marked with (1) to (5), to the original
     class definition. The first change is the inclusion of the ODB
     header <code>&lt;odb/core.hxx></code>. This header provides a number
     of core ODB declarations, such as <code>odb::access</code>, that
     are used to define persistent classes.</p>

  <p>The second change is the addition of <code>db&nbsp;object</code>
     pragma just before the class definition. This pragma tells the
     ODB compiler that the class that follows is persistent. Note
     that making a class persistent does not mean that all objects
     of this class will automatically be stored in the database.
     You would still create ordinary or <em>transient</em> instances
     of this class just as you would before. The difference is that
     now you can make such transient instances persistent, as we will
     see shortly.</p>

  <p>The third change is the addition of the default constructor.
     The ODB-generated database support code will use this constructor
     when instantiating an object from the persistent state. Just as we have
     done for the <code>person</code> class, you can make the default
     constructor private or protected if you don't want to make it
     available to the users of your class. Note also that with some
     limitations it is possible to have a persistent class without
     the default constructor.</p>

  <p>With the fourth change we make the <code>odb::access</code> class a
     friend of our <code>person</code> class. This is necessary to make
     the default constructor and the data members accessible to the
     database support code. If your class has a public default constructor and
     either public data members or public accessors and modifiers for the
     data members, then the <code>friend</code> declaration is unnecessary.</p>

  <p>The final change adds a data member called <code>id_</code> which
     is preceded by another pragma. In ODB every persistent object normally
     has a unique, within its class, identifier. Or, in other words, no two
     persistent instances of the same type have equal identifiers. While it
     is possible to define a persistent class without an object id, the number
     of database operations that can be performed on such a class is limited.
     For our class we use an integer id. The <code>db&nbsp;id auto</code>
     pragma that precedes the <code>id_</code> member tells the ODB compiler
     that the following member is the object's identifier. The
     <code>auto</code> specifier indicates that it is a database-assigned
     id. A unique id will be automatically generated by the database and
     assigned to the object when it is made persistent.</p>

  <p>In this example we chose to add an identifier because none of
     the existing members could serve the same purpose. However, if
     a class already has a member with suitable properties, then it
     is natural to use that member as an identifier. For example,
     if our <code>person</code> class contained some form of personal
     identification (SSN in the United States or ID/passport number
     in other countries), then we could use that as an id. Or, if
     we stored an email associated with each person, then we could
     have used that if each person is presumed to have a unique
     email address.</p>

  <p>As another example, consider the following alternative version
     of the <code>person</code> class. Here we use one of
     the existing data members as id. Also the data members are kept
     private and are instead accessed via public accessor and modifier
     functions. Finally, the ODB pragmas are grouped together and are
     placed after the class definition. They could have also been moved
     into a separate header leaving the original class completely
     unchanged (for more information on such a non-intrusive conversion
     refer to <a href="#14">Chapter 14, "ODB Pragma Language"</a>).</p>

  <pre class="cxx">
class person
{
public:
  person ();

  const std::string&amp; email () const;
  void email (const std::string&amp;);

  const std::string&amp; get_name () const;
  std::string&amp; set_name ();

  unsigned short getAge () const;
  void setAge (unsigned short);

private:
  std::string email_;
  std::string name_;
  unsigned short age_;
};

#pragma db object(person)
#pragma db member(person::email_) id
  </pre>

  <p>Now that we have the header file with the persistent class, let's
     see how we can generate that database support code.</p>

  <h2><a name="2.2">2.2 Generating Database Support Code</a></h2>

  <p>The persistent class definition that we created in the previous
     section was particularly light on any code that could actually
     do the job and store the person's data to a database. There
     was no serialization or deserialization code, not even data member
     registration, that you would normally have to write by hand in
     other ORM libraries for C++. This is because in ODB code
     that translates between the database and C++ representations
     of an object is automatically generated by the ODB compiler.</p>

  <p>To compile the <code>person.hxx</code> header we created in the
     previous section and generate the support code for the MySQL
     database, we invoke the ODB compiler from a terminal (UNIX) or
     a command prompt (Windows):</p>

  <pre class="terminal">
odb -d mysql --generate-query person.hxx
  </pre>

  <p>We will use MySQL as the database of choice in the remainder of
     this chapter, though other supported database systems can be used
     instead.</p>

  <p>If you haven't installed the common ODB runtime library
     (<code>libodb</code>) or installed it into a directory where
     C++ compilers don't search for headers by default,
     then you may get the following error:</p>

  <pre class="terminal">
person.hxx:10:24: fatal error: odb/core.hxx: No such file or directory
  </pre>

  <p>To resolve this you will need to specify the <code>libodb</code> headers
     location with the <code>-I</code> preprocessor option, for example:</p>

  <pre class="terminal">
odb -I.../libodb -d mysql --generate-query person.hxx
  </pre>

  <p>Here <code>.../libodb</code> represents the path to the
     <code>libodb</code> directory.</p>

  <p>The above invocation of the ODB compiler produces three C++ files:
     <code>person-odb.hxx</code>, <code>person-odb.ixx</code>,
     <code>person-odb.cxx</code>. You normally don't use types
     or functions contained in these files directly. Rather, all
     you have to do is include <code>person-odb.hxx</code> in
     C++ files where you are performing database operations
     with classes from <code>person.hxx</code> as well as compile
     <code>person-odb.cxx</code> and link the resulting object
     file to your application.</p>

  <p>You may be wondering what the <code>--generate-query</code>
     option is for. It instructs the ODB compiler to generate
     optional query support code that we will use later in our
     "Hello World" example. Another option that we will find
     useful is <code>--generate-schema</code>. This option
     makes the ODB compiler generate a fourth file,
     <code>person.sql</code>, which is the database schema
     for the persistent classes defined in <code>person.hxx</code>:</p>

  <pre class="terminal">
odb -d mysql --generate-query --generate-schema person.hxx
  </pre>

  <p>The database schema file contains SQL statements that creates
     tables necessary to store the persistent classes. We will learn
     how to use it in the next section.</p>

  <p>If you would like to see a list of all the available ODB compiler
     options, refer to the
     <a href="http://www.codesynthesis.com/products/odb/doc/odb.xhtml">ODB
     Compiler Command Line Manual</a>.</p>

  <p>Now that we have the persistent class and the database support
     code, the only part that is left is the application code that
     does something useful with all of this. But before we move on to
     the fun part, let's first learn how to build and run an application
     that uses ODB. This way when we have some application code
     to try, there are no more delays before we can run it.</p>

  <h2><a name="2.3">2.3 Compiling and Running</a></h2>

  <p>Assuming that the <code>main()</code> function with the application
     code is saved in <code>driver.cxx</code> and the database support
     code and schema are generated as described in the previous section,
     to build our application we will first need to compile all the C++
     source files and then link them with two ODB runtime libraries.</p>

  <p>On UNIX, the compilation part can be done with the following commands
     (substitute <code>c++</code> with your C++ compiler name; for Microsoft
     Visual Studio setup, see the <code>odb-examples</code> package):</p>

  <pre class="terminal">
c++ -c driver.cxx
c++ -c person-odb.cxx
  </pre>

  <p>Similar to the ODB compilation, if you get an error stating that
  a header in <code>odb/</code> or <code>odb/mysql</code> directory
  is not found, you will need to use the <code>-I</code>
  preprocessor option to specify the location of the common ODB runtime
  library (<code>libodb</code>) and MySQL ODB runtime library
  (<code>libodb-mysql</code>).</p>

  <p>Once the compilation is done, we can link the application with
  the following command:</p>

  <pre class="terminal">
c++ -o driver driver.o person-odb.o -lodb-mysql -lodb
  </pre>

  <p>Notice that we link our application with two ODB libraries:
    <code>libodb</code> which is a common runtime library and
    <code>libodb-mysql</code> which is a MySQL runtime library
    (if you use another database, then the name of this library
    will change accordingly). If you get an error saying that
    one of these libraries could not be found, then you will need
    to use the <code>-L</code> linker option to specify their locations.</p>

  <p>Before we can run our application we need to create a database
    schema using the generated <code>person.sql</code> file. For MySQL
    we can use the <code>mysql</code> client program, for example:</p>

  <pre class="terminal">
mysql --user=odb_test --database=odb_test &lt; person.sql
  </pre>

  <p>The above command will log in to a local MySQL server as user
    <code>odb_test</code> without a password and use the database
    named <code>odb_test</code>. Beware that after executing this
    command, all the data stored in the <code>odb_test</code> database
    will be deleted.</p>

  <p>Note also that using a standalone generated SQL file is not the
     only way to create a database schema in ODB. We can also embed
     the schema directly into our application or use custom schemas
     that were not generated by the ODB compiler. Refer to
     <a href="#3.4">Section 3.4, "Database"</a> for details.</p>

  <p>Once the database schema is ready, we run our application
  using the same login and database name:</p>

  <pre class="terminal">
./driver --user odb_test --database odb_test
  </pre>


  <h2><a name="2.4">2.4 Making Objects Persistent</a></h2>

  <p>Now that we have the infrastructure work out of the way, it
  is time to see our first code fragment that interacts with the
  database. In this section we will learn how to make <code>person</code>
  objects persistent:</p>

  <pre class="cxx">
// driver.cxx
//

#include &lt;memory>   // std::auto_ptr
#include &lt;iostream>

#include &lt;odb/database.hxx>
#include &lt;odb/transaction.hxx>

#include &lt;odb/mysql/database.hxx>

#include "person.hxx"
#include "person-odb.hxx"

using namespace std;
using namespace odb::core;

int
main (int argc, char* argv[])
{
  try
  {
    auto_ptr&lt;database> db (new odb::mysql::database (argc, argv));

    unsigned long john_id, jane_id, joe_id;

    // Create a few persistent person objects.
    //
    {
      person john ("John", "Doe", 33);
      person jane ("Jane", "Doe", 32);
      person joe ("Joe", "Dirt", 30);

      transaction t (db->begin ());

      // Make objects persistent and save their ids for later use.
      //
      john_id = db->persist (john);
      jane_id = db->persist (jane);
      joe_id = db->persist (joe);

      t.commit ();
    }
  }
  catch (const odb::exception&amp; e)
  {
    cerr &lt;&lt; e.what () &lt;&lt; endl;
    return 1;
  }
}
  </pre>

  <p>Let's examine this code piece by piece. At the beginning we include
     a bunch of headers. After the standard C++ headers we include
     <code>&lt;odb/database.hxx></code>
     and <code>&lt;odb/transaction.hxx></code> which define database
     system-independent <code>odb::database</code> and
     <code>odb::transaction</code> interfaces. Then we include
     <code>&lt;odb/mysql/database.hxx></code> which defines the
     MySQL implementation of the <code>database</code> interface. Finally,
     we include <code>person.hxx</code> and <code>person-odb.hxx</code>
     which define our persistent <code>person</code> class.</p>

  <p>Then we have two <code>using namespace</code> directives. The first
     one brings in the names from the standard namespace and the second
     brings in the ODB declarations which we will use later in the file.
     Notice that in the second directive we use the <code>odb::core</code>
     namespace instead of just <code>odb</code>. The former only brings
     into the current namespace the essential ODB names, such as the
     <code>database</code> and <code>transaction</code> classes, without
     any of the auxiliary objects. This minimizes the likelihood of name
     conflicts with other libraries. Note also that you should continue
     using the <code>odb</code> namespace when qualifying individual names.
     For example, you should write <code>odb::database</code>, not
     <code>odb::core::database</code>.</p>

  <p>Once we are in <code>main()</code>, the first thing we do is create
     the MySQL database object. Notice that this is the last line in
     <code>driver.cxx</code> that mentions MySQL explicitly; the rest
     of the code works through the common interfaces and is database
     system-independent. We use the <code>argc</code>/<code>argv</code>
     <code>mysql::database</code> constructor which automatically
     extract the database parameters, such as login name, password,
     database name, etc., from the command line. In your own applications
     you may prefer to use other <code>mysql::database</code>
     constructors which allow you to pass this information directly
     (<a href="#17.2">Section 17.2, "MySQL Database Class"</a>).</p>

  <p>Next, we create three <code>person</code> objects. Right now they are
     transient objects, which means that if we terminate the application
     at this point, they will be gone without any evidence of them ever
     existing. The next line starts a database transaction. We discuss
     transactions in detail later in this manual. For now, all we need
     to know is that all ODB database operations must be performed within
     a transaction and that a transaction is an atomic unit of work; all
     database operations performed within a transaction either succeed
     (committed) together or are automatically undone (rolled back).</p>

  <p>Once we are in a transaction, we call the <code>persist()</code>
     database function on each of our <code>person</code> objects.
     At this point the state of each object is saved in the database.
     However, note that this state is not permanent until and unless
     the transaction is committed. If, for example, our application
     crashes at this point, there will still be no evidence of our
     objects ever existing.</p>

  <p>In our case, one more thing happens when we call <code>persist()</code>.
     Remember that we decided to use database-assigned identifiers for our
     <code>person</code> objects. The call to <code>persist()</code> is
     where this assignment happens. Once this function returns, the
     <code>id_</code> member contains this object's unique identifier.
     As a convenience, the <code>persist()</code> function also returns
     a copy of the object's identifier that it made persistent. We
     save the returned identifier for each object in a local variable.
     We will use these identifiers later in the chapter to perform other
     database operations on our persistent objects.</p>

  <p>After we have persisted our objects, it is time to commit the
     transaction and make the changes permanent. Only after the
     <code>commit()</code> function returns successfully, are we
     guaranteed that the objects are made persistent. Continuing
     with the crash example, if our application terminates after
     the commit for whatever reason, the objects' state in the
     database will remain intact. In fact, as we will discover
     shortly, our application can be restarted and load the
     original objects from the database. Note also that a
     transaction must be committed explicitly with the
     <code>commit()</code> call. If the <code>transaction</code>
     object leaves scope without the transaction being
     explicitly committed or rolled back, it will automatically be
     rolled back. This behavior allows you not to worry about
     exceptions being thrown within a transaction; if they
     cross the transaction boundary, the transaction will
     automatically be rolled back and all the changes made
     to the database undone.</p>

  <p>The final bit of code in our example is the <code>catch</code>
     block that handles the database exceptions. We do this by catching
     the base ODB exception (<a href="#3.14">Section 3.14, "ODB
     Exceptions"</a>) and printing the diagnostics.</p>

  <p>Let's now compile (<a href="#2.3">Section 2.3, "Compiling and
     Running"</a>) and then run our first ODB application:</p>

  <pre class="terminal">
mysql --user=odb_test --database=odb_test &lt; person.sql
./driver --user odb_test --database odb_test
  </pre>

  <p>Our first application doesn't print anything except for error
     messages so we can't really tell whether it actually stored the
     objects' state in the database. While we will make our application
     more entertaining shortly, for now we can use the <code>mysql</code>
     client to examine the database content. It will also give us a feel
     for how the objects are stored:</p>

  <pre class="terminal">
mysql --user=odb_test --database=odb_test

Welcome to the MySQL monitor.

mysql> select * from person;

+----+-------+------+-----+
| id | first | last | age |
+----+-------+------+-----+
|  1 | John  | Doe  |  33 |
|  2 | Jane  | Doe  |  32 |
|  3 | Joe   | Dirt |  30 |
+----+-------+------+-----+
3 rows in set (0.00 sec)

mysql> quit
  </pre>

  <p>Another way to get more insight into what's going on under the hood,
     is to trace the SQL statements executed by ODB as a result of
     each database operation. Here is how we can enable tracing just for
     the duration of our transaction:</p>

  <pre class="cxx">
    // Create a few persistent person objects.
    //
    {
      ...

      transaction t (db->begin ());

      t.tracer (stderr_tracer);

      // Make objects persistent and save their ids for later use.
      //
      john_id = db->persist (john);
      jane_id = db->persist (jane);
      joe_id = db->persist (joe);

      t.commit ();
    }
  </pre>

  <p>With this modification our application now produces the following
     output:</p>

  <pre class="terminal">
INSERT INTO `person` (`id`,`first`,`last`,`age`) VALUES (?,?,?,?)
INSERT INTO `person` (`id`,`first`,`last`,`age`) VALUES (?,?,?,?)
INSERT INTO `person` (`id`,`first`,`last`,`age`) VALUES (?,?,?,?)
  </pre>

  <p>Note that we see question marks instead of the actual values
     because ODB uses prepared statements and sends the data to the
     database in binary form. For more information on tracing, refer
     to <a href="#3.13">Section 3.13, "Tracing SQL Statement Execution"</a>.
     In the next section we will see how to access persistent objects
     from our application.</p>

  <h2><a name="2.5">2.5 Querying the Database for Objects</a></h2>

  <p>So far our application doesn't resemble a typical "Hello World"
     example. It doesn't print anything except for error messages.
     Let's change that and teach our application to say hello to
     people from our database. To make it a bit more interesting,
     let's say hello only to people over 30:</p>

  <pre class="cxx">
// driver.cxx
//

...

int
main (int argc, char* argv[])
{
  try
  {
    ...

    // Create a few persistent person objects.
    //
    {
      ...
    }

    typedef odb::query&lt;person> query;
    typedef odb::result&lt;person> result;

    // Say hello to those over 30.
    //
    {
      transaction t (db->begin ());

      result r (db->query&lt;person> (query::age > 30));

      for (result::iterator i (r.begin ()); i != r.end (); ++i)
      {
        cout &lt;&lt; "Hello, " &lt;&lt; i->first () &lt;&lt; "!" &lt;&lt; endl;
      }

      t.commit ();
    }
  }
  catch (const odb::exception&amp; e)
  {
    cerr &lt;&lt; e.what () &lt;&lt; endl;
    return 1;
  }
}
  </pre>

  <p>The first half of our application is the same as before and is
     replaced with "..." in the above listing for brevity. Again, let's
     examine the rest of it piece by piece.</p>

  <p>The two <code>typedef</code>s create convenient aliases for two
     template instantiations that will be used a lot in our application.
     The first is the query type for the <code>person</code> objects
     and the second is the result type for that query.</p>

  <p>Then we begin a new transaction and call the <code>query()</code>
     database function. We pass a query expression
     (<code>query::age > 30</code>) which limits the returned objects
     only to those with the age greater than 30. We also save the result
     of the query in a local variable.</p>

  <p>The next few lines perform a standard for-loop iteration
     over the result sequence printing hello for every returned person.
     Then we commit the transaction and that's it. Let's see what
     this application will print:</p>

  <pre class="terminal">
mysql --user=odb_test --database=odb_test &lt; person.sql
./driver --user odb_test --database odb_test

Hello, John!
Hello, Jane!
  </pre>


  <p>That looks about right, but how do we know that the query actually
     used the database instead of just using some in-memory artifacts of
     the earlier <code>persist()</code> calls? One way to test this
     would be to comment out the first transaction in our application
     and re-run it without re-creating the database schema. This way the
     objects that were persisted during the previous run will be returned.
     Alternatively, we can just re-run the same application without
     re-creating the schema and notice that we now show duplicate
     objects:</p>

  <pre class="terminal">
./driver --user odb_test --database odb_test

Hello, John!
Hello, Jane!
Hello, John!
Hello, Jane!
  </pre>

  <p>What happens here is that the previous run of our application
     persisted a set of <code>person</code> objects and when we re-run
     the application, we persist another set with the same names but
     with different ids. When we later run the query, matches from
     both sets are returned. We can change the line where we print
     the "Hello" string as follows to illustrate this point:</p>

  <pre class="cxx">
cout &lt;&lt; "Hello, " &lt;&lt; i->first () &lt;&lt; " (" &lt;&lt; i->id () &lt;&lt; ")!" &lt;&lt; endl;
  </pre>

  <p>If we now re-run this modified program, again without re-creating
     the database schema, we will get the following output:</p>

  <pre class="terminal">
./driver --user odb_test --database odb_test

Hello, John (1)!
Hello, Jane (2)!
Hello, John (4)!
Hello, Jane (5)!
Hello, John (7)!
Hello, Jane (8)!
  </pre>

  <p>The identifiers 3, 6, and 9 that are missing from the above list belong
     to the "Joe Dirt" objects which are not selected by this query.</p>

  <h2><a name="2.6">2.6 Updating Persistent Objects</a></h2>

  <p>While making objects persistent and then selecting some of them using
     queries are two useful operations, most applications will also need
     to change the object's state and then make these changes persistent.
     Let's illustrate this by updating Joe's age who just had a birthday:</p>

  <pre class="cxx">
// driver.cxx
//

...

int
main (int argc, char* argv[])
{
  try
  {
    ...

    unsigned long john_id, jane_id, joe_id;

    // Create a few persistent person objects.
    //
    {
      ...

      // Save object ids for later use.
      //
      john_id = john.id ();
      jane_id = jane.id ();
      joe_id = joe.id ();
    }

    // Joe Dirt just had a birthday, so update his age.
    //
    {
      transaction t (db->begin ());

      auto_ptr&lt;person> joe (db->load&lt;person> (joe_id));
      joe->age (joe->age () + 1);
      db->update (*joe);

      t.commit ();
    }

    // Say hello to those over 30.
    //
    {
      ...
    }
  }
  catch (const odb::exception&amp; e)
  {
    cerr &lt;&lt; e.what () &lt;&lt; endl;
    return 1;
  }
}
  </pre>

  <p>The beginning and the end of the new transaction are the same as
     the previous two. Once within a transaction, we call the
     <code>load()</code> database function to instantiate a
     <code>person</code> object with Joe's persistent state. We
     pass Joe's object identifier that we stored earlier when we
     made this object persistent. While here we use
     <code>std::auto_ptr</code> to manage the returned object, we
     could have also used another smart pointer, for example
     <code>std::unique_ptr</code> from C++11 or <code>shared_ptr</code>
     from TR1, C++11, or Boost. For more information
     on the object lifetime management and the smart pointers that we
     can use for that, see <a href="#3.3">Section 3.3, "Object
     and View Pointers"</a>.</p>

  <p>With the instantiated object in hand we increment the age
     and call the <code>update()</code> function to update
     the object's state in the database. Once the transaction is
     committed, the changes are made permanent.</p>

  <p>If we now run this application, we will see Joe in the output
     since he is now over 30:</p>

  <pre class="terminal">
mysql --user=odb_test --database=odb_test &lt; person.sql
./driver --user odb_test --database odb_test

Hello, John!
Hello, Jane!
Hello, Joe!
  </pre>

  <p>What if we didn't have an identifier for Joe? Maybe this object
     was made persistent in another run of our application or by another
     application altogether. Provided that we only have one Joe Dirt
     in the database, we can use the query facility to come up with
     an alternative implementation of the above transaction:</p>

  <pre class="cxx">
    // Joe Dirt just had a birthday, so update his age. An
    // alternative implementation without using the object id.
    //
    {
      transaction t (db->begin ());

      // Here we know that there can be only one Joe Dirt in our
      // database so we use the query_one() shortcut instead of
      // manually iterating over the result returned by query().
      //
      auto_ptr&lt;person> joe (
        db->query_one&lt;person> (query::first == "Joe" &amp;&amp;
                               query::last == "Dirt"));

      if (joe.get () != 0)
      {
        joe->age (joe->age () + 1);
        db->update (*joe);
      }

      t.commit ();
    }
  </pre>

  <h2><a name="2.7">2.7 Defining and Using Views</a></h2>

  <p>Suppose that we need to gather some basic statistics about the people
     stored in our database. Things like the total head count, as well as
     the minimum and maximum ages. One way to do it would be to query
     the database for all the <code>person</code> objects and then
     calculate this information as we iterate over the query result.
     While this approach may work fine for our database with just three
     people in it, it would be very inefficient if we had a large
     number of objects.</p>

  <p>While it may not be conceptually pure from the object-oriented
     programming point of view, a relational database can perform
     some computations much faster and much more economically than
     if we performed the same operations ourselves in the application's
     process.</p>

  <p>To support such cases ODB provides the notion of views. An ODB view
     is a C++ <code>class</code> that embodies a light-weight, read-only
     projection of one or more persistent objects or database tables or
     the result of a native SQL query execution or stored procedure
     call.</p>

  <p>Some of the common applications of views include loading a subset of
     data members from objects or columns database tables, executing and
     handling results of arbitrary SQL queries, including aggregate
     queries, as well as joining multiple objects and/or database
     tables using object relationships or custom join conditions.</p>

  <p>While you can find a much more detailed description of views in
     <a href="#10">Chapter 10, "Views"</a>, here is how we can define
     the <code>person_stat</code> view that returns the basic statistics
     about the <code>person</code> objects:</p>

  <pre class="cxx">
#pragma db view object(person)
struct person_stat
{
  #pragma db column("count(" + person::id_ + ")")
  std::size_t count;

  #pragma db column("min(" + person::age_ + ")")
  unsigned short min_age;

  #pragma db column("max(" + person::age_ + ")")
  unsigned short max_age;
};
  </pre>

  <p>Normally, to get the result of a view we use the same
     <code>query()</code> function as when querying the database for
     an object. Here, however, we are executing an aggregate query
     which always returns exactly one element. Therefore, instead
     of getting the result instance and then iterating over it, we
     can use the shortcut <code>query_value()</code> function. Here is
     how we can load and print our statistics using the view we have
     just created:</p>

  <pre class="cxx">
    // Print some statistics about all the people in our database.
    //
    {
      transaction t (db->begin ());

      // The result of this query always has exactly one element.
      //
      person_stat ps (db->query_value&lt;person_stat> ());

      cout &lt;&lt; "count  : " &lt;&lt; ps.count &lt;&lt; endl
           &lt;&lt; "min age: " &lt;&lt; ps.min_age &lt;&lt; endl
           &lt;&lt; "max age: " &lt;&lt; ps.max_age &lt;&lt; endl;

      t.commit ();
    }
  </pre>

  <p>If we now add the <code>person_stat</code> view to the
     <code>person.hxx</code> header, the above transaction
     to <code>driver.cxx</code>, as well as re-compile and
     re-run our example, then we will see the following
     additional lines in the output:</p>

  <pre class="term">
count  : 3
min age: 31
max age: 33
  </pre>

  <h2><a name="2.8">2.8 Deleting Persistent Objects</a></h2>

  <p>The last operation that we will discuss in this chapter is deleting
     the persistent object from the database. The following code
     fragment shows how we can delete an object given its identifier:</p>

  <pre class="cxx">
    // John Doe is no longer in our database.
    //
    {
      transaction t (db->begin ());
      db->erase&lt;person> (john_id);
      t.commit ();
    }
  </pre>

  <p>To delete John from the database we start a transaction, call
     the <code>erase()</code> database function with John's object
     id, and commit the transaction. After the transaction is committed,
     the erased object is no longer persistent.</p>

  <p>If we don't have an object id handy, we can use queries to find
     and delete the object:</p>

  <pre class="cxx">
    // John Doe is no longer in our database. An alternative
    // implementation without using the object id.
    //
    {
      transaction t (db->begin ());

      // Here we know that there can be only one John Doe in our
      // database so we use the query_one() shortcut again.
      //
      auto_ptr&lt;person> john (
        db->query_one&lt;person> (query::first == "John" &amp;&amp;
                               query::last == "Doe"));

      if (john.get () != 0)
        db->erase (*john);

      t.commit ();
    }
  </pre>

  <h2><a name="2.9">2.9 Changing Persistent Classes</a></h2>

  <p>When the definition of a transient C++ class is changed, for
     example by adding or deleting a data member, we don't have to
     worry about any existing instances of this class not matching
     the new definition. After all, to make the class changes
     effective we have to restart the application and none of the
     transient instances will survive this.</p>

  <p>Things are not as simple for persistent classes. Because they
     are stored in the database and therefore survive application
     restarts, we have a new problem: what happens to the state of
     existing objects (which correspond to the old definition) once
     we change our persistent class?</p>

  <p>The problem of working with old objects, called <em>database
     schema evolution</em>, is a complex issue and ODB provides
     comprehensive support for handling it. While this support
     is covered in detail in <a href="#13">Chapter 13,
     "Database Schema Evolution"</a>, let us consider a simple
     example that should give us a sense of the functionality
     provided by ODB in this area.</p>

  <p>Suppose that after using our <code>person</code> persistent
     class for some time and creating a number of databases
     containing its instances, we realized that for some people
     we also need to store their middle name. If we go ahead and
     just add the new data member, everything will work fine
     with new databases. Existing databases, however, have a
     table that does not correspond to the new class definition.
     Specifically, the generated database support code now
     expects there to be a column to store the middle name.
     But such a column was never created in the old databases.</p>

  <p>ODB can automatically generate SQL statements that will
     migrate old databases to match the new class definitions.
     But first, we need to enable schema evolution support by
     defining a version for our object model:</p>

  <pre class="cxx">
// person.hxx
//

#pragma db model version(1, 1)

class person
{
  ...

  std::string first_;
  std::string last_;
  unsigned short age_;
};
  </pre>

  <p>The first number in the <code>version</code> pragma is the
     base model version. This is the lowest version we will be
     able to migrate from. The second number is the current model
     version. Since we haven't made any changes yet to our
     persistent class, both of these values are <code>1</code>.</p>

  <p>Next we need to re-compile our <code>person.hxx</code> header
     file with the ODB compiler, just as we did before:</p>

  <pre class="terminal">
odb -d mysql --generate-query --generate-schema person.hxx
  </pre>

  <p>If we now look at the list of files produced by the ODB compiler,
     we will notice a new file: <code>person.xml</code>. This
     is a changelog file where the ODB compiler keeps track of the
     database changes corresponding to our class changes. Note that
     this file is automatically maintained by the ODB compiler and
     all we have to do is keep it around between re-compilations.</p>

  <p>Now we are ready to add the middle name to our <code>person</code>
     class. We also give it a default value (empty string) which
     is what will be assigned to existing objects in old databases.
     Notice that we have also incremented the current version:</p>

  <pre class="cxx">
// person.hxx
//

#pragma db model version(1, 2)

class person
{
  ...

  std::string first_;

  #pragma db default("")
  std::string middle_;

  std::string last_;
  unsigned short age_;
};
  </pre>

  <p>If we now recompile the <code>person.hxx</code> header again, we will
     see two extra generated files: <code>person-002-pre.sql</code>
     and <code>person-002-post.sql</code>. These two files contain
     schema migration statements from version <code>1</code> to
     version <code>2</code>. Similar to schema creation, schema
     migration statements can also be embedded into the generated
     C++ code.</p>

  <p><code>person-002-pre.sql</code> and <code>person-002-post.sql</code>
     are the pre and post schema migration files. To migrate
     one of our old databases, we first execute the pre migration
     file:</p>

  <pre class="terminal">
mysql --user=odb_test --database=odb_test &lt; person-002-pre.sql
  </pre>

  <p>Between the pre and post schema migrations we can run data
     migration code, if required. At this stage, we can both
     access the old and store the new data. In our case we don't
     need any data migration code since we assigned the default
     value to the middle name for all the existing objects.</p>

  <p>To finish the migration process we execute the post migration
     statements:</p>

  <pre class="terminal">
mysql --user=odb_test --database=odb_test &lt; person-002-post.sql
  </pre>

  <h2><a name="2.10">2.10 Working with Multiple Databases</a></h2>

  <p>Accessing multiple databases (that is, data stores) is simply a
     matter of creating multiple <code>odb::&lt;db>::database</code>
     instances representing each database. For example:</p>

  <pre class="cxx">
odb::mysql::database db1 ("john", "secret", "test_db1");
odb::mysql::database db2 ("john", "secret", "test_db2");
  </pre>

  <p>Some database systems also allow attaching multiple databases to
     the same instance. A more interesting question is how we access
     multiple database systems (that is, database implementations) from
     the same application. For example, our application may need to store
     some objects in a remote MySQL database and others in a local SQLite
     file. Or, our application may need to be able to store its objects
     in a database system that is selected by the user at runtime.</p>

  <p>ODB provides comprehensive multi-database support that ranges from
     tight integration with specific database systems to being able to
     write database-agnostic code and loading individual database systems
     support dynamically. While all these aspects are covered in detail
     in <a href="#16">Chapter 16, "Multi-Database Support"</a>, in this
     section we will get a taste of this functionality by extending our
     "Hello World" example to be able to store its data either in MySQL
     or PostgreSQL (other database systems supported by ODB can be added
     in a similar manner).</p>

  <p>The first step in adding multi-database support is to re-compile
     our <code>person.hxx</code> header to generate database support
     code for additional database systems:</p>

  <pre class="terminal">
odb --multi-database dynamic -d common -d mysql -d pgsql \
--generate-query --generate-schema person.hxx
  </pre>

  <p>The <code>--multi-database</code> ODB compiler option turns on
     multi-database support. For now it is not important what the
     <code>dynamic</code> value that we passed to this option means, but
     if you are curious, see <a href="#16">Chapter 16</a>. The result of this
     command are three sets of generated files: <code>person-odb.?xx</code>
     (common interface; corresponds to the <code>common</code> database),
     <code>person-odb-mysql.?xx</code> (MySQL support code), and
     <code>person-odb-pgsql.?xx</code> (PostgreSQL support code). There
     are also two schema files: <code>person-mysql.sql</code> and
     <code>person-pgsql.sql</code>.</p>

  <p>The only part that we need to change in <code>driver.cxx</code>
     is how we create the database instance. Specifically, this line:</p>

  <pre class="cxx">
auto_ptr&lt;database> db (new odb::mysql::database (argc, argv));
  </pre>

  <p>Now our example is capable of storing its data either in MySQL or
     PostgreSQL so we need to somehow allow the caller to specify which
     database we must use. To keep things simple, we will make the first
     command line argument specify the database system we must use while
     the rest will contain the database-specific options which we will
     pass to the <code>odb::&lt;db>::database</code> constructor as
     before. Let's put all this logic into a separate function which we
     will call <code>create_database()</code>. Here is what the beginning
     of our modified <code>driver.cxx</code> will look like (the remainder
     is unchanged):</p>

  <pre class="cxx">
// driver.cxx
//

#include &lt;string>
#include &lt;memory>   // std::auto_ptr
#include &lt;iostream>

#include &lt;odb/database.hxx>
#include &lt;odb/transaction.hxx>

#include &lt;odb/mysql/database.hxx>
#include &lt;odb/pgsql/database.hxx>

#include "person.hxx"
#include "person-odb.hxx"

using namespace std;
using namespace odb::core;

auto_ptr&lt;database>
create_database (int argc, char* argv[])
{
  auto_ptr&lt;database> r;

  if (argc &lt; 2)
  {
    cerr &lt;&lt; "error: database system name expected" &lt;&lt; endl;
    return r;
  }

  string db (argv[1]);

  if (db == "mysql")
    r.reset (new odb::mysql::database (argc, argv));
  else if (db == "pgsql")
    r.reset (new odb::pgsql::database (argc, argv));
  else
    cerr &lt;&lt; "error: unknown database system " &lt;&lt; db &lt;&lt; endl;

  return r;
}

int
main (int argc, char* argv[])
{
  try
  {
    auto_ptr&lt;database> db (create_database (argc, argv));

    if (db.get () == 0)
      return 1; // Diagnostics has already been issued.

    ...
  </pre>

  <p>And that's it. The only thing left is to build and run our
     example:</p>

  <pre class="terminal">
c++ -c driver.cxx
c++ -c person-odb.cxx
c++ -c person-odb-mysql.cxx
c++ -c person-odb-pgsql.cxx
c++ -o driver driver.o person-odb.o person-odb-mysql.o \
person-odb-pgsql.o -lodb-mysql -lodb-pgsql -lodb
  </pre>

  <p>Here is how we can access a MySQL database:</p>

  <pre class="terminal">
mysql --user=odb_test --database=odb_test &lt; person-mysql.sql
./driver mysql --user odb_test --database odb_test
  </pre>

  <p>Or a PostgreSQL database:</p>

  <pre class="terminal">
psql --user=odb_test --dbname=odb_test -f person-pgsql.sql
./driver pgsql --user odb_test --database odb_test
  </pre>

  <h2><a name="2.11">2.11 Summary</a></h2>

  <p>This chapter presented a very simple application which, nevertheless,
     exercised all of the core database functions: <code>persist()</code>,
     <code>query()</code>, <code>load()</code>, <code>update()</code>,
     and <code>erase()</code>. We also saw that writing an application
     that uses ODB involves the following steps:</p>

  <ol>
    <li>Declare persistent classes in header files.</li>
    <li>Compile these headers to generate database support code.</li>
    <li>Link the application with the generated code and two ODB runtime
        libraries.</li>
  </ol>

  <p>Do not be concerned if, at this point, much appears unclear. The intent
     of this chapter is to give you only a general idea of how to persist C++
     objects with ODB. We will cover all the details throughout the remainder
     of this manual.</p>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="3">3 Working with Persistent Objects</a></h1>

  <p>The previous chapters gave us a high-level overview of ODB and
     showed how to use it to store C++ objects in a database. In this
     chapter we will examine the ODB object persistence model as
     well as the core database APIs in greater detail. We will
     start with basic concepts and terminology in <a href="#3.1">Section
     3.1</a> and <a href="#3.3">Section 3.3</a> and continue with the
     discussion of the <code>odb::database</code> class in
     <a href="#3.4">Section 3.4</a>, transactions in
     <a href="#3.5">Section 3.5</a>, and connections in
     <a href="#3.6">Section 3.6</a>. The remainder of this chapter
     deals with the core database operations and concludes with
     the discussion of ODB exceptions.</p>

  <p>In this chapter we will continue to use and expand the
     <code>person</code> persistent class that we have developed in the
     previous chapter.</p>

  <h2><a name="3.1">3.1 Concepts and Terminology</a></h2>

  <p>The term <em>database</em> can refer to three distinct things:
     a general notion of a place where an application stores its data,
     a software implementation for managing this data (for example
     MySQL), and, finally, some database software implementations
     may manage several data stores which are usually distinguished
     by name. This name is also commonly referred to as a database.</p>

  <p>In this manual, when we use the word <em>database</em>, we
     refer to the first meaning above, for example,
     "The <code>update()</code> function saves the object's state to
     the database." The term Database Management System (DBMS) is
     often used to refer to the second meaning of the word database.
     In this manual we will use the term <em>database system</em>
     for short, for example, "Database system-independent
     application code." Finally, to distinguish the third meaning
     from the other two, we will use the term <em>database name</em>,
     for example, "The second option specifies the database name
     that the application should use to store its data."</p>

  <p>In C++ there is only one notion of a type and an instance
     of a type. For example, a fundamental type, such as <code>int</code>,
     is, for the most part, treated the same as a user defined class
     type. However, when it comes to persistence, we have to place
     certain restrictions and requirements on certain C++ types that
     can be stored in the database. As a result, we divide persistent
     C++ types into two groups: <em>object types</em> and <em>value
     types</em>. An instance of an object type is called an <em>object</em>
     and an instance of a value type &mdash; a <em>value</em>.</p>

  <p>An object is an independent entity. It can be stored, updated,
     and deleted in the database independent of other objects.
     Normally, an object has an identifier, called <em>object id</em>,
     that is unique among all instances of an object type within a
     database. In contrast, a value can only be stored in the database
     as part of an object and doesn't have its own unique identifier.</p>

  <p>An object consists of data members which are either values
     (<a href="#7">Chapter 7, "Value Types"</a>), pointers
     to other objects (<a href="#6">Chapter 6, "Relationships"</a>), or
     containers of values or pointers to other objects (<a href="#5">Chapter
     5, "Containers")</a>. Pointers to other objects and containers can
     be viewed as special kinds of values since they also can only
     be stored in the database as part of an object.</p>

  <p>An object type is a C++ class. Because of this one-to-one
     relationship, we will use terms <em>object type</em>
     and <em>object class</em> interchangeably. In contrast,
     a value type can be a fundamental C++ type, such as
     <code>int</code> or a class type, such as <code>std::string</code>.
     If a value consists of other values, then it is called a
     <em>composite value</em> and its type &mdash; a
     <em>composite value type</em> (<a href="#7.2">Section 7.2,
     "Composite Value Types"</a>). Otherwise, the value is
     called <em>simple value</em> and its type &mdash; a
     <em>simple value type</em> (<a href="#7.1">Section 7.1,
     "Simple Value Types"</a>). Note that the distinction between
     simple and composite values is conceptual rather than
     representational. For example, <code>std::string</code>
     is a simple value type because conceptually string is a
     single value even though the representation of the string
     class may contain several data members each of which could be
     considered a value. In fact, the same value type can be
     viewed (and mapped) as both simple and composite by different
     applications.</p>

  <p>While not strictly necessary in a purely object-oriented application,
     practical considerations often require us to only load a
     subset of an object's data members or a combination of members
     from several objects. We may also need to factor out some
     computations to the relational database instead of performing
     them in the application's process. To support such requirements
     ODB distinguishes a third kind of C++ types, called <em>views</em>
     (<a href="#10">Chapter 10, "Views"</a>). An ODB view is a C++
     <code>class</code> that embodies a light-weight, read-only
     projection of one or more persistent objects or database
     tables or the result of a native SQL query execution.</p>

  <p>Understanding how all these concepts map to the relational model
     will hopefully make these distinctions clearer. In a relational
     database an object type is mapped to a table and a value type is
     mapped to one or more columns. A simple value type is mapped
     to a single column while a composite value type is mapped to
     several columns. An object is stored as a row in this
     table and a value is stored as one or more cells in this row.
     A simple value is stored in a single cell while a composite
     value occupies several cells. A view is not a persistent
     entity and it is not stored in the database. Rather, it is a
     data structure that is used to capture a single row of an SQL
     query result.</p>

  <p>Going back to the distinction between simple and composite
     values, consider a date type which has three integer
     members: year, month, and day. In one application it can be
     considered a composite value and each member will get its
     own column in a relational database. In another application
     it can be considered a simple value and stored in a single
     column as a number of days from some predefined date.</p>

  <p>Until now, we have been using the term <em>persistent class</em>
     to refer to object classes. We will continue to do so even though
     a value type can also be a class. The reason for this asymmetry
     is the subordinate nature of value types when it comes to
     database operations. Remember that values are never stored
     directly but rather as part of an object that contains them.
     As a result, when we say that we want to make a C++ class
     persistent or persist an instance of a class in the database,
     we invariably refer to an object class rather than a value
     class.</p>

  <p>Normally, you would use object types to model real-world entities,
     things that have their own identity. For example, in the
     previous chapter we created a <code>person</code> class to model
     a person, which is a real-world entity. Name and age, which we
     used as data members in our <code>person</code> class are clearly
     values. It is hard to think of age 31 or name "Joe" as having their
     own identities.</p>

  <p>A good test to determine whether something is an object or
     a value, is to consider if other objects might reference
     it. A person is clearly an object because it can be referred
     to by other objects such as a spouse, an employer, or a
     bank. On the other hand, a person's age or name is not
     something that other objects would normally refer to.</p>

  <p>Also, when an object represents a real entity, it is easy to
     choose a suitable object id. For example, for a
     person there is an established notion of an identifier
     (SSN, student id, passport number, etc). Another alternative
     is to use a person's email address as an identifier.</p>

  <p>Note, however, that these are only guidelines. There could
     be good reasons to make something that would normally be
     a value an object. Consider, for example, a database that
     stores a vast number of people. Many of the <code>person</code>
     objects in this database have the same names and surnames and
     the overhead of storing them in every object may negatively
     affect the performance. In this case, we could make the first name
     and last name each an object and only store pointers to
     these objects in the <code>person</code> class.</p>

  <p>An instance of a persistent class can be in one of two states:
    <em>transient</em> and <em>persistent</em>. A transient
    instance only has a representation in the application's
    memory and will cease to exist when the application terminates,
    unless it is explicitly made persistent. In other words, a
    transient instance of a persistent class behaves just like an
    instance of any ordinary C++ class. A persistent instance
    has a representation in both the application's memory and the
    database. A persistent instance will remain even after the
    application terminates unless and until it is explicitly
    deleted from the database.</p>

  <h2><a name="3.2">3.2 Declaring Persistent Objects and Values</a></h2>

  <p>To make a C++ class a persistent object class we declare
     it as such using the <code>db&nbsp;object</code> pragma, for
     example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
};
  </pre>

  <p>The other pragma that we often use is <code>db&nbsp;id</code>
     which designates one of the data members as an object id, for
     example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db id
  unsigned long id_;
};
  </pre>

  <p>The object id can be of a simple or composite (<a href="#7.2.1">Section
     7.2.1, "Composite Object Ids"</a>) value type. This type should be
     default-constructible, copy-constructible, and copy-assignable. It
     is also possible to declare a persistent class without an object id,
     however, such a class will have limited functionality
     (<a href="#14.1.6">Section 14.1.6, "<code>no_id</code>"</a>).</p>

  <p>The above two pragmas are the minimum required to declare a
     persistent class with an object id. Other pragmas can be used to
     fine-tune the database-related properties of a class and its
     members (<a href="#14">Chapter 14, "ODB Pragma Language"</a>).</p>

  <p>Normally, a persistent class should define the default constructor. The
     generated database support code uses this constructor when
     instantiating an object from the persistent state. If we add the
     default constructor only for the database support code, then we
     can make it private provided we also make the <code>odb::access</code>
     class, defined in the <code>&lt;odb/core.hxx></code> header, a
     friend of this object class. For example:</p>

  <pre class="cxx">
#include &lt;odb/core.hxx>

#pragma db object
class person
{
  ...

private:
  friend class odb::access;
  person () {}
};
  </pre>

  <p>It is also possible to have an object class without the default
     constructor. However, in this case, the database operations will
     only be able to load the persistent state into an existing instance
     (<a href="#3.9">Section 3.9, "Loading Persistent Objects"</a>,
     <a href="#4.4">Section 4.4, "Query Result"</a>).</p>

  <p>The ODB compiler also needs access to the non-transient
     (<a href="#14.4.11">Section 14.4.11, "<code>transient</code>"</a>)
     data members of a persistent class. The ODB compiler can access
     such data members directly if they are public. It can also do
     so if they are private or protected and the <code>odb::access</code>
     class is declared a friend of the object type. For example:</p>

  <pre class="cxx">
#include &lt;odb/core.hxx>

#pragma db object
class person
{
  ...

private:
  friend class odb::access;
  person () {}

  #pragma db id
  unsigned long id_;

  std::string name_;
};
  </pre>

  <p>If data members are not accessible directly, then the ODB
     compiler will try to automatically find suitable accessor and
     modifier functions. To accomplish this, the ODB compiler will
     try to lookup common accessor and modifier names derived from
     the data member name. Specifically, for the <code>name_</code>
     data member in the above example, the ODB compiler will look
     for accessor functions with names: <code>get_name()</code>,
     <code>getName()</code>, <code>getname()</code>, and just
     <code>name()</code> as well as for modifier functions with
     names: <code>set_name()</code>, <code>setName()</code>,
     <code>setname()</code>, and just <code>name()</code>. You can
     also add support for custom name derivations with the
     <code>--accessor-regex</code> and <code>--modifier-regex</code>
     ODB compiler options. Refer to the
     <a href="http://www.codesynthesis.com/products/odb/doc/odb.xhtml">ODB
     Compiler Command Line Manual</a> for details on these options.
     The following example illustrates automatic accessor and modifier
     discovery:</p>

  <pre class="cxx">
#pragma db object
class person
{
public:
  person () {}

  ...

  unsigned long id () const;
  void id (unsigned long);

  const std::string&amp; get_name () const;
  std::string&amp; set_name ();

private:
  #pragma db id
  unsigned long id_; // Uses id() for access.

  std::string name_; // Uses get_name()/set_name() for access.
};
  </pre>

  <p>Finally, if a data member is not directly accessible and the
     ODB compiler was unable to discover suitable accessor and
     modifier functions, then we can provide custom accessor
     and modifier expressions using the <code>db&nbsp;get</code>
     and <code>db&nbsp;set</code> pragmas. For more information
     on custom accessor and modifier expressions refer to
     <a href="#14.4.5">Section 14.4.5,
     "<code>get</code>/<code>set</code>/<code>access</code>"</a>.</p>

  <p>Data members of a persistent class can also be split into
     separately-loaded and/or separately-updated sections.
     For more information on this functionality, refer to
     <a href="#9">Chapter 9, "Sections"</a>.</p>

  <p>You may be wondering whether we also have to declare value types
     as persistent. We don't need to do anything special for simple value
     types such as <code>int</code> or <code>std::string</code> since the
     ODB compiler knows how to map them to suitable database types and
     how to convert between the two. On the other hand, if a simple value
     is unknown to the ODB compiler then we will need to provide the
     mapping to the database type and, possibly, the code to
     convert between the two. For more information on how to achieve
     this refer to the <code>db&nbsp;type</code> pragma description
     in <a href="#14.3.1">Section 14.3.1, "<code>type</code>"</a>.</p>

  <p>Similar to object classes, composite value types have to be
     explicitly declared as persistent using the <code>db&nbsp;value</code>
     pragma, for example:</p>

  <pre class="cxx">
#pragma db value
class name
{
  ...

  std::string first_;
  std::string last_;
};
  </pre>

  <p>Note that a composite value cannot have a data member designated
     as an object id since, as we have discussed earlier, values do
     not have a notion of identity. A composite value type also doesn't
     have to define the default constructor, unless it is used as an
     element of a container. The ODB compiler uses the same mechanisms
     to access data members in composite value types as in object types.
     Composite value types are discussed in more detail in
     <a href="#7.2">Section 7.2, "Composite Value Types"</a>.</p>

  <h2><a name="3.3">3.3 Object and View Pointers</a></h2>

  <p>As we have seen in the previous chapter, some database operations
     create dynamically allocated instances of persistent classes and
     return pointers to these instances. As we will see in later chapters,
     pointers are also used to establish relationships between objects
     (<a href="#6">Chapter 6, "Relationships"</a>) as well as to cache
     persistent objects in a session (<a href="#11">Chapter 11,
     "Session"</a>). While in most cases you won't need to deal with
     pointers to views, it is possible to a obtain a dynamically allocated
     instance of a view using the <code>result_iterator::load()</code>
     function (<a href="#4.4">Section 4.4, "Query Results"</a>).</p>

  <p>By default, all these mechanisms use raw pointers to return
     objects and views as well as to pass and cache objects. This
     is normally sufficient for applications
     that have simple object lifetime requirements and do not use sessions
     or object relationships. In particular, a dynamically allocated object
     or view that is returned as a raw pointer from a database operation
     can be assigned to a smart pointer of our choice, for example
     <code>std::auto_ptr</code>,  <code>std::unique_ptr</code> from C++11, or
     <code>shared_ptr</code> from TR1, C++11, or Boost.</p>

  <p>However, to avoid any possibility of a mistake, such as forgetting
     to use a smart pointer for a returned object or view, as well as to
     simplify the use of more advanced ODB functionality, such as sessions
     and bidirectional object relationships, it is recommended that you use
     smart pointers with the sharing semantics as object pointers.
     The <code>shared_ptr</code> smart pointer from TR1, C++11, or Boost
     is a good default choice. However, if sharing is not required and
     sessions are not used, then <code>std::unique_ptr</code> or
     <code>std::auto_ptr</code> can be used just as well.</p>

  <p>ODB provides several mechanisms for changing the object or view pointer
     type. To specify the pointer type on the per object or per view basis
     we can use the <code>db&nbsp;pointer</code> pragma, for example:</p>

  <pre class="cxx">
#pragma db object pointer(std::tr1::shared_ptr)
class person
{
  ...
};
  </pre>

  <p>We can also specify the default pointer for a group of objects or
     views at the namespace level:</p>

  <pre class="cxx">
#pragma db namespace pointer(std::tr1::shared_ptr)
namespace accounting
{
  #pragma db object
  class employee
  {
    ...
  };

  #pragma db object
  class employer
  {
    ...
  };
}
  </pre>

  <p>Finally, we can use the <code>--default-pointer</code> option to specify
     the default pointer for the whole file. Refer to the
     <a href="http://www.codesynthesis.com/products/odb/doc/odb.xhtml">ODB
     Compiler Command Line Manual</a> for details on this option's argument.
     The typical usage is shown below:</p>

  <pre class="terminal">
--default-pointer std::tr1::shared_ptr
  </pre>

  <p>An alternative to this method with the same effect is to specify the
     default pointer for the  global namespace:</p>

  <pre class="terminal">
#pragma db namespace() pointer(std::tr1::shared_ptr)
  </pre>

  <p>Note that we can always override the default pointer specified
     at the namespace level or with the command line option using
     the <code>db&nbsp;pointer</code> object or view pragma. For
     example:</p>

  <pre class="cxx">
#pragma db object pointer(std::shared_ptr)
namespace accounting
{
  #pragma db object
  class employee
  {
    ...
  };

  #pragma db object pointer(std::unique_ptr)
  class employer
  {
    ...
  };
}
  </pre>

  <p>Refer to <a href="#14.1.2">Section 14.1.2, "<code>pointer</code>
     (object)"</a>, <a href="#14.2.4">Section 14.2.4, "<code>pointer</code>
     (view)"</a>, and <a href="#14.5.1">Section 14.5.1, "<code>pointer</code>
     (namespace)"</a> for more information on these mechanisms.</p>

  <p>Built-in support that is provided by the ODB runtime library allows us
     to use <code>shared_ptr</code> (TR1 or C++11),
     <code>std::unique_ptr</code> (C++11), or <code>std::auto_ptr</code> as
     pointer types. Plus, ODB profile libraries, that are available for
     commonly used frameworks and libraries (such as Boost and Qt),
     provide support for smart pointers found in these frameworks and
     libraries (<a href="#III">Part III, "Profiles"</a>). It is also
     easy to add support for our own smart pointers, as described in
     <a href="#6.5"> Section 6.5, "Using Custom Smart Pointers"</a>.</p>

  <h2><a name="3.4">3.4 Database</a></h2>

  <p>Before an application can make use of persistence services
     offered by ODB, it has to create a database class instance. A
     database instance is the representation of the place where
     the application stores its persistent objects. We create
     a database instance by instantiating one of the database
     system-specific classes. For example, <code>odb::mysql::database</code>
     would be such a class for the MySQL database system. We will
     also normally pass a database name as an argument to the
     class' constructor. The following code fragment
     shows how we can create a database instance for the MySQL
     database system:</p>

  <pre class="cxx">
#include &lt;odb/database.hxx>
#include &lt;odb/mysql/database.hxx>

auto_ptr&lt;odb::database> db (
  new odb::mysql::database (
    "test_user"     // database login name
    "test_password" // database password
    "test_database" // database name
    ));
  </pre>

  <p>The <code>odb::database</code> class is a common interface for
     all the database system-specific classes provided by ODB. You
     would normally work with the database
     instance via this interface unless there is a specific
     functionality that your application depends on and which is
     only exposed by a particular system's <code>database</code>
     class. You will need to include the <code>&lt;odb/database.hxx></code>
     header file to make this class available in your application.</p>

  <p>The <code>odb::database</code> interface defines functions for
     starting transactions and manipulating persistent objects.
     These are discussed in detail in the remainder of this chapter
     as well as the next chapter which is dedicated to the topic of
     querying the database for persistent objects. For details on the
     system-specific <code>database</code> classes, refer to
     <a href="#II">Part II, "Database Systems"</a>.</p>

  <p>Before we can persist our objects, the corresponding database schema has
     to be created in the database. The schema contains table definitions and
     other relational database artifacts that are used to store the state of
     persistent objects in the database.</p>

  <p>There are several ways to create the database schema. The easiest is to
     instruct the ODB compiler to generate the corresponding schema from the
     persistent classes (<code>--generate-schema</code> option). The ODB
     compiler can generate the schema as a standalone SQL file,
     embedded into the generated C++ code, or as a separate C++ source file
     (<code>--schema-format</code> option). If we are using the SQL file
     to create the database schema, then this file should be executed,
     normally only once, before the application is started.</p>

  <p>Alternatively, if the schema is embedded directly into the generated
     code or produced as a separate C++ source file, then we can use the
     <code>odb::schema_catalog</code> class to create it in the database
     from within our application, for example:</p>

  <pre class="cxx">
#include &lt;odb/schema-catalog.hxx>

odb::transaction t (db->begin ());
odb::schema_catalog::create_schema (*db);
t.commit ();
  </pre>

  <p>Refer to the next section for information on the
     <code>odb::transaction</code> class.  The complete version of the above
     code fragment is available in the <code>schema/embedded</code> example in
     the <code>odb-examples</code> package.</p>

  <p>The <code>odb::schema_catalog</code> class has the following interface.
     You will need to include the <code>&lt;odb/schema-catalog.hxx></code>
     header file to make this class available in your application.</p>

  <pre class="cxx">
namespace odb
{
  class schema_catalog
  {
  public:
    static void
    create_schema (database&amp;,
                   const std::string&amp; name = "",
                   bool drop = true);

    static void
    drop_schema (database&amp;, const std::string&amp; name = "");

    static bool
    exists (database_id, const std::string&amp; name = "");

    static bool
    exists (const database&amp;, const std::string&amp; name = "")
  };
}
  </pre>

  <p>The first argument to the <code>create_schema()</code> function
     is the database instance that we would like to create the schema in.
     The second argument is the schema name. By default, the ODB
     compiler generates all embedded schemas with the default schema
     name (empty string). However, if your application needs to
     have several separate schemas, you can use the
     <code>--schema-name</code> ODB compiler option to assign
     custom schema names and then use these names as a second argument
     to <code>create_schema()</code>. By default, <code>create_schema()</code>
     will also delete all the database objects (tables, indexes, etc.) if
     they exist prior to creating the new ones. You can change this
     behavior by passing <code>false</code> as the third argument. The
     <code>drop_schema()</code> function allows you to delete all the
     database objects without creating the new ones.</p>

  <p>If the schema is not found, the <code>create_schema()</code> and
     <code>drop_schema()</code> functions throw the
     <code>odb::unknown_schema</code> exception. You can use the
     <code>exists()</code> function to check whether a schema for the
     specified database and with the specified name exists in the
     catalog. Note also that the <code>create_schema()</code> and
     <code>drop_schema()</code> functions should be called within a
     transaction.</p>

  <p>ODB also provides support for database schema evolution. Similar
     to schema creation, schema migration statements can be generated
     either as standalone SQL files or embedded into the generated C++
     code. For more information on schema evolution support, refer to
     <a href="#13">Chapter 13, "Database Schema Evolution"</a>.</p>

  <p>Finally, we can also use a custom database schema with ODB. This approach
     can work similarly to the standalone SQL file described above except that
     the database schema is hand-written or produced by another program. Or we
     could execute custom SQL statements that create the schema directly from
     our application. To map persistent classes to custom database schemas, ODB
     provides a wide range of mapping customization pragmas, such
     as <code>db&nbsp;table</code>, <code>db&nbsp;column</code>,
     and <code>db&nbsp;type</code> (<a href="#14">Chapter 14, "ODB Pragma
     Language"</a>). For sample code that shows how to perform such mapping
     for various C++ constructs, refer to the <code>schema/custom</code>
     example in the <code>odb-examples</code> package.</p>

  <h2><a name="3.5">3.5 Transactions</a></h2>

  <p>A transaction is an atomic, consistent, isolated and durable
     (ACID) unit of work. Database operations can only be
     performed within a transaction and each thread of execution
     in an application can have only one active transaction at a
     time.</p>

  <p>By atomicity we mean that when it comes to making changes to
     the database state within a transaction,
     either all the changes are applied or none at all. Consider,
     for example, a transaction that transfers funds between two
     objects representing bank accounts. If the debit function
     on the first object succeeds but the credit function on
     the second fails, the transaction is rolled back and the
     database state of the first object remains unchanged.</p>

  <p>By consistency we mean that a transaction must take all the
     objects stored in the database from one consistent state
     to another. For example, if a bank account object must
     reference a person object as its owner and we forget to
     set this reference before making the object persistent,
     the transaction will be rolled back and the database
     will remain unchanged.</p>

  <p>By isolation we mean that the changes made to the database
     state during a transaction are only visible inside this
     transaction until and unless it is committed. Using the
     above example with the bank transfer, the results of the
     debit operation performed on the first object is not
     visible to other transactions until the credit operation
     is successfully completed and the transaction is committed.</p>

  <p>By durability we mean that once the transaction is committed,
     the changes that it made to the database state are permanent
     and will survive failures such as an application crash. From
     now on the only way to alter this state is to execute and commit
     another transaction.</p>

  <p>A transaction is started by calling either the
     <code>database::begin()</code> or <code>connection::begin()</code>
     function. The returned transaction handle is stored in
     an instance of the <code>odb::transaction</code> class.
     You will need to include the <code>&lt;odb/transaction.hxx></code>
     header file to make this class available in your application.
     For example:</p>

  <pre class="cxx">
#include &lt;odb/transaction.hxx>

transaction t (db.begin ())

// Perform database operations.

t.commit ();
  </pre>

  <p>The <code>odb::transaction</code> class has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  class transaction
  {
  public:
    typedef odb::database database_type;
    typedef odb::connection connection_type;

    explicit
    transaction (transaction_impl*, bool make_current = true);

    transaction ();

    void
    reset (transaction_impl*, bool make_current = true);

    void
    commit ();

    void
    rollback ();

    database_type&amp;
    database ();

    connection_type&amp;
    connection ();

    bool
    finilized () const;

  public:
    static bool
    has_current ();

    static transaction&amp;
    current ();

    static void
    current (transaction&amp;);

    static bool
    reset_current ();

    // Callback API.
    //
  public:
    ...
  };
}
  </pre>

  <p>The <code>commit()</code> function commits a transaction and
     <code>rollback()</code> rolls it back. Unless the transaction
     has been <em>finalized</em>, that is, explicitly committed or rolled
     back, the destructor of the <code>transaction</code> class will
     automatically roll it back when the transaction instance goes
     out of scope. If we try to commit or roll back a finalized
     transaction, the <code>odb::transaction_already_finalized</code>
     exception is thrown.</p>

  <p>The <code>database()</code> accessor returns the database this
     transaction is working on. Similarly, the <code>connection()</code>
     accessor returns the database connection this transaction is on
     (<a href="#3.6">Section 3.6, "Connections"</a>).</p>

  <p>The static <code>current()</code> accessor returns the
     currently active transaction for this thread. If there is no active
     transaction, this function throws the <code>odb::not_in_transaction</code>
     exception. We can check whether there is a transaction in effect in
     this thread using the <code>has_current()</code> static function.</p>

  <p>The <code>make_current</code> argument in the <code>transaction</code>
     constructor as well as the static <code>current()</code> modifier and
     <code>reset_current()</code> function give us additional
     control over the nomination of the currently active transaction.
     If we pass <code>false</code> as the <code>make_current</code>
     argument, then the newly created transaction will not
     automatically be made the active transaction for this
     thread. Later, we can use the static <code>current()</code> modifier
     to set this transaction as the active transaction.
     The <code>reset_current()</code> static function clears the
     currently active transaction. Together, these mechanisms
     allow for more advanced use cases, such as multiplexing
     two or more transactions on the same thread. For example:</p>

  <pre class="cxx">
transaction t1 (db1.begin ());        // Active transaction.
transaction t2 (db2.begin (), false); // Not active.

// Perform database operations on db1.

transaction::current (t2);            // Deactivate t1, activate t2.

// Perform database operations on db2.

transaction::current (t1);            // Switch back to t1.

// Perform some more database operations on db1.

t1.commit ();

transaction::current (t2);            // Switch to t2.

// Perform some more database operations on db2.

t2.commit ();
  </pre>

  <p>The <code>reset()</code> modifier allows us to reuse the same
     <code>transaction</code> instance to complete several database
     transactions. Similar to the destructor, <code>reset()</code>
     will roll the current transaction back if it hasn't been finalized.
     The default <code>transaction</code> constructor creates a finalized
     transaction which can later be initialized using <code>reset()</code>.
     The <code>finilized()</code> accessor can be used to check whether the
     transaction has been finalized. Here is how we can use this functionality
     to commit the current transaction and start a new one every time a
     certain number of database operations has been performed:</p>

  <pre class="cxx">
transaction t (db.begin ());

for (size_t i (0); i &lt; n; ++i)
{
  // Perform a database operation, such as persist an object.

  // Commit the current transaction and start a new one after
  // every 100 operations.
  //
  if (i % 100 == 0)
  {
    t.commit ();
    t.reset (db.begin ());
  }
}

t.commit ();
  </pre>

  <p>For more information on the transaction callback support, refer
     to <a href="#15.1">Section 15.1, "Transaction Callbacks"</a>.</p>

  <p>Note that in the above discussion of atomicity, consistency,
     isolation, and durability, all of those guarantees only apply
     to the object's state in the database as opposed to the object's
     state in the application's memory. It is possible to roll
     a transaction back but still have changes from this
     transaction in the application's memory. An easy way to
     avoid this potential inconsistency is to instantiate
     persistent objects only within the transaction scope. Consider,
     for example, these two implementations of the same transaction:</p>

  <pre class="cxx">
void
update_age (database&amp; db, person&amp; p)
{
  transaction t (db.begin ());

  p.age (p.age () + 1);
  db.update (p);

  t.commit ();
}
  </pre>

  <p>In the above implementation, if the <code>update()</code> call fails
     and the transaction is rolled back, the state of the <code>person</code>
     object in the database and the state of the same object in the
     application's memory will differ. Now consider an
     alternative implementation which only instantiates the
     <code>person</code> object for the duration of the transaction:</p>

  <pre class="cxx">
void
update_age (database&amp; db, unsigned long id)
{
  transaction t (db.begin ());

  auto_ptr&lt;person> p (db.load&lt;person> (id));
  p.age (p.age () + 1);
  db.update (p);

  t.commit ();
}
  </pre>

  <p>Of course, it may not always be possible to write the
     application in this style. Oftentimes we need to access and
     modify the application's state of persistent objects out of
     transactions. In this case it may make sense to try to
     roll back the changes made to the application state if
     the transaction was rolled back and the database state
     remains unchanged. One way to do this is to re-load
     the object's state from the database, for example:</p>

  <pre class="cxx">
void
update_age (database&amp; db, person&amp; p)
{
  try
  {
    transaction t (db.begin ());

    p.age (p.age () + 1);
    db.update (p);

    t.commit ();
  }
  catch (...)
  {
    transaction t (db.begin ());
    db.load (p.id (), p);
    t.commit ();

    throw;
  }
}
  </pre>

  <p>See also <a href="#15.1">Section 15.1, "Transaction Callbacks"</a>
     for an alternative approach.</p>

  <h2><a name="3.6">3.6 Connections</a></h2>

  <p>The <code>odb::connection</code> class represents a connection
     to the database. Normally, you wouldn't work with connections
     directly but rather let the ODB runtime obtain and release
     connections as needed. However, certain use cases may require
     obtaining a connection manually. For completeness, this section
     describes the <code>connection</code> class and discusses some
     of its use cases. You may want to skip this section if you are
     reading through the manual for the first time.</p>

  <p>Similar to <code>odb::database</code>, the <code>odb::connection</code>
     class is a common interface for all the database system-specific
     classes provided by ODB. For details on the system-specific
     <code>connection</code> classes, refer to <a href="#II">Part II,
     "Database Systems"</a>.</p>

  <p>To make the <code>odb::connection</code> class available in your
     application you will need to include the <code>&lt;odb/connection.hxx></code>
     header file. The <code>odb::connection</code> class has the
     following interface:</p>

  <pre class="cxx">
namespace odb
{
  class connection
  {
  public:
    typedef odb::database database_type;

    transaction
    begin () = 0;

    unsigned long long
    execute (const char* statement);

    unsigned long long
    execute (const std::string&amp; statement);

    unsigned long long
    execute (const char* statement, std::size_t length);

    database_type&amp;
    database ();
  };

  typedef details::shared_ptr&lt;connection> connection_ptr;
}
  </pre>

  <p>The <code>begin()</code> function is used to start a transaction
     on the connection. The <code>execute()</code> functions allow
     us to execute native database statements on the connection.
     Their semantics are equivalent to the <code>database::execute()</code>
     functions (<a href="#3.12">Section 3.12, "Executing Native SQL
     Statements"</a>) except that they can be legally called outside
     a transaction. Finally, the <code>database()</code> accessor
     returns a reference to the <code>odb::database</code> instance
     to which this connection corresponds.</p>

  <p>To obtain a connection we call the <code>database::connection()</code>
     function. The connection is returned as <code>odb::connection_ptr</code>,
     which is an implementation-specific smart pointer with the shared
     pointer semantics. This, in particular, means that the connection
     pointer can be copied and returned from functions. Once the last
     instance of <code>connection_ptr</code> pointing to the same
     connection is destroyed, the connection is returned to the
     <code>database</code> instance. The following code fragment
     shows how we can obtain, use, and release a connection:</p>

  <pre class="cxx">
using namespace odb::core;

database&amp; db = ...
connection_ptr c (db.connection ());

// Temporarily disable foreign key constraints.
//
c->execute ("SET FOREIGN_KEY_CHECKS = 0");

// Start a transaction on this connection.
//
transaction t (c->begin ());
...
t.commit ();

// Restore foreign key constraints.
//
c->execute ("SET FOREIGN_KEY_CHECKS = 1");

// When 'c' goes out of scope, the connection is returned to 'db'.
  </pre>

  <p>Some of the use cases which may require direct manipulation of
     connections include out-of-transaction statement execution,
     such as the execution of connection configuration statements,
     the implementation of a connection-per-thread policy, and making
     sure that a set of transactions is executed on the same
     connection.</p>

  <h2><a name="3.7">3.7 Error Handling and Recovery</a></h2>

  <p>ODB uses C++ exceptions to report database operation errors. Most
     ODB exceptions signify <em>hard</em> errors or errors that cannot
     be corrected without some intervention from the application.
     For example, if we try to load an object with an unknown object
     id, the <code>odb::object_not_persistent</code> exception is
     thrown. Our application may be able to correct this error, for
     instance, by obtaining a valid object id and trying again.
     The hard errors and corresponding ODB exceptions that can be
     thrown by each database function are described in the remainder
     of this chapter with <a href="#3.14">Section 3.14, "ODB Exceptions"</a>
     providing a quick reference for all the ODB exceptions.</p>

  <p>The second group of ODB exceptions signify <em>soft</em> or
     <em>recoverable</em> errors. Such errors are temporary
     failures which normally can be corrected by simply re-executing
     the transaction. ODB defines three such exceptions:
     <code>odb::connection_lost</code>, <code>odb::timeout</code>,
     and <code>odb::deadlock</code>. All recoverable ODB exceptions
     are derived from the common <code>odb::recoverable</code> base
     exception which can be used to handle all the recoverable
     conditions with a single <code>catch</code> block.</p>

  <p>The <code>odb::connection_lost</code> exception is thrown if
     a connection to the database is lost in the middle of
     a transaction. In this situation the transaction is aborted but
     it can be re-tried without any changes. Similarly, the
     <code>odb::timeout</code> exception is thrown if one of the
     database operations or the whole transaction has timed out.
     Again, in this case the transaction is aborted but can be
     re-tried as is.</p>

  <p>If two or more transactions access or modify more than one object
     and are executed concurrently by different applications or by
     different threads within the same application, then it is possible
     that these transactions will try to access objects in an incompatible
     order and deadlock. The canonical example of a deadlock are
     two transactions in which the first has modified <code>object1</code>
     and is waiting for the second transaction to commit its changes to
     <code>object2</code> so that it can also update <code>object2</code>.
     At the same time the second transaction has modified <code>object2</code>
     and is waiting for the first transaction to commit its changes to
     <code>object1</code> because it also needs to modify <code>object1</code>.
     As a result, none of the two transactions can be completed.</p>

  <p>The database system detects such situations and automatically
     aborts the waiting operation in one of the deadlocked transactions.
     In ODB this translates to the <code>odb::deadlock</code>
     recoverable exception being thrown from one of the database functions.</p>

  <p>The following code fragment shows how to handle the recoverable
     exceptions by restarting the affected transaction:</p>

  <pre class="cxx">
const unsigned short max_retries = 5;

for (unsigned short retry_count (0); ; retry_count++)
{
  try
  {
    transaction t (db.begin ());

    ...

    t.commit ();
    break;
  }
  catch (const odb::recoverable&amp; e)
  {
    if (retry_count > max_retries)
      throw retry_limit_exceeded (e.what ());
    else
      continue;
  }
}
  </pre>

  <h2><a name="3.8">3.8 Making Objects Persistent</a></h2>

  <p>A newly created instance of a persistent class is transient.
     We use the <code>database::persist()</code> function template
     to make a transient instance persistent. This function has four
     overloaded versions with the following signatures:</p>

  <pre class="cxx">
  template &lt;typename T>
  typename object_traits&lt;T>::id_type
  persist (const T&amp; object);

  template &lt;typename T>
  typename object_traits&lt;T>::id_type
  persist (const object_traits&lt;T>::const_pointer_type&amp; object);

  template &lt;typename T>
  typename object_traits&lt;T>::id_type
  persist (T&amp; object);

  template &lt;typename T>
  typename object_traits&lt;T>::id_type
  persist (const object_traits&lt;T>::pointer_type&amp; object);
  </pre>

  <p>Here and in the rest of the manual,
     <code>object_traits&lt;T>::pointer_type</code> and
     <code>object_traits&lt;T>::const_pointer_type</code> denote the
     unrestricted and constant object pointer types (<a href="#3.3">Section
     3.3, "Object and View Pointers"</a>), respectively.
     Similarly, <code>object_traits&lt;T>::id_type</code> denotes the object
     id type. The <code>odb::object_traits</code> template is part of the
     database support code generated by the ODB compiler.</p>

  <p>The first <code>persist()</code> function expects a constant reference
     to an instance being persisted. The second function expects a constant
     object pointer. Both of these functions can only be used on objects with
     application-assigned object ids (<a href="#14.4.2">Section 14.4.2,
     "<code>auto</code>"</a>).</p>

  <p>The second and third <code>persist()</code> functions are similar to the
     first two except that they operate on unrestricted references and object
     pointers. If the identifier of the object being persisted is assigned
     by the database, these functions update the id member of the passed
     instance with the assigned value. All four functions return the object
     id of the newly persisted object.</p>

  <p>If the database already contains an object of this type with this
     identifier, the <code>persist()</code> functions throw the
     <code>odb::object_already_persistent</code> exception. This should
     never happen for database-assigned object ids as long as the
     number of objects persisted does not exceed the value space of
     the id type.</p>

  <p>When calling the <code>persist()</code> functions, we don't need to
     explicitly specify the template type since it will be automatically
     deduced from the argument being passed. The following example shows
     how we can call these functions:</p>

  <pre class="cxx">
person john ("John", "Doe", 33);
shared_ptr&lt;person> jane (new person ("Jane", "Doe", 32));

transaction t (db.begin ());

db.persist (john);
unsigned long jane_id (db.persist (jane));

t.commit ();

cerr &lt;&lt; "Jane's id: " &lt;&lt; jane_id &lt;&lt; endl;
  </pre>

  <p>Notice that in the above code fragment we have created instances
     that we were planning to make persistent before starting the
     transaction. Likewise, we printed Jane's id after we have committed
     the transaction. As a general rule, you should avoid performing
     operations within the transaction scope that can be performed
     before the transaction starts or after it terminates. An active
     transaction consumes both your application's resources, such as
     a database connection, as well as the database server's
     resources, such as object locks. By following the above rule you
     make sure these resources are released and made available to other
     threads in your application and to other applications as soon as
     possible.</p>

  <p>Some database systems support persisting multiple objects with a
     single underlying statement execution which can result in significantly
     improved performance. For such database systems ODB provides
     bulk <code>persist()</code> functions. For details, refer to
     <a href="#15.3">Section 15.3, "Bulk Database Operations"</a>.</p>

  <h2><a name="3.9">3.9 Loading Persistent Objects</a></h2>

  <p>Once an object is made persistent, and you know its object id, it
     can be loaded by the application using the <code>database::load()</code>
     function template. This function has two overloaded versions with
     the following signatures:</p>

  <pre class="cxx">
  template &lt;typename T>
  typename object_traits&lt;T>::pointer_type
  load (const typename object_traits&lt;T>::id_type&amp; id);

  template &lt;typename T>
  void
  load (const typename object_traits&lt;T>::id_type&amp; id, T&amp; object);
  </pre>

  <p>Given an object id, the first function allocates a new instance
     of the object class in the dynamic memory, loads its state from
     the database, and returns the pointer to the new instance. The
     second function loads the object's state into an existing instance.
     Both functions throw <code>odb::object_not_persistent</code> if
     there is no object of this type with this id in the database.</p>

  <p>When we call the first <code>load()</code> function, we need to
     explicitly specify the object type. We don't need to do this for
     the second function because the object type will be automatically
     deduced from the second argument, for example:</p>

  <pre class="cxx">
transaction t (db.begin ());

auto_ptr&lt;person> jane (db.load&lt;person> (jane_id));

db.load (jane_id, *jane);

t.commit ();
  </pre>

  <p>In certain situations it may be necessary to reload the state
     of an object from the database. While this is easy to achieve
     using the second <code>load()</code> function, ODB provides
     the <code>database::reload()</code> function template that
     has a number of special properties. This function has two
     overloaded versions with the following signatures:</p>

  <pre class="cxx">
  template &lt;typename T>
  void
  reload (T&amp; object);

  template &lt;typename T>
  void
  reload (const object_traits&lt;T>::pointer_type&amp; object);
  </pre>

  <p>The first <code>reload()</code> function expects an object
     reference, while the second expects an object pointer. Both
     functions expect the id member in the passed object to contain
     a valid object identifier and, similar to <code>load()</code>,
     both will throw <code>odb::object_not_persistent</code> if
     there is no object of this type with this id in the database.</p>

  <p>The first special property of <code>reload()</code>
     compared to the <code>load()</code> function is that it
     does not interact with the session's object cache
     (<a href="#11.1">Section 11.1, "Object Cache"</a>). That is, if
     the object being reloaded is already in the cache, then it will
     remain there after <code>reload()</code> returns. Similarly, if the
     object is not in the cache, then <code>reload()</code> won't
     put it there either.</p>

  <p>The second special property of the <code>reload()</code> function
     only manifests itself when operating on an object with the optimistic
     concurrency model. In this case, if the states of the object
     in the application memory and in the database are the same, then
     no reloading will occur. For more information on optimistic
     concurrency, refer to <a href="#12">Chapter 12, "Optimistic
     Concurrency"</a>.</p>

  <p>If we don't know for sure whether an object with a given id
     is persistent, we can use the <code>find()</code> function
     instead of <code>load()</code>, for example:</p>

  <pre class="cxx">
  template &lt;typename T>
  typename object_traits&lt;T>::pointer_type
  find (const typename object_traits&lt;T>::id_type&amp; id);

  template &lt;typename T>
  bool
  find (const typename object_traits&lt;T>::id_type&amp; id, T&amp; object);
  </pre>

  <p>If an object with this id is not found in the database, the first
     <code>find()</code> function returns a <code>NULL</code> pointer
     while the second function leaves the passed instance unmodified and
     returns <code>false</code>.</p>

  <p>If we don't know the object id, then we can use queries to
     find the object (or objects) matching some criteria
     (<a href="#4">Chapter 4, "Querying the Database"</a>). Note,
     however, that loading an object's state using its
     identifier can be significantly faster than executing a query.</p>


  <h2><a name="3.10">3.10 Updating Persistent Objects</a></h2>

  <p>If a persistent object has been modified, we can store the updated
     state in the database using the <code>database::update()</code>
     function template. This function has three overloaded versions with
     the following signatures:</p>

  <pre class="cxx">
  template &lt;typename T>
  void
  update (const T&amp; object);

  template &lt;typename T>
  void
  update (const object_traits&lt;T>::const_pointer_type&amp; object);

  template &lt;typename T>
  void
  update (const object_traits&lt;T>::pointer_type&amp; object);
  </pre>

  <p>The first <code>update()</code> function expects an object reference,
     while the other two expect object pointers. If the object passed to
     one of these functions does not exist in the database,
     <code>update()</code> throws the <code>odb::object_not_persistent</code>
     exception (but see a note on optimistic concurrency below).</p>

  <p>Below is an example of the funds transfer that we talked about
     in the earlier section on transactions. It uses the hypothetical
     <code>bank_account</code> persistent class:</p>

  <pre class="cxx">
void
transfer (database&amp; db,
          unsigned long from_acc,
          unsigned long to_acc,
          unsigned int amount)
{
  bank_account from, to;

  transaction t (db.begin ());

  db.load (from_acc, from);

  if (from.balance () &lt; amount)
    throw insufficient_funds ();

  db.load (to_acc, to);

  to.balance (to.balance () + amount);
  from.balance (from.balance () - amount);

  db.update (to);
  db.update (from);

  t.commit ();
}
  </pre>

  <p>The same can be accomplished using dynamically allocated objects
     and the <code>update()</code> function with object pointer argument,
     for example:</p>

  <pre class="cxx">
transaction t (db.begin ());

shared_ptr&lt;bank_account> from (db.load&lt;bank_account> (from_acc));

if (from->balance () &lt; amount)
  throw insufficient_funds ();

shared_ptr&lt;bank_account> to (db.load&lt;bank_account> (to_acc));

to->balance (to->balance () + amount);
from->balance (from->balance () - amount);

db.update (to);
db.update (from);

t.commit ();
  </pre>

  <p>If any of the <code>update()</code> functions are operating on a
     persistent class with the optimistic concurrency model, then they will
     throw the <code>odb::object_changed</code> exception if the state of the
     object in the database has changed since it was last loaded into the
     application memory. Furthermore, for such classes, <code>update()</code>
     no longer throws the <code>object_not_persistent</code> exception if
     there is no such object in the database. Instead, this condition is
     treated as a change of object state and <code>object_changed</code>
     is thrown instead. For a more detailed discussion of optimistic
     concurrency, refer to <a href="#12">Chapter 12, "Optimistic
     Concurrency"</a>.</p>

  <p>In ODB, persistent classes, composite value types, as well as individual
     data members can be declared read-only (see <a href="#14.1.4">Section
     14.1.4, "<code>readonly</code> (object)"</a>, <a href="#14.3.6">Section
     14.3.6, "<code>readonly</code> (composite value)"</a>, and
     <a href="#14.4.12">Section 14.4.12, "<code>readonly</code>
     (data member)"</a>).</p>

  <p>If an individual data member is declared read-only, then
     any changes to this member will be ignored when updating the database
     state of an object using any of the above <code>update()</code>
     functions. A <code>const</code> data member is automatically treated
     as read-only. If a composite value is declared read-only then all its
     data members are treated as read-only.</p>

  <p>If the whole object is declared read-only then the database state of
     this object cannot be changed. Calling any of the above
     <code>update()</code> functions for such an object will result in a
     compile-time error.</p>

  <p>Similar to <code>persist()</code>, for database systems that support
     this functionality, ODB provides bulk <code>update()</code> functions.
     For details, refer to <a href="#15.3">Section 15.3, "Bulk Database
     Operations"</a>.</p>

  <h2><a name="3.11">3.11 Deleting Persistent Objects</a></h2>

  <p>To delete a persistent object's state from the database we use the
     <code>database::erase()</code> or <code>database::erase_query()</code>
     function templates. If the application still has an instance of the
     erased object, this instance becomes transient. The <code>erase()</code>
     function has the following overloaded versions:</p>

  <pre class="cxx">
  template &lt;typename T>
  void
  erase (const T&amp; object);

  template &lt;typename T>
  void
  erase (const object_traits&lt;T>::const_pointer_type&amp; object);

  template &lt;typename T>
  void
  erase (const object_traits&lt;T>::pointer_type&amp; object);

  template &lt;typename T>
  void
  erase (const typename object_traits&lt;T>::id_type&amp; id);
  </pre>

  <p>The first <code>erase()</code> function uses an object itself, in
     the form of an object reference, to delete its state from the
     database. The next two functions accomplish the same result but using
     object pointers. Note that all three functions leave the passed
     object unchanged. It simply becomes transient. The last function
     uses the object id to identify the object to be deleted. If the
     object does not exist in the database, then all four functions
     throw the <code>odb::object_not_persistent</code> exception
     (but see a note on optimistic concurrency below).</p>

  <p>We have to specify the object type when calling the last
     <code>erase()</code> function. The same is unnecessary for the
     first three functions because the object type will be automatically
     deduced from their arguments. The following example shows how we
     can call these functions:</p>

  <pre class="cxx">
person&amp; john = ...
shared_ptr&lt;jane> jane = ...
unsigned long joe_id = ...

transaction t (db.begin ());

db.erase (john);
db.erase (jane);
db.erase&lt;person> (joe_id);

t.commit ();
  </pre>

  <p>If any of the <code>erase()</code> functions except the last one are
     operating on a persistent class with the optimistic concurrency
     model, then they will throw the <code>odb::object_changed</code> exception
     if the state of the object in the database has changed since it was
     last loaded into the application memory. Furthermore, for such
     classes, <code>erase()</code> no longer throws the
     <code>object_not_persistent</code> exception if there is no such
     object in the database. Instead, this condition is treated as a
     change of object state and <code>object_changed</code> is thrown
     instead. For a more detailed discussion of optimistic concurrency,
     refer to <a href="#12">Chapter 12, "Optimistic Concurrency"</a>.</p>

  <p>Similar to <code>persist()</code> and <code>update()</code>, for
     database systems that support this functionality, ODB provides
     bulk <code>erase()</code> functions. For details, refer to
     <a href="#15.3">Section 15.3, "Bulk Database Operations"</a>.</p>

  <p>The <code>erase_query()</code> function allows us to delete
     the state of multiple objects matching certain criteria. It uses
     the query expression of the <code>database::query()</code> function
     (<a href="#4">Chapter 4, "Querying the Database"</a>) and,
     because the ODB query facility is optional, it is only available
     if the <code>--generate-query</code> ODB compiler option was
     specified. The <code>erase_query()</code> function has the
     following overloaded versions:</p>

  <pre class="cxx">
  template &lt;typename T>
  unsigned long long
  erase_query ();

  template &lt;typename T>
  unsigned long long
  erase_query (const odb::query&lt;T>&amp;);
  </pre>

  <p>The first <code>erase_query()</code> function is used to delete
     the state of all the persistent objects of a given type stored
     in the database. The second function uses the passed query instance
     to only delete the state of objects matching the query criteria.
     Both functions return the number of objects erased. When calling
     the <code>erase_query()</code> function, we have to explicitly
     specify the object type we are erasing. For example:</p>

  <pre class="cxx">
typedef odb::query&lt;person> query;

transaction t (db.begin ());

db.erase_query&lt;person> (query::last == "Doe" &amp;&amp; query::age &lt; 30);

t.commit ();
  </pre>

  <p>Unlike the <code>query()</code> function, when calling
     <code>erase_query()</code> we cannot use members from pointed-to
     objects in the query expression. However, we can still use
     a member corresponding to a pointer as an ordinary object
     member that has the id type of the pointed-to object
     (<a href="#6">Chapter 6, "Relationships"</a>). This allows us
     to compare object ids as well as test the pointer for
     <code>NULL</code>. As an example, the following transaction
     makes sure that all the <code>employee</code> objects that
     reference an <code>employer</code> object that is about to
     be deleted are deleted as well. Here we assume that the
     <code>employee</code> class contains a pointer to the
     <code>employer</code> class. Refer to <a href="#6">Chapter 6,
     "Relationships"</a> for complete definitions of these
     classes.</p>

  <pre class="cxx">
typedef odb::query&lt;employee> query;

transaction t (db.begin ());

employer&amp; e = ... // Employer object to be deleted.

db.erase_query&lt;employee> (query::employer == e.id ());
db.erase (e);

t.commit ();
  </pre>


  <h2><a name="3.12">3.12 Executing Native SQL Statements</a></h2>

  <p>In some situations we may need to execute native SQL statements
     instead of using the object-oriented database API described above.
     For example, we may want to tune the database schema generated
     by the ODB compiler or take advantage of a feature that is
     specific to the database system we are using. The
     <code>database::execute()</code> function, which has three
     overloaded versions, provides this functionality:</p>

  <pre class="cxx">
  unsigned long long
  execute (const char* statement);

  unsigned long long
  execute (const std::string&amp; statement);

  unsigned long long
  execute (const char* statement, std::size_t length)
  </pre>

  <p>The first <code>execute()</code> function expects the SQL statement
     as a zero-terminated C-string. The last version expects the explicit
     statement length as the second argument and the statement itself
     may contain <code>'\0'</code> characters, for example, to represent
     binary data, if the database system supports it. All three functions
     return the number of rows that were affected by the statement. For
     example:</p>

  <pre class="cxx">
transaction t (db.begin ());

db.execute ("DROP TABLE test");
db.execute ("CREATE TABLE test (n INT PRIMARY KEY)");

t.commit ();
  </pre>

  <p>While these functions must always be called within a transaction,
     it may be necessary to execute a native statement outside a
     transaction. This can be done using the
     <code>connection::execute()</code> functions as described in
     <a href="#3.6">Section 3.6, "Connections"</a>.</p>

  <h2><a name="3.13">3.13 Tracing SQL Statement Execution</a></h2>

  <p>Oftentimes it is useful to understand what SQL statements are
     executed as a result of high-level database operations. For
     example, we can use this information to figure out why certain
     transactions don't produce desired results or why they take
     longer than expected.</p>

  <p>While this information can usually be obtained from the database
     logs, ODB provides an application-side SQL statement tracing
     support that is both more convenient and finer-grained.
     For example, in a typical situation that calls for tracing
     we would like to see the SQL statements executed as a result
     of a specific transaction. While it may be difficult to
     extract such a subset of statements from the database logs,
     it is easy to achieve with ODB tracing support:</p>

  <pre class="cxx">
transaction t (db.begin ());
t.tracer (stderr_tracer);

...

t.commit ();
  </pre>

  <p>ODB allows us to specify a tracer on the database, connection,
     and transaction levels. If specified for the database, then
     all the statements executed on this database will be traced.
     On the other hand, if a tracer is specified for the
     connection, then only the SQL statements executed on this
     connection will be traced. Similarly, a tracer specified
     for a transaction will only show statements that are
     executed as part of this transaction. All three classes
     (<code>odb::database</code>, <code>odb::connection</code>,
      and <code>odb::transaction</code>) provide the identical
     tracing API:</p>

  <pre class="cxx">
  void
  tracer (odb::tracer&amp;);

  void
  tracer (odb::tracer*);

  odb::tracer*
  tracer () const;
  </pre>

  <p>The first two <code>tracer()</code> functions allow us to set
     the tracer object with the second one allowing us to clear the
     current tracer by passing a <code>NULL</code> pointer. The
     last <code>tracer()</code> function allows us to get the
     current tracer object. It returns a <code>NULL</code> pointer
     if there is no tracer in effect. Note that the tracing API
     does not manage the lifetime of the tracer object. The tracer
     should be valid for as long as it is being used. Furthermore,
     the tracing API is not thread-safe. Trying to set a tracer
     from multiple threads simultaneously will result in
     undefined behavior.</p>

  <p>The <code>odb::tracer</code> class defines a callback interface
     that can be used to create custom tracer implementations. The
     <code>odb::stderr_tracer</code> and <code>odb::stderr_full_tracer</code>
     are built-in tracer implementations provided by the ODB runtime.
     They both print SQL statements being executed to the standard error
     stream. The full tracer, in addition to tracing statement executions,
     also traces their preparations and deallocations. One situation where
     the full tracer can be particularly useful is if a statement (for
     example a custom query) contains a syntax error. In this case the
     error will be detected during preparation and, as a result, the
     statement will never be executed. The only way to see such a statement
     is by using the full tracing.</p>

  <p>The <code>odb::tracer</code> class is defined in the
     <code>&lt;odb/tracer.hxx></code> header file which you will need to
     include in order to make this class available in your application.
     The <code>odb::tracer</code> interface provided the following
     callback functions:</p>

  <pre class="cxx">
namespace odb
{
  class tracer
  {
  public:
    virtual void
    prepare (connection&amp;, const statement&amp;);

    virtual void
    execute (connection&amp;, const statement&amp;);

    virtual void
    execute (connection&amp;, const char* statement) = 0;

    virtual void
    deallocate (connection&amp;, const statement&amp;);
  };
}
  </pre>

  <p>The <code>prepare()</code> and <code>deallocate()</code> functions
     are called when a prepared statement is created and destroyed,
     respectively. The first <code>execute()</code> function is called
     when a prepared statement is executed while the second one is called
     when a normal statement is executed. The default implementations
     for the <code>prepare()</code> and <code>deallocate()</code>
     functions do nothing while the first <code>execute()</code> function
     calls the second one passing the statement text as the second
     argument. As a result, if all you are interested in are the
     SQL statements being executed, then you only need to override the
     second <code>execute()</code> function.</p>

  <p>In addition to the common <code>odb::tracer</code> interface,
     each database runtime provides a database-specific version
     as <code>odb::&lt;database>::tracer</code>. It has exactly
     the same interface as the common version except that the
     <code>connection</code> and <code>statement</code> types
     are database-specific, which gives us access to additional,
     database-specific information.</p>

  <p>As an example, consider a more elaborate, PostgreSQL-specific
     tracer implementation. Here we rely on the fact that the PostgreSQL
     ODB runtime uses names to identify prepared statements and this
     information can be obtained from the <code>odb::pgsql::statement</code>
     object:</p>

  <pre class="cxx">
#include &lt;odb/pgsql/tracer.hxx>
#include &lt;odb/pgsql/database.hxx>
#include &lt;odb/pgsql/connection.hxx>
#include &lt;odb/pgsql/statement.hxx>

class pgsql_tracer: public odb::pgsql::tracer
{
  virtual void
  prepare (odb::pgsql::connection&amp; c, const odb::pgsql::statement&amp; s)
  {
    cerr &lt;&lt; c.database ().db () &lt;&lt; ": PREPARE " &lt;&lt; s.name ()
         &lt;&lt; " AS " &lt;&lt; s.text () &lt;&lt; endl;
  }

  virtual void
  execute (odb::pgsql::connection&amp; c, const odb::pgsql::statement&amp; s)
  {
    cerr &lt;&lt; c.database ().db () &lt;&lt; ": EXECUTE " &lt;&lt; s.name () &lt;&lt; endl;
  }

  virtual void
  execute (odb::pgsql::connection&amp; c, const char* statement)
  {
    cerr &lt;&lt; c.database ().db () &lt;&lt; ": " &lt;&lt; statement &lt;&lt; endl;
  }

  virtual void
  deallocate (odb::pgsql::connection&amp; c, const odb::pgsql::statement&amp; s)
  {
    cerr &lt;&lt; c.database ().db () &lt;&lt; ": DEALLOCATE " &lt;&lt; s.name () &lt;&lt; endl;
  }
};
  </pre>

  <p>Note also that you can only set a database-specific tracer object
     using a database-specific database instance, for example:</p>

  <pre class="cxx">
pgsql_tracer tracer;

odb::database&amp; db = ...;
db.tracer (tracer); // Compile error.

odb::pgsql::database&amp; db = ...;
db.tracer (tracer); // Ok.
  </pre>

  <h2><a name="3.14">3.14 ODB Exceptions</a></h2>

  <p>In the previous sections we have already mentioned some of the
     exceptions that can be thrown by the database functions. In this
     section we will discuss the ODB exception hierarchy and document
     all the exceptions that can be thrown by the common ODB
     runtime.</p>

  <p>The root of the ODB exception hierarchy is the abstract
     <code>odb::exception</code> class. This class derives
     from <code>std::exception</code> and has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  struct exception: std::exception
  {
    virtual const char*
    what () const throw () = 0;
  };
}
  </pre>

  <p>Catching this exception guarantees that we will catch all the
     exceptions thrown by ODB. The <code>what()</code> function
     returns a human-readable description of the condition that
     triggered the exception.</p>

  <p>The concrete exceptions that can be thrown by ODB are presented
     in the following listing:</p>

  <pre class="cxx">
namespace odb
{
  struct null_pointer: exception
  {
    virtual const char*
    what () const throw ();
  };

  // Transaction exceptions.
  //
  struct already_in_transaction: exception
  {
    virtual const char*
    what () const throw ();
  };

  struct not_in_transaction: exception
  {
    virtual const char*
    what () const throw ();
  };

  struct transaction_already_finalized: exception
  {
    virtual const char*
    what () const throw ();
  };

  // Session exceptions.
  //
  struct already_in_session: exception
  {
    virtual const char*
    what () const throw ();
  };

  struct not_in_session: exception
  {
    virtual const char*
    what () const throw ();
  };

  struct session_required: exception
  {
    virtual const char*
    what () const throw ();
  };

  // Database operations exceptions.
  //
  struct recoverable: exception
  {
  };

  struct connection_lost: recoverable
  {
    virtual const char*
    what () const throw ();
  };

  struct timeout: recoverable
  {
    virtual const char*
    what () const throw ();
  };

  struct deadlock: recoverable
  {
    virtual const char*
    what () const throw ();
  };

  struct object_not_persistent: exception
  {
    virtual const char*
    what () const throw ();
  };

  struct object_already_persistent: exception
  {
    virtual const char*
    what () const throw ();
  };

  struct object_changed: exception
  {
    virtual const char*
    what () const throw ();
  };

  struct result_not_cached: exception
  {
    virtual const char*
    what () const throw ();
  };

  struct database_exception: exception
  {
  };

  // Polymorphism support exceptions.
  //
  struct abstract_class: exception
  {
    virtual const char*
    what () const throw ();
  };

  struct no_type_info: exception
  {
    virtual const char*
    what () const throw ();
  };

  // Prepared query support exceptions.
  //
  struct prepared_already_cached: exception
  {
    const char*
    name () const;

    virtual const char*
    what () const throw ();
  };

  struct prepared_type_mismatch: exception
  {
    const char*
    name () const;

    virtual const char*
    what () const throw ();
  };

  // Schema catalog exceptions.
  //
  struct unknown_schema: exception
  {
    const std::string&amp;
    name () const;

    virtual const char*
    what () const throw ();
  };

  struct unknown_schema_version: exception
  {
    schema_version
    version () const;

    virtual const char*
    what () const throw ();
  };

  // Section exceptions.
  //
  struct section_not_loaded: exception
  {
    virtual const char*
    what () const throw ();
  };

  struct section_not_in_object: exception
  {
    virtual const char*
    what () const throw ();
  };

  // Bulk operation exceptions.
  //
  struct multiple_exceptions: exception
  {
    ...

    virtual const char*
    what () const throw ();
  };
}
  </pre>

  <p>The <code>null_pointer</code> exception is thrown when a
     pointer to a persistent object declared non-<code>NULL</code>
     with the <code>db&nbsp;not_null</code> or
     <code>db&nbsp;value_not_null</code> pragma has the <code>NULL</code>
     value. See <a href="#6">Chapter 6, "Relationships"</a> for details.</p>

  <p>The next three exceptions (<code>already_in_transaction</code>,
     <code>not_in_transaction</code>,
     <code>transaction_already_finalized</code>) are thrown by the
     <code>odb::transaction</code> class and are discussed
     in <a href="#3.5">Section 3.5, "Transactions"</a>.</p>

  <p>The next two exceptions (<code>already_in_session</code>, and
     <code>not_in_session</code>) are thrown by the <code>odb::session</code>
     class and are discussed in <a href="#11">Chapter 11, "Session"</a>.</p>

  <p>The <code>session_required</code> exception is thrown when ODB detects
     that correctly loading a bidirectional object relationship requires a
     session but one is not used. See <a href="#6.2">Section 6.2,
     "Bidirectional Relationships"</a> for more information on this
     exception.</p>

  <p>The <code>recoverable</code> exception serves as a common base
     for all the recoverable exceptions, which are: <code>connection_lost</code>,
     <code>timeout</code>, and <code>deadlock</code>. The
     <code>connection_lost</code> exception is thrown when a connection
     to the database is lost. Similarly, the <code>timeout</code> exception
     is thrown if one of the database operations or the whole transaction
     has timed out. The <code>deadlock</code> exception is thrown when a
     transaction deadlock is detected by the database system. These
     exceptions can be thrown by any database function. See
     <a href="#3.7">Section 3.7, "Error Handling and Recovery"</a>
     for details.</p>

  <p>The <code>object_already_persistent</code> exception is thrown
     by the <code>persist()</code> database function. See
     <a href="#3.8">Section 3.8, "Making Objects Persistent"</a>
     for details.</p>

  <p>The <code>object_not_persistent</code> exception is thrown
     by the <code>load()</code>, <code>update()</code>, and
     <code>erase()</code> database functions. Refer to
     <a href="#3.9">Section 3.9, "Loading Persistent Objects"</a>,
     <a href="#3.10">Section 3.10, "Updating Persistent Objects"</a>, and
     <a href="#3.11">Section 3.11, "Deleting Persistent Objects"</a> for
     more information.</p>

  <p>The <code>object_changed</code> exception is thrown
     by the <code>update()</code> database function and certain
     <code>erase()</code> database functions when
     operating on objects with the optimistic concurrency model. See
     <a href="#12">Chapter 12, "Optimistic Concurrency"</a> for details.</p>

  <p>The <code>result_not_cached</code> exception is thrown by
     the query result class. Refer to <a href="#4.4">Section 4.4,
     "Query Result"</a> for details.</p>

  <p>The <code>database_exception</code> exception is a base class for all
     database system-specific exceptions that are thrown by the
     database system-specific runtime library. Refer to <a href="#II">Part
     II, "Database Systems"</a> for more information.</p>

  <p>The <code>abstract_class</code> exception is thrown by the database
     functions when we attempt to persist, update, load, or erase an
     instance of a polymorphic abstract class. For more information
     on abstract classes, refer to <a href="#14.1.3">Section 14.1.3,
     "<code>abstract</code>"</a>.</p>

  <p>The <code>no_type_info</code> exception is thrown by the database
     functions when we attempt to persist, update, load, or erase an
     instance of a polymorphic class for which no type information
     is present in the application. This normally means that the
     generated database support code for this class has not been
     linked (or dynamically loaded) into the application or the
     discriminator value has not been mapped to a persistent
     class. For more information on polymorphism support, refer to
     <a href="#8.2">Section 8.2, "Polymorphism Inheritance"</a>.</p>

  <p>The <code>prepared_already_cached</code> exception is thrown by the
     <code>cache_query()</code> function if a prepared query with the
     specified name is already cached. The <code>prepared_type_mismatch</code>
     exception is thrown by the <code>lookup_query()</code> function if
     the specified prepared query object type or parameters type
     does not match the one in the cache. Refer to <a href="#4.5">Section
     4.5, "Prepared Queries"</a> for details.</p>

  <p>The <code>unknown_schema</code> exception is thrown by the
     <code>odb::schema_catalog</code> class if a schema with the specified
     name is not found. Refer to <a href="#3.4">Section 3.4, "Database"</a>
     for details. The <code>unknown_schema_version</code> exception is
     thrown by the <code>schema_catalog</code> functions that deal with
     database schema evolution if the passed version is unknow. Refer
     to <a href="#13">Chapter 13, "Database Schema Evolution"</a> for
     details.</p>

  <p>The <code>section_not_loaded</code> exception is thrown if we
     attempt to update an object section that hasn't been loaded.
     The <code>section_not_in_object</code> exception is thrown if
     the section instance being loaded or updated does not belong
     to the corresponding object. See <a href="#9">Chapter 9,
     "Sections"</a> for more information on these exceptions.</p>

  <p>The <code>multiple_exceptions</code> exception is thrown by the
     bulk API functions. Refer to <a href="#15.3">Section 15.3, "Bulk
     Database Operations"</a> for details.</p>

  <p>The <code>odb::exception</code> class is defined in the
     <code>&lt;odb/exception.hxx></code> header file. All the
     concrete ODB exceptions are defined in
     <code>&lt;odb/exceptions.hxx></code> which also includes
     <code>&lt;odb/exception.hxx></code>. Normally you don't
     need to include either of these two headers because they are
     automatically included by <code>&lt;odb/database.hxx></code>.
     However, if the source file that handles ODB exceptions
     does not include <code>&lt;odb/database.hxx></code>, then
     you will need to explicitly include one of these headers.</p>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="4">4 Querying the Database</a></h1>

  <p>If we don't know the identifiers of the objects that we are looking
     for, we can use queries to search the database for objects matching
     certain criteria. The ODB query facility is optional and we need to
     explicitly request the generation of the necessary database support
     code with the <code>--generate-query</code> ODB compiler option.</p>

  <p>ODB provides a flexible query API that offers two distinct levels of
     abstraction from the database system query language such as SQL.
     At the high level we are presented with an easy to use yet powerful
     object-oriented query language, called ODB Query Language. This
     query language is modeled after and is integrated into C++ allowing
     us to write expressive and safe queries that look and feel like
     ordinary C++. We have already seen examples of these queries in the
     introductory chapters. Below is another, more interesting, example:</p>

  <pre class="cxx">
  typedef odb::query&lt;person> query;
  typedef odb::result&lt;person> result;

  unsigned short age;
  query q (query::first == "John" &amp;&amp; query::age &lt; query::_ref (age));

  for (age = 10; age &lt; 100; age += 10)
  {
    result r (db.query&lt;person> (q));
    ...
  }
  </pre>

  <p>At the low level, queries can be written as predicates using
     the database system-native query language such as the
     <code>WHERE</code> predicate from the SQL <code>SELECT</code>
     statement. This language will be referred to as native query
     language. At this level ODB still takes care of converting
     query parameters from C++ to the database system format. Below
     is the re-implementation of the above example using SQL as
     the native query language:</p>

  <pre class="cxx">
  query q ("first = 'John' AND age = " + query::_ref (age));
  </pre>

  <p>Note that at this level we lose the static typing of
     query expressions. For example, if we wrote something like this:</p>

  <pre class="cxx">
  query q (query::first == 123 &amp;&amp; query::agee &lt; query::_ref (age));
  </pre>

  <p>We would get two errors during the C++ compilation. The first would
     indicate that we cannot compare <code>query::first</code> to an
     integer and the second would pick the misspelling in
     <code>query::agee</code>. On the other hand, if we wrote something
     like this:</p>

  <pre class="cxx">
  query q ("first = 123 AND agee = " + query::_ref (age));
  </pre>

  <p>It would compile fine and would trigger an error only when executed
     by the database system.</p>

  <p>We can also combine the two query languages in a single query, for
     example:</p>

  <pre class="cxx">
  query q ("first = 'John' AND" + (query::age &lt; query::_ref (age)));
  </pre>

  <h2><a name="4.1">4.1 ODB Query Language</a></h2>

  <p>An ODB query is an expression that tells the database system whether
     any given object matches the desired criteria. As such, a query expression
     always evaluates as <code>true</code> or <code>false</code>. At
     the higher level, an expression consists of other expressions
     combined with logical operators such as <code>&amp;&amp;</code> (AND),
     <code>||</code> (OR), and <code>!</code> (NOT). For example:</p>

  <pre class="cxx">
  typedef odb::query&lt;person> query;

  query q (query::first == "John" || query::age == 31);
  </pre>

  <p>At the core of every query expression lie simple expressions which
     involve one or more object members, values, or parameters. To
     refer to an object member we use an expression such as
     <code>query::first</code> above. The names of members in the
     <code>query</code> class are derived from the names of data members
     in the object class by removing the common member name decorations,
     such as leading and trailing underscores, the <code>m_</code> prefix,
     etc.</p>

  <p>In a simple expression an object member can be compared to a value,
     parameter, or another member using a number of predefined operators
     and functions. The following table gives an overview of the available
     expressions:</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="operators" border="1">
    <tr>
      <th>Operator</th>
      <th>Description</th>
      <th>Example</th>
    </tr>

    <tr>
      <td><code>==</code></td>
      <td>equal</td>
      <td><code>query::age == 31</code></td>
    </tr>

    <tr>
      <td><code>!=</code></td>
      <td>unequal</td>
      <td><code>query::age != 31</code></td>
    </tr>

    <tr>
      <td><code>&lt;</code></td>
      <td>less than</td>
      <td><code>query::age &lt; 31</code></td>
    </tr>

    <tr>
      <td><code>></code></td>
      <td>greater than</td>
      <td><code>query::age > 31</code></td>
    </tr>

    <tr>
      <td><code>&lt;=</code></td>
      <td>less than or equal</td>
      <td><code>query::age &lt;= 31</code></td>
    </tr>

    <tr>
      <td><code>>=</code></td>
      <td>greater than or equal</td>
      <td><code>query::age >= 31</code></td>
    </tr>

    <tr>
      <td><code>in()</code></td>
      <td>one of the values</td>
      <td><code>query::age.in (30, 32, 34)</code></td>
    </tr>

    <tr>
      <td><code>in_range()</code></td>
      <td>one of the values in range</td>
      <td><code>query::age.in_range (begin, end)</code></td>
    </tr>

    <tr>
      <td><code>like()</code></td>
      <td>matches a pattern</td>
      <td><code>query::first.like ("J%")</code></td>
    </tr>

    <tr>
      <td><code>is_null()</code></td>
      <td>value is <code>NULL</code></td>
      <td><code>query::age.is_null ()</code></td>
    </tr>

    <tr>
      <td><code>is_not_null()</code></td>
      <td>value is <code>NOT NULL</code></td>
      <td><code>query::age.is_not_null ()</code></td>
    </tr>
  </table>

  <p>The <code>in()</code> function accepts a maximum of five arguments.
     Use the <code>in_range()</code> function if you need to compare
     to more than five values. This function accepts a pair of
     standard C++ iterators and compares to all the values from
     the <code>begin</code> position inclusive and until and
     excluding the <code>end</code> position. The following
     code fragment shows how we can use these functions:</p>

  <pre class="cxx">
  std::vector&lt;string> names;

  names.push_back ("John");
  names.push_back ("Jack");
  names.push_back ("Jane");

  query q1 (query::first.in ("John", "Jack", "Jane"));
  query q2 (query::first.in_range (names.begin (), names.end ()));
  </pre>

  <p>Note that the <code>like()</code> function does not perform any
     translation of the database system-specific extensions of the
     SQL <code>LIKE</code> operator. As a result, if you would like
     your application to be portable among various database systems,
     then limit the special characters used in the pattern to
     <code>%</code> (matches zero or more characters) and <code>_</code>
     (matches exactly one character). It is also possible to specify
     the escape character as a second argument to the <code>like()</code>
     function. This character can then be used to escape the special
     characters (<code>%</code> and <code>_</code>) in the pattern.
     For example, the following query will match any two characters
     separated by an underscore:</p>

  <pre class="cxx">
  query q (query::name.like ("_!__", "!"));
  </pre>

  <p>The operator precedence in the query expressions are the same
     as for equivalent C++ operators. We can use parentheses to
     make sure the expression is evaluated in the desired order.
     For example:</p>

  <pre class="cxx">
  query q ((query::first == "John" || query::first == "Jane") &amp;&amp;
           query::age &lt; 31);
  </pre>


  <h2><a name="4.2">4.2 Parameter Binding</a></h2>

  <p>An instance of the <code>odb::query</code> class encapsulates two
     parts of information about the query: the query expression and
     the query parameters. Parameters can be bound to C++ variables
     either by value or by reference.</p>

  <p>If a parameter is bound by value, then the value for this parameter
     is copied from the C++ variable to the query instance at the query
     construction time. On the other hand, if a parameter is bound by
     reference, then the query instance stores a reference to the
     bound variable. The actual value of the parameter is only extracted
     at the query execution time. Consider, for example, the following
     two queries:</p>

  <pre class="cxx">
  string name ("John");

  query q1 (query::first == query::_val (name));
  query q2 (query::first == query::_ref (name));

  name = "Jane";

  db.query&lt;person> (q1); // Find John.
  db.query&lt;person> (q2); // Find Jane.
  </pre>

  <p>The <code>odb::query</code> class provides two special functions,
     <code>_val()</code> and <code>_ref()</code>, that allow us to
     bind the parameter either by value or by reference, respectively.
     In the ODB query language, if the binding is not specified
     explicitly, the value semantic is used by default. In the
     native query language, binding must always be specified
     explicitly. For example:</p>

  <pre class="cxx">
  query q1 (query::age &lt; age);                // By value.
  query q2 (query::age &lt; query::_val (age));  // By value.
  query q3 (query::age &lt; query::_ref (age));  // By reference.

  query q4 ("age &lt; " + age);                  // Error.
  query q5 ("age &lt; " + query::_val (age));    // By value.
  query q6 ("age &lt; " + query::_ref (age));    // By reference.
  </pre>

  <p>A query that only has by-value parameters does not depend on any
     other variables and is self-sufficient once constructed. A query
     that has one or more by-reference parameters depends on the
     bound variables until the query is executed. If one such variable
     goes out of scope and we execute the query, the behavior is
     undefined.</p>

  <h2><a name="4.3">4.3 Executing a Query</a></h2>

  <p>Once we have the query instance ready and by-reference parameters
     initialized, we can execute the query using the
     <code>database::query()</code> function template. It has two
     overloaded versions:</p>

  <pre class="cxx">
  template &lt;typename T>
  result&lt;T>
  query (bool cache = true);

  template &lt;typename T>
  result&lt;T>
  query (const odb::query&lt;T>&amp;, bool cache = true);
  </pre>

  <p>The first <code>query()</code> function is used to return all the
     persistent objects of a given type stored in the database.
     The second function uses the passed query instance to only return
     objects matching the query criteria. The <code>cache</code> argument
     determines whether the objects' states should be cached in the
     application's memory or if they should be returned by the database
     system one by one as the iteration over the result progresses. The
     result caching is discussed in detail in the next section.</p>

  <p>When calling the <code>query()</code> function, we have to
     explicitly specify the object type we are querying. For example:</p>

  <pre class="cxx">
  typedef odb::query&lt;person> query;
  typedef odb::result&lt;person> result;

  result all (db.query&lt;person> ());
  result johns (db.query&lt;person> (query::first == "John"));
  </pre>

  <p>Note that it is not required to explicitly create a named
     query variable before executing it. For example, the following
     two queries are equivalent:</p>

  <pre class="cxx">
  query q (query::first == "John");

  result r1 (db.query&lt;person> (q));
  result r1 (db.query&lt;person> (query::first == "John"));
  </pre>

  <p>Normally, we would create a named query instance if we are
     planning to run the same query multiple times and would use the
     in-line version for those that are executed only once (see also
     <a href="#4.5">Section 4.5, "Prepared Queries"</a> for a more
     optimal way to re-execute the same query multiple times). A named
     query instance that does not have any by-reference parameters is
     immutable and can be shared between multiple threads without
     synchronization. On the other hand, a query instance with
     by-reference parameters is modified every time it is executed.
     If such a query is shared among multiple threads, then access
     to this query instance must be synchronized from the execution
     point and until the completion of the iteration over the result.</p>

  <p>It is also possible to create queries from other queries by
     combining them using logical operators. For example:</p>

  <pre class="cxx">
result
find_minors (database&amp; db, const query&amp; name_query)
{
  return db.query&lt;person> (name_query &amp;&amp; query::age &lt; 18);
}

result r (find_minors (db, query::first == "John"));
  </pre>

  <p>The result of executing a query is zero, one, or more objects
     matching the query criteria. The <code>query()</code> function
     returns this result as an instance of the <code>odb::result</code>
     class template, which provides a stream-like interface and is
     discussed in detail in the next section.</p>

  <p>In situations where we know that a query produces at most one
     element, we can instead use the <code>database::query_one()</code> and
     <code>database::query_value()</code> shortcut functions, for example:</p>

  <pre class="cxx">
  typedef odb::query&lt;person> query;

  auto_ptr&lt;person> p (
    db.query_one&lt;person> (
      query::email == "jon@example.com"));
  </pre>

  <p>The shortcut query functions have the following signatures:</p>

  <pre class="cxx">
  template &lt;typename T>
  typename object_traits&lt;T>::pointer_type
  query_one ();

  template &lt;typename T>
  bool
  query_one (T&amp;);

  template &lt;typename T>
  T
  query_value ();

  template &lt;typename T>
  typename object_traits&lt;T>::pointer_type
  query_one (const odb::query&lt;T>&amp;);

  template &lt;typename T>
  bool
  query_one (const odb::query&lt;T>&amp;, T&amp;);

  template &lt;typename T>
  T
  query_value (const odb::query&lt;T>&amp;);
  </pre>

  <p>Similar to <code>query()</code>, the first three functions are used
     to return the only persistent object of a given type stored in the
     database. The second three versions use the passed query instance
     to only return the object matching the query criteria.</p>

  <p>Similar to the <code>database::find()</code> functions
     (<a href="#3.9">Section 3.9, "Loading Persistent Objects"</a>),
     <code>query_one()</code> can either allocate a new instance of the
     object class in the dynamic memory or it can load the object's state
     into an existing instance. The <code>query_value()</code> function
     allocates and returns the object by value.</p>

  <p>The <code>query_one()</code> function allows us to determine
     if the query result contains zero or one element. If no objects
     matching the query criteria were found in the database, the
     first version of <code>query_one()</code> returns the <code>NULL</code>
     pointer while the second &mdash; <code>false</code>. If the second
     version returns <code>false</code>, then the passed object
     remains unchanged. For example:</p>

  <pre class="cxx">
  if (unique_ptr&lt;person> p = db.query_one&lt;person> (
        query::email == "jon@example.com"))
  {
    ...
  }

  person p;
  if (db.query_one&lt;person> (query::email == "jon@example.com", p))
  {
    ...
  }
  </pre>

  <p>If the query executed using <code>query_one()</code> or
     <code>query_value()</code> returns more than one element,
     then these functions fail with an assertion. Additionally,
     <code>query_value()</code> also fails with an assertion if
     the query returned no elements.</p>

  <p>Common situations where we can use the shortcut functions are a
     query condition that uses a data member with the
     <code>unique</code> constraint (at most one element returned;
     see <a href="#14.7">Section 14.7, "Index Definition Pragmas"</a>)
     as well as aggregate queries (exactly one element returned; see
     <a href="#10">Chapter 10, "Views"</a>).</p>

  <h2><a name="4.4">4.4 Query Result</a></h2>

  <p>The <code>database::query()</code> function returns the result of
     executing a query as an instance of the <code>odb::result</code>
     class template, for example:</p>

  <pre class="cxx">
  typedef odb::query&lt;person> query;
  typedef odb::result&lt;person> result;

  result johns (db.query&lt;person> (query::first == "John"));
  </pre>

  <p>It is best to view an instance of <code>odb::result</code>
     as a handle to a stream, such as a socket stream. While we can
     make a copy of a result or assign one result to another, the
     two instances will refer to the same result stream. Advancing
     the current position in one instance will also advance it in
     another. The result instance is only usable within the transaction
     it was created in. Trying to manipulate the result after the
     transaction has terminated leads to undefined behavior.</p>

  <p>The <code>odb::result</code> class template conforms to the
     standard C++ sequence requirements and has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  template &lt;typename T>
  class result
  {
  public:
    typedef odb::result_iterator&lt;T> iterator;

  public:
    result ();

    result (const result&amp;);

    result&amp;
    operator= (const result&amp;);

    void
    swap (result&amp;)

  public:
    iterator
    begin ();

    iterator
    end ();

  public:
    void
    cache ();

    bool
    empty () const;

    std::size_t
    size () const;
  };
}
  </pre>

  <p>The default constructor creates an empty result set. The
    <code>cache()</code> function caches the returned objects'
    state in the application's memory. We have already mentioned
    result caching when we talked about query execution. As you
    may remember the <code>database::query()</code> function
    caches the result unless instructed not to by the caller.
    The <code>cache()</code> function allows us to
    cache the result at a later stage if it wasn't already
    cached during query execution.</p>

  <p>If the result is cached, the database state of all the returned
     objects is stored in the application's memory. Note that
     the actual objects are still only instantiated on demand
     during result iteration. It is the raw database state that
     is cached in memory. In contrast, for uncached results
     the object's state is sent by the database system one object
     at a time as the iteration progresses.</p>

  <p>Uncached results can improve the performance of both the application
     and the database system in situations where we have a large
     number of objects in the result or if we will only examine
     a small portion of the returned objects. However, uncached
     results have a number of limitations. There can only be one
     uncached result in a transaction. Creating another result
     (cached or uncached) by calling <code>database::query()</code>
     will invalidate the existing uncached result. Furthermore,
     calling any other database functions, such as <code>update()</code>
     or <code>erase()</code> will also invalidate the uncached result.
     It also follows that uncached results cannot be used on objects
     with containers (<a href="#5">Chapter 5, "Containers"</a>) since
     loading a container would invalidate the uncached result.</p>

  <p>The <code>empty()</code> function returns <code>true</code> if
     there are no objects in the result and <code>false</code> otherwise.
     The <code>size()</code> function can only be called for cached results.
     It returns the number of objects in the result. If we call this
     function on an uncached result, the <code>odb::result_not_cached</code>
     exception is thrown.</p>

  <p>To iterate over the objects in a result we use the
     <code>begin()</code> and <code>end()</code> functions
     together with the <code>odb::result&lt;T>::iterator</code>
     type, for example:</p>

  <pre class="cxx">
  result r (db.query&lt;person> (query::first == "John"));

  for (result::iterator i (r.begin ()); i != r.end (); ++i)
  {
    ...
  }
  </pre>

  <p>In C++11 we can use the <code>auto</code>-typed variabe instead
     of spelling the iterator type explicitly, for example:</p>

  <pre class="cxx">
  for (auto i (r.begin ()); i != r.end (); ++i)
  {
    ...
  }
  </pre>

  <p>The C++11 range-based <code>for</code>-loop can be used to further
     simplify the iteration:</p>

  <pre class="cxx">
  for (person&amp; p: r)
  {
    ...
  }
  </pre>

  <p>The result iterator is an input iterator which means that the
     only two position operations that it supports are to move to the
     next object and to determine whether the end of the result stream
     has been reached. In fact, the result iterator can only be in two
     states: the current position and the end position. If we have
     two iterators pointing to the current position and then we
     advance one of them, the other will advance as well. This,
     for example, means that it doesn't make sense to store an
     iterator that points to some object of interest in the result
     stream with the intent of dereferencing it after the iteration
     is over. Instead, we would need to store the object itself. We
     also cannot iterate over the same result multiple times without
     re-executing the query.</p>

  <p>The result iterator has the following dereference functions
     that can be used to access the pointed-to object:</p>

  <pre class="cxx">
namespace odb
{
  template &lt;typename T>
  class result_iterator
  {
  public:
    T*
    operator-> () const;

    T&amp;
    operator* () const;

    typename object_traits&lt;T>::pointer_type
    load ();

    void
    load (T&amp; x);

    typename object_traits&lt;T>::id_type
    id ();
  };
}
  </pre>

  <p>When we call the <code>*</code> or <code>-></code> operator,
     the iterator will allocate a new instance of the object class
     in the dynamic memory, load its state from the database
     state, and return a reference or pointer to the new instance. The
     iterator maintains the ownership of the returned object and will
     return the same pointer for subsequent calls to either of these
     operators until it is advanced to the next object or we call
     the first <code>load()</code> function (see below). For example:</p>

  <pre class="cxx">
  result r (db.query&lt;person> (query::first == "John"));

  for (result::iterator i (r.begin ()); i != r.end ();)
  {
    cout &lt;&lt; i->last () &lt;&lt; endl; // Create an object.
    person&amp; p (*i);             // Reference to the same object.
    cout &lt;&lt; p.age () &lt;&lt; endl;
    ++i;                        // Free the object.
  }
  </pre>

  <p>The overloaded <code>result_iterator::load()</code> functions are
     similar to <code>database::load()</code>. The first function
     returns a dynamically allocated instance of the current
     object. As an optimization, if the iterator already owns an object
     as a result of an earlier
     call to the <code>*</code> or <code>-></code> operator, then it
     relinquishes the ownership of this object and returns it instead.
     This allows us to write code like this without worrying about
     a double allocation:</p>

  <pre class="cxx">
  result r (db.query&lt;person> (query::first == "John"));

  for (result::iterator i (r.begin ()); i != r.end (); ++i)
  {
    if (i->last == "Doe")
    {
      auto_ptr p (i.load ());
      ...
    }
  }
  </pre>

  <p>Note, however, that because of this optimization, a subsequent
     to <code>load()</code> call to the <code>*</code> or <code>-></code>
     operator results in the allocation of a new object.</p>

  <p>The second <code>load()</code> function allows
     us to load the current object's state into an existing instance.
     For example:</p>

  <pre class="cxx">
  result r (db.query&lt;person> (query::first == "John"));

  person p;
  for (result::iterator i (r.begin ()); i != r.end (); ++i)
  {
    i.load (p);
    cout &lt;&lt; p.last () &lt;&lt; endl;
    cout &lt;&lt; i.age () &lt;&lt; endl;
  }
  </pre>

  <p>The <code>id()</code> function return the object id of the current
     object. While we can achieve the same by loading the object and getting
     its id, this function is more efficient since it doesn't actually
     create the object. This can be useful when all we need is the object's
     identifier. For example:</p>

  <pre class="cxx">
  std::set&lt;unsigned long> set = ...; // Persons of interest.

  result r (db.query&lt;person> (query::first == "John"));

  for (result::iterator i (r.begin ()); i != r.end (); ++i)
  {
    if (set.find (i.id ()) != set.end ()) // No object loaded.
    {
      cout &lt;&lt; i->first () &lt;&lt; endl; // Object loaded.
    }
  }
  </pre>

  <h2><a name="4.5">4.5 Prepared Queries</a></h2>

  <p>Most modern relational database systems have the notion of a prepared
     statement. Prepared statements allow us to perform the potentially
     expensive tasks of parsing SQL, preparing the query execution
     plan, etc., once and then executing the same query multiple
     times, potentially using different values for parameters in
     each execution.</p>

  <p>In ODB all the non-query database operations such as
     <code>persist()</code>, <code>load()</code>, <code>update()</code>,
     etc., are implemented in terms of prepared statements that are cached
     and reused. While the <code>query()</code>, <code>query_one()</code>,
     and <code>query_one()</code> database operations also use prepared
     statements, these statements are not cached or reused by default since
     ODB has no knowledge of whether a query will be executed multiple times
     or only once. Instead, ODB provides a mechanism, called prepared queries,
     that allows us to prepare a query once and execute it multiple
     times. In other words, ODB prepared queries are a thin wrapper
     around the underlying database's prepared statement functionality.</p>

  <p>In most cases ODB shields the application developer from database
     connection management and multi-threading issues. However, when it
     comes to prepared queries, a basic understanding of how ODB manages
     these aspects is required. Conceptually, the <code>odb::database</code>
     class represents a specific database, that is, a data store. However,
     underneath, it maintains one or more connections to this database.
     A connection can be used only by a single thread at a time. When
     we start a transaction (by calling <code>database::begin()</code>),
     the transaction instance obtains a connection and holds on to it
     until the transaction is committed or rolled back. During this time
     no other thread can use this connection. When the transaction
     releases the connection, it may be closed or reused by another
     transaction in this or another thread. What exactly happens to
     a connection after it has been released depends on the connection
     factory that is used by the <code>odb::database</code> instance.
     For more information on connection factories, refer to
     <a href="#II">Part II, "Database Systems"</a>.</p>

  <p>A query prepared on one connection cannot be executed on another.
     In other words, a prepared query is associated with the connection.
     One important implication of this restriction is that we cannot
     prepare a query in one transaction and then try to execute it
     in another without making sure that both transactions use the
     same connection.</p>

  <p>To enable the prepared query functionality we need to specify
     the <code>--generate-prepared</code> ODB compiler option. If
     we are planning to always prepare our queries, then we can
     disable the once-off query execution support by also specifying
     the <code>--omit-unprepared</code> option.</p>

  <p>To prepare a query we use the <code>prepare_query()</code> function
     template. This function can be called on both the <code>odb::database</code>
     and <code>odb::connection</code> instances. The <code>odb::database</code>
     version simply obtains the connection used by the currently active
     transaction and calls the corresponding <code>odb::connection</code>
     version. If no transaction is currently active, then this function
     throws the <code>odb::not_in_transaction</code> exception
     (<a href="#3.5">Section 3.5, "Transactions"</a>). The
     <code>prepare_query()</code> function has the following signature:</p>

  <pre class="cxx">
  template &lt;typename T>
  prepared_query&lt;T>
  prepare_query (const char* name, const odb::query&lt;T>&amp;);
  </pre>

  <p>The first argument to the <code>prepare_query()</code> function is
     the prepared query name. This name is used as a key for prepared
     query caching (discussed later) and must be unique. For some databases,
     notably PostgreSQL, it is also used as a name of the underlying prepared
     statement. The name <code>"<i>object</i>_query"</code> (for example,
     <code>"person_query"</code>) is reserved for the once-off queries
     executed by the <code>database::query()</code> function. Note that
     the <code>prepare_query()</code> function makes only a shallow copy
     of this argument, which means that the name must be valid for the
     lifetime of the returned <code>prepared_query</code> instance.</p>

  <p>The second argument to the <code>prepare_query()</code> function
     is the query criteria. It has the same semantics as in the
     <code>query()</code> function discussed in <a href="#4.3">Section
     4.3, "Executing a Query"</a>. Similar to <code>query()</code>, we
     also have to explicitly specify the object type that we will be
     querying. For example:</p>

  <pre class="cxx">
typedef odb::query&lt;person> query;
typedef odb::prepared_query&lt;person> prep_query;

prep_query pq (
  db.prepare_query&lt;person> ("person-age-query", query::age > 50));
  </pre>

  <p>The result of executing the <code>prepare_query()</code> function is
     the <code>prepared_query</code> instance that represent the prepared
     query. It is best to view <code>prepared_query</code> as a handle to
     the underlying prepared statement. While we can make a copy of it or
     assign one <code>prepared_query</code> to another, the two instances
     will refer to the same prepared statement. Once the last instance of
     <code>prepared_query</code> referencing a specific prepared statement
     is destroyed, this statement is released. The <code>prepared_query</code>
     class template has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  template &lt;typename T>
  struct prepared_query
  {
    prepared_query ();

    prepared_query (const prepared_query&amp;)
    prepared_query&amp; operator= (const prepared_query&amp;)

    result&lt;T>
    execute (bool cache = true);

    typename object_traits&lt;T>::pointer_type
    execute_one ();

    bool
    execute_one (T&amp; object);

    T
    execute_value ();

    const char*
    name () const;

    statement&amp;
    statement () const;

    operator unspecified_bool_type () const;
  };
}
  </pre>

  <p>The default constructor creates an empty <code>prepared_query</code>
     instance, that is, an instance that does not reference a prepared
     statement and therefore cannot be executed. The only way to create
     a non-empty prepared query is by calling the <code>prepare_query()</code>
     function discussed above. To test whether the prepared query is empty,
     we can use the implicit conversion operator to a boolean type. For
     example:</p>

  <pre class="cxx">
  prepared_query&lt;person> pq;

  if (pq)
  {
    // Not empty.
    ...
  }
  </pre>

  <p>The <code>execute()</code> function executes the query and returns
     the result instance. The <code>cache</code> argument indicates
     whether the result should be cached and has the same semantics
     as in the <code>query()</code> function. In fact, conceptually,
     <code>prepare_query()</code> and <code>execute()</code> are just
     the <code>query()</code> function split into two:
     <code>prepare_query()</code> takes the first
     <code>query()</code> argument (the query condition) while
     <code>execute()</code> takes the second (the cache flag). Note
     also that re-executing a prepared query invalidates the
     previous execution result, whether cached or uncached. </p>

  <p>The <code>execute_one()</code> and <code>execute_value()</code>
     functions can be used as shortcuts to execute a query that is
     known to return at most one or exactly one object, respectively.
     The arguments and return values in these functions have the same
     semantics as in <code>query_one()</code> and <code>query_value()</code>.
     And similar to <code>execute()</code> above, <code>prepare_query()</code>
     and <code>execute_one/value()</code> can be seen as the
     <code>query_one/value()</code> function split into two:
     <code>prepare_query()</code> takes the first
     <code>query_one/value()</code> argument (the query condition) while
     <code>execute_one/value()</code> takes the second argument (if any)
     and returns the result. Note also that <code>execute_one/value()</code>
     never caches its result but invalidates the result of any previous
     <code>execute()</code> call on the same prepared query.</p>

  <p>The <code>name()</code> function returns the prepared query name.
     This is the same name as was passed as the first argument in the
     <code>prepare_query()</code> call. The <code>statement()</code>
     function returns a reference to the underlying prepared statement.
     Note also that calling any of these functions on an empty
     <code>prepared_query</code> instance results in undefined behavior.</p>

  <p>The simplest use-case for a prepared query is the need to
     execute the same query multiple times within a single transaction.
     Consider the following example that queries for people that are older
     than a number of different ages. This and subsequent code fragments
     are taken from the <code>prepared</code> example in the
     <code>odb-examples</code> package.</p>

  <pre class="cxx">
typedef odb::query&lt;person> query;
typedef odb::prepared_query&lt;person> prep_query;
typedef odb::result&lt;person> result;

transaction t (db.begin ());

unsigned short age;
query q (query::age > query::_ref (age));
prep_query pq (db.prepare_query&lt;person> ("person-age-query", q));

for (age = 90; age > 40; age -= 10)
{
  result r (pq.execute ());
  ...
}

t.commit ();
  </pre>

  <p>Another scenario is the need to reuse the same query in multiple
     transactions that are executed at once. As was mentioned above,
     in this case we need to make sure that the prepared query and
     all the transactions use the same connection. Consider an
     alternative version of the above example that executes each
     query in a separate transaction:</p>

  <pre class="cxx">
connection_ptr conn (db.connection ());

unsigned short age;
query q (query::age > query::_ref (age));
prep_query pq (conn->prepare_query&lt;person> ("person-age-query", q));

for (age = 90; age > 40; age -= 10)
{
  transaction t (conn->begin ());

  result r (pq.execute ());
  ...

  t.commit ();
}
  </pre>


  <p>Note that with this approach we hold on to the database connection
     until all the transactions involving the prepared query are
     executed. In particular, this means that while we are busy, the
     connection cannot be reused by another thread. Therefore, this
     approach is only recommended if all the transactions are executed
     close to each other. Also note that an uncached (see below)
     prepared query is invalidated once we release the connection
     on which it was prepared.</p>

  <p>If we need to reuse a prepared query in transactions that are
     executed at various times, potentially in different threads, then
     the recommended approach is to cache the prepared query on the
     connection. To support this functionality the <code>odb::database</code>
     and <code>odb::connection</code> classes provide the following
     function templates. Similar to <code>prepare_query()</code>,
     the <code>odb::database</code> versions of the below
     functions call the corresponding <code>odb::connection</code>
     versions using the currently active transaction to resolve
     the connection.</p>

  <pre class="cxx">
  template &lt;typename T>
  void
  cache_query (const prepared_query&lt;T>&amp;);

  template &lt;typename T, typename P>
  void
  cache_query (const prepared_query&lt;T>&amp;,
               std::[auto|unique]_ptr&lt;P> params);

  template &lt;typename T>
  prepared_query&lt;T>
  lookup_query (const char* name) const;

  template &lt;typename T, typename P>
  prepared_query&lt;T>
  lookup_query (const char* name, P*&amp; params) const;
  </pre>

  <p>The <code>cache_query()</code> function caches the passed prepared
     query on the connection. The second overloaded version of
     <code>cache_query()</code> also takes a pointer to the
     by-reference query parameters. In C++98/03 it should be
     <code>std::auto_ptr</code> while in C++11 <code>std::auto_ptr</code>
     or <code>std::unique_ptr</code> can be used. The
     <code>cache_query()</code> function assumes ownership of the
     passed <code>params</code> argument. If a prepared query
     with the same name is already cached on this connection,
     then the <code>odb::prepared_already_cached</code> exception
     is thrown.</p>

  <p>The <code>lookup_query()</code> function looks up a previously
     cached prepared query given its name. The second overloaded
     version of <code>lookup_query()</code> also returns a pointer
     to the by-reference query parameters. If a prepared query
     with this name has not been cached, then an empty
     <code>prepared_query</code> instance is returned. If a
     prepared query with this name has been cached but either
     the object type or the parameters type does not match
     that which was cached, then the <code>odb::prepared_type_mismatch</code>
     exception is thrown.</p>

  <p>As a first example of the prepared query cache functionality,
     consider the case that does not use any by-reference parameters:</p>

  <pre class="cxx">
for (unsigned short i (0); i &lt; 5; ++i)
{
  transaction t (db.begin ());

  prep_query pq (db.lookup_query&lt;person> ("person-age-query"));

  if (!pq)
  {
    pq = db.prepare_query&lt;person> (
      "person-val-age-query", query::age > 50);
    db.cache_query (pq);
  }

  result r (pq.execute ());
  ...

  t.commit ();

  // Do some other work.
  //
  ...
}
  </pre>

  <p>The following example shows how to do the same but for a query that
     includes by-reference parameters. In this case the parameters are
     cached together with the prepared query.</p>

  <pre class="cxx">
for (unsigned short age (90); age > 40; age -= 10)
{
  transaction t (db.begin ());

  unsigned short* age_param;
  prep_query pq (
    db.lookup_query&lt;person> ("person-age-query", age_param));

  if (!pq)
  {
    auto_ptr&lt;unsigned short> p (new unsigned short);
    age_param = p.get ();
    query q (query::age > query::_ref (*age_param));
    pq = db.prepare_query&lt;person> ("person-age-query", q);
    db.cache_query (pq, p); // Assumes ownership of p.
  }

  *age_param = age; // Initialize the parameter.
  result r (pq.execute ());
  ...

  t.commit ();

  // Do some other work.
  //
  ...
}
  </pre>

  <p>As is evident from the above examples, when we use a prepared
     query cache, each transaction that executes a query must also
     include code that prepares and caches this query if it hasn't already
     been done. If a prepared query is used in a single place in the
     application, then this is normally not an issue since all the
     relevant code is kept in one place. However, if the same query
     is used in several different places in the application, then
     we may end up duplicating the same preparation and caching
     code, which makes it hard to maintain.</p>

  <p>To resolve this issue ODB allows us to register a prepared
     query factory that will be called to prepare and cache a
     query during the call to <code>lookup_query()</code>. To
     register a factory we use the <code>database::query_factory()</code>
     function. In C++98/03 it has the following signature:</p>

  <pre class="cxx">
  void
  query_factory (const char* name,
                 void (*factory) (const char* name, connection&amp;));
  </pre>

  <p>While in C++11 it uses the <code>std::function</code> class
     template:</p>

  <pre class="cxx">
  void
  query_factory (const char* name,
                 std::function&lt;void (const char* name, connection&amp;)>);
  </pre>

  <p>The first argument to the <code>query_factory()</code> function is
     the prepared query name that this factory will be called to prepare
     and cache. An empty name is treated as a fallback wildcard factory
     that is capable of preparing any query. The second argument is the
     factory function or, in C++11, function object or lambda.</p>

  <p>The example fragment shows how we can use the prepared query
     factory:</p>

  <pre class="cxx">
struct params
{
  unsigned short age;
  string first;
};

static void
query_factory (const char* name, connection&amp; c)
{
  auto_ptr&lt;params> p (new params);
  query q (query::age > query::_ref (p->age) &amp;&amp;
           query::first == query::_ref (p->first));
  prep_query pq (c.prepare_query&lt;person> (name, q));
  c.cache_query (pq, p);
}

db.query_factory ("person-age-name-query", &amp;query_factory);

for (unsigned short age (90); age > 40; age -= 10)
{
  transaction t (db.begin ());

  params* p;
  prep_query pq (db.lookup_query&lt;person> ("person-age-name-query", p));
  assert (pq);

  p->age = age;
  p->first = "John";
  result r (pq.execute ());
  ...

  t.commit ();
}
  </pre>

  <p>In C++11 we could have instead used a lambda function as well as
     <code>unique_ptr</code> rather than <code>auto_ptr</code>:</p>

  <pre>
db.query_factory (
  "person-age-name-query",
  [] (const char* name, connection&amp; c)
  {
    unique_ptr&lt;params> p (new params);
    query q (query::age > query::_ref (p->age) &amp;&amp;
             query::first == query::_ref (p->first));
    prep_query pq (c.prepare_query&lt;person> (name, q));
    c.cache_query (pq, std::move (p));
  });
  </pre>

  <!-- CHAPTER -->

  <hr class="page-break"/>
  <h1><a name="5">5 Containers</a></h1>

  <p>The ODB runtime library provides built-in persistence support for all the
     commonly used standard C++98/03 containers, namely,
     <code>std::vector</code>, <code>std::list</code>, <code>std::deque</code>,
     <code>std::set</code>, <code>std::multiset</code>, <code>std::map</code>, and
     <code>std::multimap</code> as well as C++11 <code>std::array</code>,
     <code>std::forward_list</code>, <code>std::unordered_set</code>,
     <code>std::unordered_multiset</code>, <code>std::unordered_map</code>,
     and <code>std::unordered_multimap</code>.
     Plus, ODB profile libraries, that are
     available for commonly used frameworks and libraries (such as Boost and
     Qt), provide persistence support for containers found in these frameworks
     and libraries (<a href="#III">Part III, "Profiles"</a>). Both the
     ODB runtime library and profile libraries also provide a number of
     change-tracking container equivalents which can be used to minimize
     the number of database operations necessary to synchronize the container
     state with the database (<a href="#5.4">Section 5.4, "Change-Tracking
     Containers"</a>). It is also easy to persist custom container types
     as discussed later in <a href="#5.5">Section 5.5, "Using Custom
     Containers"</a>.</p>

  <p>We don't need to do anything special to declare a member of a
     container type in a persistent class. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
private:
  std::vector&lt;std::string> nicknames_;
  ...
};
  </pre>

  <p>The complete version of the above code fragment and the other code
     samples presented in this chapter can be found in the <code>container</code>
     example in the <code>odb-examples</code> package.</p>

  <p>A data member in a persistent class that is of a container type
     behaves like a value type. That is, when an object is made persistent,
     the elements of the container are stored in the database. Similarly,
     when a persistent object is loaded from the database, the contents
     of the container are automatically loaded as well. A data member
     of a container type can also use a smart pointer, as discussed
     in <a href="#7.3">Section 7.3, "Pointers and <code>NULL</code>
     Value Semantics"</a>.</p>

  <p>While an ordinary member is mapped to one or more columns in the
     object's table, a member of a container type is mapped to a separate
     table. The exact schema of such a table depends on the kind of
     container. ODB defines the following container kinds: ordered,
     set, multiset, map, and multimap. The container kinds and the
     contents of the tables to which they are mapped are discussed
     in detail in the following sections.</p>

  <p>Containers in ODB can contain simple value types (<a href="#7.1">Section
     7.1, "Simple Value Types"</a>), composite value types
     (<a href="#7.2">Section 7.2, "Composite Value Types"</a>), and pointers
     to objects (<a href="#6">Chapter 6, "Relationships"</a>). Containers of
     containers, either directly or indirectly via a composite value
     type, are not allowed. A key in a map or multimap container can
     be a simple or composite value type but not a pointer to an object.
     An index in the ordered container should be a simple integer value
     type.</p>

  <p>The value type in the ordered, set, and map containers as well as
     the key type in the map containers should be default-constructible.
     The default constructor in these types can be made private in which
     case the <code>odb::access</code> class should be made a friend of
     the value or key type. For example:</p>

  <pre class="cxx">
#pragma db value
class name
{
public:
  name (const std::string&amp;, const std::string&amp;);
  ...
private:
  friend class odb::access;
  name ();
  ...
};

#pragma db object
class person
{
  ...
private:
  std::vector&lt;name> aliases_;
  ...
};
  </pre>


  <h2><a name="5.1">5.1 Ordered Containers</a></h2>

  <p>In ODB an ordered container is any container that maintains (explicitly
     or implicitly) an order of its elements in the form of an integer index.
     Standard C++ containers that are ordered include <code>std::vector</code>
     <code>std::list</code>, and <code>std::deque</code> as well as C++11 <code>std::array</code> and
     <code>std::forward_list</code>. While elements in <code>std::set</code>
     are also kept in a specific order, this order is not based on an
     integer index but rather on the relationship between elements. As
     a result, <code>std::set</code> is not considered an ordered
     container for the purpose of persistence.</p>

  <p>The database table for an ordered container consists of at least
     three columns. The first column contains the object id of a
     persistent class instance of which the container is a member.
     The second column contains the element index within a container.
     And the last column contains the element value. If the object
     id or element value are composite, then, instead of a single
     column, they can occupy multiple columns. For an ordered
     container table the ODB compiler also defines two indexes:
     one for the object id column(s) and the other for the index
     column. Refer to <a href="#14.7">Section 14.7, "Index Definition
     Pragmas"</a> for more information on how to customize these
     indexes.</p>

  <p>Consider the following persistent object as an example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
private:
  #pragma db id auto
  unsigned long id_;

  std::vector&lt;std::string> nicknames_;
  ...
};
  </pre>

  <p>The resulting database table (called <code>person_nicknames</code>) will
     contain the object id column of type <code>unsigned&nbsp;long</code>
     (called <code>object_id</code>), the index column of an integer type
     (called <code>index</code>), and the value column of type
     <code>std::string</code> (called <code>value</code>).</p>

  <p>A number of ODB pragmas allow us to customize the table name, column
     names, and native database types of an ordered container both, on
     the per-container and per-member basis. For more information on
     these pragmas, refer to <a href="#14">Chapter 14, "ODB Pragma
     Language"</a>. The following example shows some of the possible
     customizations:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
private:
  #pragma db table("nicknames")              \
             id_column("person_id")          \
             index_type("SMALLINT UNSIGNED") \
             index_column("nickname_number") \
             value_type("VARCHAR(255)")      \
             value_column("nickname")
  std::vector&lt;std::string> nicknames_;
  ...
};
  </pre>

  <p>While the C++ container used in a persistent class may be ordered,
     sometimes we may wish to store such a container in the database without
     the order information. In the example above, for instance, the order
     of person's nicknames is probably not important. To instruct the ODB
     compiler to ignore the order in ordered containers we can use the
     <code>db&nbsp;unordered</code> pragma (<a href="#14.3.9">Section 14.3.9,
     "<code>unordered</code>"</a>, <a href="#14.4.19">Section 14.4.19,
     "<code>unordered</code>"</a>). For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
private:
  #pragma db unordered
  std::vector&lt;std::string> nicknames_;
  ...
};
  </pre>

  <p>The table for an ordered container that is marked unordered won't
     have the index column and the order in which elements are retrieved
     from the database may not be the same as the order in which they
     were stored.</p>

  <h2><a name="5.2">5.2 Set and Multiset Containers</a></h2>

  <p>In ODB set and multiset containers (referred to as just set
     containers) are associative containers that contain elements
     based on some relationship between them. A set container may
     or may not guarantee a particular order of the elements that
     it stores. Standard C++ containers that are considered set
     containers for the purpose of persistence include
     <code>std::set</code> and <code>std::multiset</code> as well
     as C++11 <code>std::unordered_set</code> and
     <code>std::unordered_multiset</code>.</p>

  <p>The database table for a set container consists of at least
     two columns. The first column contains the object id of a
     persistent class instance of which the container is a member.
     And the second column contains the element value. If the object
     id or element value are composite, then, instead of a single
     column, they can occupy multiple columns. ODB compiler also
     defines an index on a set container table for the object id
     column(s). Refer to <a href="#14.7">Section 14.7, "Index Definition
     Pragmas"</a> for more information on how to customize this
     index.</p>

  <p>Consider the following persistent object as an example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
private:
  #pragma db id auto
  unsigned long id_;

  std::set&lt;std::string> emails_;
  ...
};
  </pre>

  <p>The resulting database table (called <code>person_emails</code>) will
     contain the object id column of type <code>unsigned&nbsp;long</code>
     (called <code>object_id</code>) and the value column of type
     <code>std::string</code> (called <code>value</code>).</p>

  <p>A number of ODB pragmas allow us to customize the table name,
     column names, and native database types of a set container, both on
     the per-container and per-member basis. For more information on
     these pragmas, refer to <a href="#14">Chapter 14, "ODB Pragma
     Language"</a>. The following example shows some of the possible
     customizations:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
private:
  #pragma db table("emails")            \
             id_column("person_id")     \
             value_type("VARCHAR(255)") \
             value_column("email")
  std::set&lt;std::string> emails_;
  ...
};
  </pre>

  <h2><a name="5.3">5.3 Map and Multimap Containers</a></h2>

  <p>In ODB map and multimap containers (referred to as just map
     containers) are associative containers that contain key-value
     elements based on some relationship between keys. A map container
     may or may not guarantee a particular order of the elements that
     it stores. Standard C++ containers that are considered map
     containers for the purpose of persistence include
     <code>std::map</code> and <code>std::multimap</code> as well
     as C++11 <code>std::unordered_map</code> and
     <code>std::unordered_multimap</code>.</p>

  <p>The database table for a map container consists of at least
     three columns. The first column contains the object id of a
     persistent class instance of which the container is a member.
     The second column contains the element key. And the last column
     contains the element value. If the object id, element key, or
     element value are composite, then instead of a single column
     they can occupy multiple columns. ODB compiler also
     defines an index on a map container table for the object id
     column(s). Refer to <a href="#14.7">Section 14.7, "Index Definition
     Pragmas"</a> for more information on how to customize this
     index.</p>

  <p>Consider the following persistent object as an example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
private:
  #pragma db id auto
  unsigned long id_;

  std::map&lt;unsigned short, float> age_weight_map_;
  ...
};
  </pre>

  <p>The resulting database table (called <code>person_age_weight_map</code>)
     will contain the object id column of type <code>unsigned&nbsp;long</code>
     (called <code>object_id</code>), the key column of type
     <code>unsigned short</code> (called <code>key</code>), and the value
     column of type <code>float</code> (called <code>value</code>).</p>

  <p>A number of ODB pragmas allow us to customize the table name,
     column names, and native database types of a map container, both on
     the per-container and per-member basis. For more information on
     these pragmas, refer to <a href="#14">Chapter 14, "ODB Pragma
     Language"</a>. The following example shows some of the possible
     customizations:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
private:
  #pragma db table("weight_map")      \
             id_column("person_id")   \
             key_type("INT UNSIGNED") \
             key_column("age")        \
             value_type("DOUBLE")     \
             value_column("weight")
  std::map&lt;unsigned short, float> age_weight_map_;
  ...
};
  </pre>

  <h2><a name="5.4">5.4 Change-Tracking Containers</a></h2>

  <p>When a persistent object containing one of the standard containers
     is updated in the database, ODB has no knowledge of which elements
     were inserted, erased, or modified. As a result, ODB has no choice
     but to assume the whole container has changed and update the state
     of every single element. This can result in a significant overhead
     if a container contains a large number of elements and we only
     changed a small subset of them.</p>

  <p>To eliminate this overhead, ODB provides a notion of <em>change-tracking
     containers</em>. A change-tracking container, besides containing
     its elements, just like an ordinary container, also includes the
     change state for each element. When it is time to update such a
     container in the database, ODB can use this change information to
     perform a minimum number of database operations necessary to
     synchronize the container state with the database.</p>

  <p>The current version of the ODB runtime library provides a change-tracking
     equivalent of <code>std::vector</code> (<a href="#5.4.1">Section 5.4.1,
     "Change-Tracking <code>vector</code>"</a>) with support for other
     standard container equivalents planned for future releases. ODB
     profile libraries also provide change-tracking equivalents for some
     containers found in the corresponding frameworks and libraries
     (<a href="#III">Part III, "Profiles"</a>).</p>

  <p>A change-tracking container equivalent can normally be used as a drop-in
     replacement for an ordinary container except for a few minor
     interface differences (discussed in the corresponding sub-sections).
     In particular, we don't need to do anything extra to effect
     change tracking. ODB will automatically start, stop, and reset
     change tracking when necessary. The following example illustrates
     this point using <code>odb::vector</code> as a replacement for
     <code>std::vector</code>.</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  odb::vector&lt;std::string> names;
};

person p; // No change tracking (not persistent).
p.names.push_back ("John Doe");

{
  transaction t (db.begin ());
  db.persist (p); // Start change tracking (persistent).
  t.commit ();
}

p.names.push_back ("Johnny Doo");

{
  transaction t (db.begin ());
  db.update (p); // One INSERT; reset change state.
  t.commit ();
}

p.names.modify (0) = "Doe, John"; // Instead of operator[].
p.names.pop_back ();

{
  transaction t (db.begin ());
  db.update (p); // One UPDATE, one DELETE; reset change state.
  t.commit ();
}

{
  transaction t (db.begin ());
  auto_ptr&lt;person> p1 (db.load&lt;person> (...)); // Start change tracking.
  p1->names.insert (p1->names.begin (), "Joe Do");
  db.update (*p1); // One UPDATE, one INSERT; reset change state.
  t.commit ();
}

{
  transaction t (db.begin ());
  db.erase (p); // One DELETE; stop change tracking (not persistent).
  t.commit ();
}
  </pre>

  <p>One interesting aspect of change tracking is what happens when a
     transaction that contains an update is later rolled back. In this
     case, while the change-tracking container has reset the change
     state (after update), actual changes were not committed to the
     database. Change-tracking containers handle this case by
     automatically registering a rollback callback and then, if it is
     called, marking the container as "completely changed". In this
     state, the container no longer tracks individual element changes
     and, when updated, falls back to the complete state update, just
     like an ordinary container. The following example illustrates
     this point:</p>

  <pre class="cxx">
person p;
p.names.push_back ("John Doe");

{
  transaction t (db.begin ());
  db.persist (p); // Start change tracking (persistent).
  t.commit ();
}

p.names.push_back ("Johnny Doo");

for (;;)
{
  try
  {
    transaction t (db.begin ());

    // First try: one INSERT.
    // Next try: one DELETE, two INSERTs.
    //
    db.update (p); // Reset change state.

    t.commit (); // If throws (rollback), mark as completely changed.
    break;
  }
  catch (const odb::recoverable&amp;)
  {
    continue;
  }
}
  </pre>

  <p>For the interaction of change-tracking containers with change-updated
     object sections, refer to <a href="#9.4">Section 9.4, "Sections and
     Change-Tracking Containers"</a>. Note also that change-tracking
     containers cannot be accessed with by-value accessors
     (<a href="#14.4.5">Section 14.4.5,
     "<code>get</code>/<code>set</code>/<code>access</code>"</a>)
     since in certain situations such access may involve a
     modification of the container (for example, clearing the change
     flag after update).</p>

  <h3><a name="5.4.1">5.4.1 Change-Tracking <code>vector</code></a></h3>

  <p>Class template <code>odb::vector</code>, defined in
     <code>&lt;odb/vector.hxx></code>, is a change-tracking
     equivalent for <code>std::vector</code>. It
     is implemented in terms of <code>std::vector</code> and is
     implicit-convertible to and implicit-constructible from
     <code>const std::vector&amp;</code>. In particular, this
     means that we can use <code>odb::vector</code> instance
     anywhere <code>const std::vector&amp;</code> is
     expected. In addition, <code>odb::vector</code> constant
     iterator (<code>const_iterator</code>) is the same type as
     that of <code>std::vector</code>.</p>

  <p><code>odb::vector</code> incurs 2-bit per element overhead
     in order to store the change state. It cannot
     be stored unordered in the database (<a href="#14.4.19">Section
     14.4.19 "<code>unordered</code>"</a>) but can be used as an inverse
     side of a relationship (<a href="#6.2">6.2 "Bidirectional
     Relationships"</a>). In this case, no change tracking is performed
     since no state for such a container is stored in the database.</p>

  <p>The number of database operations required to update the state
     of <code>odb::vector</code> corresponds well to the complexity
     of <code>std::vector</code> functions. In particular, adding or
     removing an element from the back of the vector (for example,
     with <code>push_back()</code> and <code>pop_back()</code>),
     requires only a single database statement execution. In contrast,
     inserting or erasing an element somewhere in the middle of the
     vector will require a database statement for every element that
     follows it.</p>

  <p><code>odb::vector</code> replicates most of the <code>std::vector</code>
     interface as defined in both C++98/03 and C++11 standards. However,
     functions and operators that provide direct write access to
     the elements had to be altered or disabled in order to support
     change tracking. Additional functions used to interface with
     <code>std::vector</code> and to control the change tracking state
     were also added. The following listing summarizes the differences
     between the <code>odb::vector</code> and <code>std::vector</code>
     interfaces. Any <code>std::vector</code> function or operator
     not mentioned in this listing has exactly the same signature
     and semantics in <code>odb::vector</code>. Functions and
     operators that were disabled are shown as commented out and
     are followed by functions/operators that replace them.</p>

  <pre class="cxx">
namespace odb
{
  template &lt;class T, class A = std::allocator&lt;T> >
  class vector
  {
    ...

    // Element access.
    //

    //reference operator[] (size_type);
      reference modify (size_type);

    //reference at (size_type);
      reference modify_at (size_type);

    //reference front ();
      reference modify_front ();

    //reference back ();
      reference modify_back ();

    //T*        data () noexcept;
      T*        modify_data () noexcept; // C++11 only.

    // Iterators.
    //
    typedef typename std::vector&lt;T, A>::const_iterator const_iterator;

    class iterator
    {
      ...

      // Element Access.
      //

      //reference       operator* () const;
        const_reference operator* () const;
        reference       modify () const;

      //pointer       operator-> () const;
        const_pointer operator-> () const;

      //reference       operator[] (difference_type);
        const_reference operator[] (difference_type);
        reference       modify (difference_type) const;

      // Interfacing with std::vector::iterator.
      //
      typename std::vector&lt;T, A>::iterator base () const;
    };

    // Return std::vector iterators. The begin() functions mark
    // all the elements as modified.
    //
    typename std::vector&lt;T, A>::iterator         mbegin ();
    typename std::vector&lt;T, A>::iterator         mend ();
    typename std::vector&lt;T, A>::reverse_iterator mrbegin ();
    typename std::vector&lt;T, A>::reverse_iterator mrend ();

    // Interfacing with std::vector.
    //
    vector (const std::vector&lt;T, A>&amp;);
    vector (std::vector&lt;T, A>&amp;&amp;); // C++11 only.

    vector&amp; operator= (const std::vector&lt;T, A>&amp;);
    vector&amp; operator= (std::vector&lt;T, A>&amp;&amp;); // C++11 only.

    operator const std::vector&lt;T, A>&amp; () const;
    std::vector&lt;T, A>&amp; base ();
    const std::vector&lt;T, A>&amp; base ();

    // Change tracking.
    //
    bool _tracking () const;
    void _start () const;
    void _stop () const;
    void _arm (transaction&amp;) const;
  };
}
  </pre>

  <p>The following example highlights some of the differences between
     the two interfaces. <code>std::vector</code> versions are commented
     out.</p>

  <pre class="cxx">
#include &lt;vector>
#include &lt;odb/vector.hxx>

void f (const std::vector&lt;int>&amp;);

odb::vector&lt;int> v ({1, 2, 3});

f (v); // Ok, implicit conversion.

if (v[1] == 2) // Ok, const access.
  //v[1]++;
  v.modify (1)++;

//v.back () = 4;
v.modify_back () = 4;

for (auto i (v.begin ()); i != v.end (); ++i)
{
  if (*i != 0) // Ok, const access.
    //*i += 10;
    i.modify () += 10;
}

std::sort (v.mbegin (), v.mend ());
  </pre>

  <p>Note also the subtle difference between copy/move construction
     and copy/move assignment of <code>odb::vector</code> instances.
     While copy/move constructor will copy/move both the elements as
     well as their change state, in contrast, assignment is tracked
     as any other change to the vector content.</p>

  <h2><a name="5.5">5.5 Using Custom Containers</a></h2>

  <p>While the ODB runtime and profile libraries provide support for
     a wide range of containers, it is also easy to persist custom
     container types or make a change-tracking version out of one.</p>

  <p>To achieve this you will need to implement the
     <code>container_traits</code> class template specialization for
     your container. First, determine the container kind (ordered, set,
     multiset, map, or multimap) for your container type. Then use a
     specialization for one of the standard C++ containers found in
     the common ODB runtime library (<code>libodb</code>) as a base
     for your own implementation.</p>

  <p>Once the container traits specialization is ready for your container,
     you will need to include it into the ODB compilation process using
     the <code>--odb-epilogue</code> option and into the generated header
     files with the <code>--hxx-prologue</code> option. As an example,
     suppose we have a hash table container for which we have the traits
     specialization implemented in the <code>hashtable-traits.hxx</code>
     file. Then, we can create an ODB compiler options file for this
     container and save it to <code>hashtable.options</code>:</p>

  <pre>
# Options file for the hash table container.
#
--odb-epilogue '#include "hashtable-traits.hxx"'
--hxx-prologue '#include "hashtable-traits.hxx"'
  </pre>

  <p>Now, whenever we compile a header file that uses the hashtable
     container, we can specify the following command line option to
     make sure it is recognized by the ODB compiler as a container
     and the traits file is included in the generated code:</p>

  <pre>
--options-file hashtable.options
  </pre>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="6">6 Relationships</a></h1>

  <p>Relationships between persistent objects are expressed with pointers or
     containers of pointers. The ODB runtime library provides built-in support
     for <code>shared_ptr</code>/<code>weak_ptr</code> (TR1 or C++11),
     <code>std::unique_ptr</code> (C++11),
     <code>std::auto_ptr</code>, and raw pointers. Plus, ODB profile
     libraries, that are available for commonly used frameworks and libraries
     (such as Boost and Qt), provide support for smart pointers found in these
     frameworks and libraries (<a href="#III">Part III, "Profiles"</a>). It is
     also easy to add support for a custom smart pointer as discussed later
     in <a href="#6.5"> Section 6.5, "Using Custom Smart Pointers"</a>. Any
     supported smart pointer can be used in a data member as long as it can be
     explicitly constructed from the canonical object pointer
     (<a href="#3.3">Section 3.3, "Object and View Pointers"</a>).  For
     example, we can use <code>weak_ptr</code> if the object pointer
     is <code>shared_ptr</code>.</p>

  <p>When an object containing a pointer to another object is loaded,
     the pointed-to object is loaded as well. In some situations this
     eager loading of the relationships is undesirable since it
     can lead to a large number of otherwise unused objects being
     instantiated from the database. To support finer control
     over relationships loading, the ODB runtime and profile
     libraries provide the so-called <em>lazy</em> versions of
     the supported pointers. An object pointed-to by a lazy pointer
     is not loaded automatically when the containing object is loaded.
     Instead, we have to explicitly request the instantiation of the
     pointed-to object. Lazy pointers are discussed in
     detail in <a href="#6.4">Section 6.4, "Lazy Pointers"</a>.</p>

  <p>As a simple example, consider the following employee-employer
     relationship. Code examples presented in this chapter
     will use the <code>shared_ptr</code> and <code>weak_ptr</code>
     smart pointers from the TR1 (<code>std::tr1</code>) namespace.</p>

  <pre class="cxx">
#pragma db object
class employer
{
  ...

  #pragma db id
  std::string name_;
};

#pragma db object
class employee
{
  ...

  #pragma db id
  unsigned long id_;

  std::string first_name_;
  std::string last_name_;

  shared_ptr&lt;employer> employer_;
};
  </pre>

  <p>By default, an object pointer can be <code>NULL</code>. To
     specify that a pointer always points to a valid object we can
     use the <code>not_null</code> pragma (<a href="#14.4.6">Section
     14.4.6, "<code>null</code>/<code>not_null</code>"</a>) for
     single object pointers and the <code>value_not_null</code> pragma
     (<a href="#14.4.28">Section
     14.4.28, "<code>value_null</code>/<code>value_not_null</code>"</a>)
     for containers of object pointers. For example:</p>

  <pre class="cxx">
#pragma db object
class employee
{
  ...

  #pragma db not_null
  shared_ptr&lt;employer> current_employer_;

  #pragma db value_not_null
  std::vector&lt;shared_ptr&lt;employer> > previous_employers_;
};
  </pre>

  <p>In this case, if we call either <code>persist()</code> or
     <code>update()</code> database function on the
     <code>employee</code> object and the <code>current_employer_</code>
     pointer or one of the pointers stored in the
     <code>previous_employers_</code> container is <code>NULL</code>,
     then the <code>odb::null_pointer</code> exception will be thrown.</p>

  <p>We don't need to do anything special to establish or navigate a
     relationship between two persistent objects, as shown in the
     following code fragment:</p>

  <pre class="cxx">
// Create an employer and a few employees.
//
unsigned long john_id, jane_id;
{
  shared_ptr&lt;employer> er (new employer ("Example Inc"));
  shared_ptr&lt;employee> john (new employee ("John", "Doe"));
  shared_ptr&lt;employee> jane (new employee ("Jane", "Doe"));

  john->employer_ = er;
  jane->employer_ = er;

  transaction t (db.begin ());

  db.persist (er);
  john_id = db.persist (john);
  jane_id = db.persist (jane);

  t.commit ();
}

// Load a few employee objects and print their employer.
//
{
  session s;
  transaction t (db.begin ());

  shared_ptr&lt;employee> john (db.load&lt;employee> (john_id));
  shared_ptr&lt;employee> jane (db.load&lt;employee> (jane_id));

  cout &lt;&lt; john->employer_->name_ &lt;&lt; endl;
  cout &lt;&lt; jane->employer_->name_ &lt;&lt; endl;

  t.commit ();
}
  </pre>

  <p>The only notable line in the above code is the creation of a
     session before the second transaction starts. As discussed in
     <a href="#11">Chapter 11, "Session"</a>, a session acts as a cache
     of persistent objects.
     By creating a session before loading the <code>employee</code>
     objects we make sure that their <code>employer_</code> pointers
     point to the same <code>employer</code> object. Without a
     session, each <code>employee</code> would have ended up pointing
     to its own, private instance of the Example Inc employer.</p>

  <p>As a general guideline, you should use a session when loading
     objects that have pointers to other persistent objects. A
     session makes sure that for a given object id, a single instance
     is shared among all other objects that relate to it.</p>

  <p>We can also use data members from pointed-to
     objects in database queries (<a href="#4">Chapter 4, "Querying the
     Database"</a>). For each pointer in a persistent class, the query
     class defines a smart pointer-like member that contains members
     corresponding to the data members in the pointed-to object. We
     can then use the access via a pointer syntax (<code>-></code>)
     to refer to data members in pointed-to objects.
     For example, the query class for the <code>employee</code> object
     contains the <code>employer</code> member (its name is derived from the
     <code>employer_</code> pointer) which in turn contains the
     <code>name</code> member (its name is derived from the
     <code>employer::name_</code> data member of the pointed-to object).
     As a result, we can use the <code>query::employer->name</code>
     expression while querying the database for the <code>employee</code>
     objects. For example, the following transaction finds all the
     employees of Example Inc that have the Doe last name:</p>

  <pre class="cxx">
typedef odb::query&lt;employee> query;
typedef odb::result&lt;employee> result;

session s;
transaction t (db.begin ());

result r (db.query&lt;employee> (
  query::employer->name == "Example Inc" &amp;&amp; query::last == "Doe"));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
  cout &lt;&lt; i->first_ &lt;&lt; " " &lt;&lt; i->last_ &lt;&lt; endl;

t.commit ();
  </pre>

  <p>A query class member corresponding to a non-inverse
     (<a href="#6.2">Section 6.2, "Bidirectional Relationships"</a>) object
     pointer can also be used as a normal member that has the id type
     of the pointed-to object. For example, the following query locates
     all the <code>employee</code> objects that don't have an associated
     <code>employer</code> object:</p>

  <pre class="cxx">
result r (db.query&lt;employee> (query::employer.is_null ()));
  </pre>

  <p>An important concept to keep in mind when working with object
     relationships is the independence of persistent objects. In particular,
     when an object containing a pointer to another object is made persistent
     or is updated, the pointed-to object is not automatically persisted
     or updated. Rather, only a reference to the object (in the form of the
     object id) is stored for the pointed-to object in the database.
     The pointed-to object itself is a separate entity and should
     be made persistent or updated independently. By default, the
     same principle also applies to erasing pointed-to objects. That
     is, we have to make sure all the pointing objects are updated
     accordingly. However, in the case of erase, we can specify an
     alternative <code>on-delete</code> semantic as discussed in
     <a href="#14.4.15">Section 14.4.15, "<code>on_delete</code>"</a>.</p>

  <p>When persisting or updating an object containing a pointer to another
     object, the pointed-to object must have a valid object id. This,
     however, may not always be easy to achieve in complex relationships that
     involve objects with automatically assigned identifiers. In such
     cases it may be necessary to first persist an object with a pointer
     set to <code>NULL</code> and then, once the pointed-to object is
     made persistent and its identifier assigned, set the pointer
     to the correct value and update the object in the database.</p>

  <p>Persistent object relationships can be divided into two groups:
     unidirectional and bidirectional. Each group in turn contains
     several configurations that vary depending on the cardinality
     of the sides of the relationship. All possible unidirectional
     and bidirectional configurations are discussed in the following
     sections.</p>

  <h2><a name="6.1">6.1 Unidirectional Relationships</a></h2>

  <p>In unidirectional relationships we are only interested in navigating
     from object to object in one direction. Because there is no interest
     in navigating in the opposite direction, the cardinality of the other
     end of the relationship is unimportant. As a result, there are only
     two possible unidirectional relationships: to-one and to-many. Each
     of these relationships is described in the following sections. For
     sample code that shows how to work with these relationships, refer
     to the <code>relationship</code> example in the <code>odb-examples</code>
     package.</p>

  <h3><a name="6.1.1">6.1.1 To-One Relationships</a></h3>

  <p>An example of a unidirectional to-one relationship is the
     employee-employer relationship (an employee has one employer).
     The following persistent C++ classes model this relationship:</p>

  <pre class="cxx">
#pragma db object
class employer
{
  ...

  #pragma db id
  std::string name_;
};

#pragma db object
class employee
{
  ...

  #pragma db id
  unsigned long id_;

  #pragma db not_null
  shared_ptr&lt;employer> employer_;
};
  </pre>

  <p>The corresponding database tables look like this:</p>

  <pre class="sql">
CREATE TABLE employer (
  name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  employer VARCHAR (255) NOT NULL REFERENCES employer (name));
  </pre>

  <h3><a name="6.1.2">6.1.2 To-Many Relationships</a></h3>

  <p>An example of a unidirectional to-many relationship is the
     employee-project relationship (an employee can be involved
     in multiple projects). The following persistent C++ classes
     model this relationship:</p>

  <pre class="cxx">
#pragma db object
class project
{
  ...

  #pragma db id
  std::string name_;
};

#pragma db object
class employee
{
  ...

  #pragma db id
  unsigned long id_;

  #pragma db value_not_null unordered
  std::vector&lt;shared_ptr&lt;project> > projects_;
};
  </pre>

  <p>The corresponding database tables look like this:</p>

  <pre class="sql">
CREATE TABLE project (
  name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee_projects (
  object_id BIGINT UNSIGNED NOT NULL,
  value VARCHAR (255) NOT NULL REFERENCES project (name));
  </pre>

  <p>To obtain a more canonical database schema, the names of tables
     and columns above can be customized using ODB pragmas
     (<a href="#14">Chapter 14, "ODB Pragma Language"</a>). For example:</p>

  <pre class="cxx">
#pragma db object
class employee
{
  ...

  #pragma db value_not_null unordered \
             id_column("employee_id") value_column("project_name")
  std::vector&lt;shared_ptr&lt;project> > projects_;
};
  </pre>

  <p>The resulting <code>employee_projects</code> table would then
     look like this:</p>

  <pre class="sql">
CREATE TABLE employee_projects (
  employee_id BIGINT UNSIGNED NOT NULL,
  project_name VARCHAR (255) NOT NULL REFERENCES project (name));
  </pre>


  <h2><a name="6.2">6.2 Bidirectional Relationships</a></h2>

  <p>In bidirectional relationships we are interested in navigating
     from object to object in both directions. As a result, each
     object class in a relationship contains a pointer to the other
     object. If smart pointers are used, then a weak pointer should
     be used as one of the pointers to avoid ownership cycles. For
     example:</p>

  <pre class="cxx">
class employee;

#pragma db object
class position
{
  ...

  #pragma db id
  unsigned long id_;

  weak_ptr&lt;employee> employee_;
};

#pragma db object
class employee
{
  ...

  #pragma db id
  unsigned long id_;

  #pragma db not_null
  shared_ptr&lt;position> position_;
};
  </pre>

  <p>Note that when we establish a bidirectional relationship, we
     have to set both pointers consistently. One way to make sure
     that a relationship is always in a consistent state is to
     provide a single function that updates both pointers at the
     same time. For example:</p>

  <pre class="cxx">
#pragma db object
class position: public enable_shared_from_this&lt;position>
{
  ...

  void
  fill (shared_ptr&lt;employee> e)
  {
    employee_ = e;
    e->positions_ = shared_from_this ();
  }

private:
  weak_ptr&lt;employee> employee_;
};

#pragma db object
class employee
{
  ...

private:
  friend class position;

  #pragma db not_null
  shared_ptr&lt;position> position_;
};
  </pre>

  <p>At the beginning of this chapter we examined how to use a session
     to make sure a single object is shared among all other objects pointing
     to it. With bidirectional relationships involving weak pointers the
     use of a session becomes even more crucial. Consider the following
     transaction that tries to load the <code>position</code> object
     from the above example without using a session:</p>

  <pre class="cxx">
transaction t (db.begin ())
shared_ptr&lt;position> p (db.load&lt;position> (1));
...
t.commit ();
  </pre>

  <p>When we load the <code>position</code> object, the <code>employee</code>
     object, which it points to, is also loaded. While <code>employee</code>
     is initially stored as <code>shared_ptr</code>, it is then assigned to
     the <code>employee_</code> member which is <code>weak_ptr</code>. Once
     the assignment is complete, the shared pointer goes out of scope
     and the only pointer that points to the newly loaded
     <code>employee</code> object is the <code>employee_</code> weak
     pointer. And that means the <code>employee</code> object is deleted
     immediately after being loaded. To help avoid such pathological
     situations ODB detects cases where a newly loaded object will
     immediately be deleted and throws the <code>odb::session_required</code>
     exception.</p>

  <p>As the exception name suggests, the easiest way to resolve this
     problem is to use a session:</p>

  <pre class="cxx">
session s;
transaction t (db.begin ())
shared_ptr&lt;position> p (db.load&lt;position> (1));
...
t.commit ();
  </pre>

  <p>In our example, the session will maintain a shared pointer to the
     loaded <code>employee</code> object preventing its immediate
     deletion. Another way to resolve this problem is to avoid
     immediate loading of the pointed-to objects using lazy weak
     pointers. Lazy pointers are discussed in <a href="#6.4">Section 6.4,
     "Lazy Pointers"</a> later in this chapter.</p>

  <p>Above, to model a bidirectional relationship in persistent classes,
     we used two pointers, one in each object. While this is a natural
     representation in C++, it does not translate to a canonical
     relational model. Consider the database schema generated for
     the above two classes:</p>

  <pre class="sql">
CREATE TABLE position (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  employee BIGINT UNSIGNED REFERENCES employee (id));

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  position BIGINT UNSIGNED NOT NULL REFERENCES position (id));
  </pre>

  <p>While this database schema is valid, it is unconventional. We have
     a reference from a row in the <code>position</code> table to a row
     in the <code>employee</code> table. We also have a reference
     from this same row in the <code>employee</code> table back to
     the row in the <code>position</code> table. From the relational
     point of view, one of these references is redundant since
     in SQL we can easily navigate in both directions using just one
     of these references.</p>

  <p>To eliminate redundant database schema references we can use the
     <code>inverse</code> pragma (<a href="#14.4.14">Section 14.4.14,
     "<code>inverse</code>"</a>) which tells the ODB compiler that
     a pointer is the inverse side of a bidirectional relationship.
     Either side of a relationship can be made inverse. For example:</p>

  <pre class="cxx">
#pragma db object
class position
{
  ...

  #pragma db inverse(position_)
  weak_ptr&lt;employee> employee_;
};

#pragma db object
class employee
{
  ...

  #pragma db not_null
  shared_ptr&lt;position> position_;
};
  </pre>

  <p>The resulting database schema looks like this:</p>

  <pre class="sql">
CREATE TABLE position (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  position BIGINT UNSIGNED NOT NULL REFERENCES position (id));
  </pre>

  <p>As you can see, an inverse member does not have a corresponding
     column (or table, in case of an inverse container of pointers)
     and, from the point of view of database operations, is effectively
     read-only. The only way to change a bidirectional relationship
     with an inverse side is to set its direct (non-inverse)
     pointer. Also note that an ordered container (<a href="#5.1">Section
     5.1, "Ordered Containers"</a>) of pointers that is an inverse side
     of a bidirectional relationship is always treated as unordered
     (<a href="#14.4.19">Section 14.4.19, "<code>unordered</code>"</a>)
     because the contents of such a container are implicitly built from
     the direct side of the relationship which does not contain the
     element order (index).</p>

  <p>There are three distinct bidirectional relationships that we
     will cover in the following sections: one-to-one, one-to-many,
     and many-to-many. We will only talk about bidirectional
     relationships with inverse sides since they result in canonical
     database schemas. For sample code that shows how to work with
     these relationships, refer to the <code>inverse</code> example
     in the <code>odb-examples</code> package.</p>

  <h3><a name="6.2.1">6.2.1 One-to-One Relationships</a></h3>

  <p>An example of a bidirectional one-to-one relationship is the
     presented above employee-position relationship (an employee
     fills one position and a position is filled by one employee).
     The following persistent C++ classes model this relationship:</p>

  <pre class="cxx">
class employee;

#pragma db object
class position
{
  ...

  #pragma db id
  unsigned long id_;

  #pragma db inverse(position_)
  weak_ptr&lt;employee> employee_;
};

#pragma db object
class employee
{
  ...

  #pragma db id
  unsigned long id_;

  #pragma db not_null
  shared_ptr&lt;position> position_;
};
  </pre>

  <p>The corresponding database tables look like this:</p>

  <pre class="sql">
CREATE TABLE position (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  position BIGINT UNSIGNED NOT NULL REFERENCES position (id));
  </pre>

  <p>If instead the other side of this relationship is made inverse,
     then the database tables will change as follows:</p>

  <pre class="sql">
CREATE TABLE position (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  employee BIGINT UNSIGNED REFERENCES employee (id));

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY);
  </pre>

  <h3><a name="6.2.2">6.2.2 One-to-Many Relationships</a></h3>

  <p>An example of a bidirectional one-to-many relationship is the
     employer-employee relationship (an employer has multiple
     employees and an employee is employed by one employer).
     The following persistent C++ classes model this relationship:</p>

  <pre class="cxx">
class employee;

#pragma db object
class employer
{
  ...

  #pragma db id
  std::string name_;

  #pragma db value_not_null inverse(employer_)
  std::vector&lt;weak_ptr&lt;employee> > employees_
};

#pragma db object
class employee
{
  ...

  #pragma db id
  unsigned long id_;

  #pragma db not_null
  shared_ptr&lt;employer> employer_;
};
  </pre>

  <p>The corresponding database tables differ significantly depending
     on which side of the relationship is made inverse. If the <em>one</em>
     side (<code>employer</code>) is inverse as in the code
     above, then the resulting database schema looks like this:</p>

  <pre class="sql">
CREATE TABLE employer (
  name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  employer VARCHAR (255) NOT NULL REFERENCES employer (name));
  </pre>

  <p>If instead the <em>many</em> side (<code>employee</code>) of this
     relationship is made inverse, then the database tables will change
     as follows:</p>

  <pre class="sql">
CREATE TABLE employer (
  name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employer_employees (
  object_id VARCHAR (255) NOT NULL REFERENCES employer (name),
  value BIGINT UNSIGNED NOT NULL REFERENCES employee (id));

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY);
  </pre>

  <h3><a name="6.2.3">6.2.3 Many-to-Many Relationships</a></h3>

  <p>An example of a bidirectional many-to-many relationship is the
     employee-project relationship (an employee can work on multiple
     projects and a project can have multiple participating employees).
     The following persistent C++ classes model this relationship:</p>

  <pre class="cxx">
class employee;

#pragma db object
class project
{
  ...

  #pragma db id
  std::string name_;

  #pragma db value_not_null inverse(projects_)
  std::vector&lt;weak_ptr&lt;employee> > employees_;
};

#pragma db object
class employee
{
  ...

  #pragma db id
  unsigned long id_;

  #pragma db value_not_null unordered
  std::vector&lt;shared_ptr&lt;project> > projects_;
};
  </pre>

  <p>The corresponding database tables look like this:</p>

  <pre class="sql">
CREATE TABLE project (
  name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee_projects (
  object_id BIGINT UNSIGNED NOT NULL REFERENCES employee (id),
  value VARCHAR (255) NOT NULL REFERENCES project (name));
  </pre>

  <p>If instead the other side of this relationship is made inverse,
     then the database tables will change as follows:</p>

  <pre class="sql">
CREATE TABLE project (
  name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE project_employees (
  object_id VARCHAR (255) NOT NULL REFERENCES project (name),
  value BIGINT UNSIGNED NOT NULL REFERENCES employee (id));

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY);
  </pre>

  <h2><a name="6.3">6.3 Circular Relationships</a></h2>

  <p>A relationship between two persistent classes is circular if each
     of them references the other. Bidirectional relationships are
     always circular. A unidirectional relationship combined with
     inheritance (<a href="#8">Chapter 8, "Inheritance"</a>) can also
     be circular. For example, the <code>employee</code> class could
     derive from <code>person</code> which, in turn, could contain a
     pointer to <code>employee</code>.</p>

  <p>We don't need to do anything extra if persistent classes with
     circular dependencies are defined in the same header
     file. Specifically, ODB will make sure that the database tables
     and foreign key constraints are created in the correct order. As a
     result, unless you have good reasons not to, it is recommended that
     you keep persistent classes with circular dependencies in the same
     header file.</p>

  <p>If you have to keep such classes in separate header files, then
     there are two extra steps that you may need to take in order to
     use these classes with ODB. Consider again the example from
     <a href="#6.2.1">Section 6.2.1, "One-to-One Relationships"</a>
     but this time with the classes defined in separate headers:</p>

  <pre class="cxx">
// position.hxx
//
class employee;

#pragma db object
class position
{
  ...

  #pragma db id
  unsigned long id_;

  #pragma db inverse(position_)
  weak_ptr&lt;employee> employee_;
};
  </pre>

  <pre class="cxx">
// employee.hxx
//
#include "position.hxx"

#pragma db object
class employee
{
  ...

  #pragma db id
  unsigned long id_;

  #pragma db not_null
  shared_ptr&lt;position> position_;
};
  </pre>

  <p>Note that the <code>position.hxx</code> header contains only the forward
     declaration for <code>employee</code>. While this is sufficient to
     define a valid, from the C++ point of view, <code>position</code> class,
     the ODB compiler needs to "see" the definitions of the pointed-to
     persistent classes. There are several ways we can fulfil this
     requirement. The easiest is to simply include <code>employee.hxx</code>
     at the end of <code>position.hxx</code>:</p>

  <pre class="cxx">
// position.hxx
//
class employee;

#pragma db object
class position
{
  ...
};

#include "employee.hxx"
  </pre>

  <p>We can also limit this inclusion only to the time when
     <code>position.hxx</code> is compiled with the ODB compiler:</p>

  <pre class="cxx">
// position.hxx
//

...

#ifdef ODB_COMPILER
#  include "employee.hxx"
#endif
  </pre>

  <p>Finally, if we don't want to modify <code>position.hxx</code>,
     then we can add <code>employee.hxx</code> to the ODB compilation
     process with the <code>--odb-epilogue</code> option. For example:</p>

  <pre class="terminal">
odb ... --odb-epilogue "#include \"employee.hxx\"" position.hxx
  </pre>

  <p>Note also that in this example we didn't have to do anything extra
     for <code>employee.hxx</code> because it already includes
     <code>position.hxx</code>. However, if instead it relied only
     on the forward declaration of the <code>position</code> class,
     then we would have to handle it in the same way as
     <code>position.hxx</code>.</p>

  <p>The other difficulty with separately defined classes involving
     circular relationships has to do with the correct order of foreign
     key constraint creation in the generated database schema. In
     the above example, if we generate the database schema as
     standalone SQL files, then we will end up with two such files:
     <code>position.sql</code> and <code>employee.sql</code>.
     If we try to execute <code>employee.sql</code> first, then
     we will get an error indicating that the table corresponding to
     the <code>position</code> class and referenced by the foreign
     key constraint corresponding to the <code>position_</code>
     pointer does not yet exist.</p>

  <p>Note that there is no such problem if the database schema
     is embedded in the generated C++ code instead of being produced
     as standalone SQL files. In this case, the ODB compiler is
     able to ensure the correct creation order even if the classes
     are defined in separate header files.</p>

  <p>In certain cases, for example, a bidirectional relationship
     with an inverse side, this problem can be resolved by executing
     the database schema creation files in the correct order. In our
     example, this would be <code>position.sql</code> first
     and <code>employee.sql</code> second. However, this approach
     doesn't scale beyond simple object models.</p>

  <p>A more robust solution to this problem is to generate the database
     schema for all the persistent classes into a single SQL file. This
     way, the ODB compiler can again ensure the correct creation order
     of tables and foreign keys. To instruct the ODB compiler to produce
     a combined schema file for several headers we can use the
     <code>--generate-schema-only</code> and <code>--at-once</code>
     options. For example:</p>

  <pre class="terminal">
odb ... --generate-schema-only --at-once --input-name company \
position.hxx employee.hxx
  </pre>

  <p>The result of the above command is a single <code>company.sql</code>
     file (the name is derived from the <code>--input-name</code> value)
     that contains the database creation code for both <code>position</code>
     and <code>employee</code> classes.</p>

  <h2><a name="6.4">6.4 Lazy Pointers</a></h2>

  <p>Consider again the bidirectional, one-to-many employer-employee
     relationship that was presented earlier in this chapter:</p>

  <pre class="cxx">
class employee;

#pragma db object
class employer
{
  ...

  #pragma db id
  std::string name_;

  #pragma db value_not_null inverse(employer_)
  std::vector&lt;weak_ptr&lt;employee> > employees_;
};

#pragma db object
class employee
{
  ...

  #pragma db id
  unsigned long id_;

  #pragma db not_null
  shared_ptr&lt;employer> employer_;
};
  </pre>

  <p>Consider also the following transaction which obtains the employer
     name given the employee id:</p>

  <pre class="cxx">
unsigned long id = ...
string name;

session s;
transaction t (db.begin ());

shared_ptr&lt;employee> e (db.load&lt;employee> (id));
name = e->employer_->name_;

t.commit ();
  </pre>

  <p>While this transaction looks very simple, it actually does a lot more
     than what meets the eye and is necessary. Consider what happens when
     we load the <code>employee</code> object: the <code>employer_</code>
     pointer is also automatically loaded which means the <code>employer</code>
     object corresponding to this employee is also loaded. But the
     <code>employer</code> object in turn contains the list of pointers
     to all the employees, which are also loaded. A a result, when object
     relationships are involved, a simple transaction like the above can
     load many more objects than is necessary.</p>

  <p>To overcome this problem ODB offers finer grained control over
     the relationship loading in the form of lazy pointers. A lazy
     pointer does not automatically load the pointed-to object
     when the containing object is loaded. Instead, we have to
     explicitly load the pointed-to object if and when we need to
     access it.</p>

  <p>The ODB runtime library provides lazy counterparts for all the
     supported pointers, namely:
     <code>odb::lazy_shared_ptr</code>/<code>lazy_weak_ptr</code>
     for C++11 <code>std::shared_ptr</code>/<code>weak_ptr</code>,
     <code>odb::tr1::lazy_shared_ptr</code>/<code>lazy_weak_ptr</code>
     for TR1 <code>std::tr1::shared_ptr</code>/<code>weak_ptr</code>,
     <code>odb::lazy_unique_ptr</code> for C++11 <code>std::unique_ptr</code>,
     <code>odb::lazy_auto_ptr</code> for <code>std::auto_ptr</code>,
     and <code>odb::lazy_ptr</code> for raw pointers. The TR1 lazy
     pointers are defined in the <code>&lt;odb/tr1/lazy-ptr.hxx></code>
     header while all the others &mdash; in
     <code>&lt;odb/lazy-ptr.hxx></code>. The ODB profile
     libraries also provide lazy pointer implementations for smart pointers
     from popular frameworks and libraries (<a href="#III">Part III,
     "Profiles"</a>).</p>

  <p>While we will discuss the interface of lazy pointers in more detail
     shortly, the most commonly used extra function provided by these
     pointers is <code>load()</code>. This function loads the
     pointed-to object if it hasn't already been loaded. After
     the call to this function, the lazy pointer can be used
     in the the same way as its eager counterpart. The <code>load()</code>
     function also returns the eager pointer, in case you need to pass
     it around. For a lazy weak pointer, the
     <code>load()</code> function also locks the pointer.</p>

  <p>The following example shows how we can change our employer-employee
     relationship to use lazy pointers. Here we choose to use lazy pointers
     for both sides of the relationship.</p>

  <pre class="cxx">
class employee;

#pragma db object
class employer
{
  ...

  #pragma db value_not_null inverse(employer_)
  std::vector&lt;lazy_weak_ptr&lt;employee> > employees_;
};

#pragma db object
class employee
{
  ...

  #pragma db not_null
  lazy_shared_ptr&lt;employer> employer_;
};
  </pre>

  <p>And the transaction is changed like this:</p>

  <pre class="cxx">
unsigned long id = ...
string name;

session s;
transaction t (db.begin ());

shared_ptr&lt;employee> e (db.load&lt;employee> (id));
e->employer_.load ();
name = e->employer_->name_;

t.commit ();
  </pre>


  <p>As a general guideline we recommend that you make at least one side
     of a bidirectional relationship lazy, especially for relationships
     with a <em>many</em> side.</p>

  <p>A lazy pointer implementation mimics the interface of its eager
     counterpart which can be used once the pointer is loaded. It also
     adds a number of additional functions that are specific to the
     lazy loading functionality. Overall, the interface of a lazy
     pointer follows this general outline:</p>

  <pre class="cxx">
template &lt;class T>
class lazy_ptr
{
public:
  //
  // The eager pointer interface.
  //

  // Initialization/assignment from an eager pointer.
  //
public:
  template &lt;class Y> lazy_ptr (const eager_ptr&lt;Y>&amp;);
  template &lt;class Y> lazy_ptr&amp; operator= (const eager_ptr&lt;Y>&amp;);

  // Lazy loading interface.
  //
public:
  //  NULL      loaded()
  //
  //  true       true      NULL pointer to transient object
  //  false      true      valid pointer to persistent object
  //  true       false     unloaded pointer to persistent object
  //  false      false     valid pointer to transient object
  //
  bool loaded () const;

  eager_ptr&lt;T> load () const;

  // Unload the pointer. For transient objects this function is
  // equivalent to reset().
  //
  void unload () const;

  // Get the underlying eager pointer. If this is an unloaded pointer
  // to a persistent object, then the returned pointer will be NULL.
  //
  eager_ptr&lt;T> get_eager () const;

  // Initialization with a persistent loaded object.
  //
  template &lt;class Y> lazy_ptr (database&amp;, Y*);
  template &lt;class Y> lazy_ptr (database&amp;, const eager_ptr&lt;Y>&amp;);

  template &lt;class Y> void reset (database&amp;, Y*);
  template &lt;class Y> void reset (database&amp;, const eager_ptr&lt;Y>&amp;);

  // Initialization with a persistent unloaded object.
  //
  template &lt;class ID> lazy_ptr (database&amp;, const ID&amp;);

  template &lt;class ID> void reset (database&amp;, const ID&amp;);

  // Query object id and database of a persistent object.
  //
  template &lt;class O /* = T */>
  // C++11: template &lt;class O = T>
  object_traits&lt;O>::id_type object_id () const;

  odb::database&amp; database () const;
};
  </pre>

  <p>In a lazy weak pointer interface, the <code>load()</code> function
     returns the <em>strong</em> (shared) eager pointer. The following
     transaction demonstrates the use of a lazy weak pointer based on
     the <code>employer</code> and <code>employee</code> classes
     presented earlier.</p>

  <pre class="cxx">
typedef std::vector&lt;lazy_weak_ptr&lt;employee> > employees;

session s;
transaction t (db.begin ());

shared_ptr&lt;employer> er (db.load&lt;employer> ("Example Inc"));
employees&amp; es (er->employees ());

for (employees::iterator i (es.begin ()); i != es.end (); ++i)
{
  // We are only interested in employees with object id less than
  // 100.
  //
  lazy_weak_ptr&lt;employee>&amp; lwp (*i);

  if (lwp.object_id&lt;employee> () &lt; 100)
  // C++11: if (lwp.object_id () &lt; 100)
  {
    shared_ptr&lt;employee> e (lwp.load ()); // Load and lock.
    cout &lt;&lt; e->first_ &lt;&lt; " " &lt;&lt; e->last_ &lt;&lt; endl;
  }
}

t.commit ();
  </pre>

  <p>Notice that inside the for-loop we use a reference to the lazy
     weak pointer instead of making a copy. This is not merely to
     avoid a copy. When a lazy pointer is loaded, all other lazy
     pointers that point to the same object do not automatically
     become loaded (though an attempt to load such copies will
     result in them pointing to the same object, provided the
     same session is still in effect). By using a reference
     in the above transaction we make sure that we load the
     pointer that is contained in the <code>employer</code>
     object. This way, if we later need to re-examine this
     <code>employee</code> object, the pointer will already
     be loaded.</p>

  <p>As another example, suppose we want to add an employee
     to Example Inc. The straightforward implementation of this
     transaction is presented below:</p>

  <pre class="cxx">
session s;
transaction t (db.begin ());

shared_ptr&lt;employer> er (db.load&lt;employer> ("Example Inc"));
shared_ptr&lt;employee> e (new employee ("John", "Doe"));

e->employer_ = er;
er->employees ().push_back (e);

db.persist (e);
t.commit ();
  </pre>

  <p>Notice here that we didn't have to update the employer object
     in the database since the <code>employees_</code> list of
     pointers is an inverse side of a bidirectional relationship
     and is effectively read-only, from the persistence point of
     view.</p>

  <p>A faster implementation of this transaction, that avoids loading
     the employer object, relies on the ability to initialize an
     <em>unloaded</em> lazy pointer with the database where the object
     is stored as well as its identifier:</p>

  <pre class="cxx">
lazy_shared_ptr&lt;employer> er (db, std::string ("Example Inc"));
shared_ptr&lt;employee> e (new employee ("John", "Doe"));

e->employer_ = er;

session s;
transaction t (db.begin ());

db.persist (e);

t.commit ();
  </pre>

  <p>For the interaction of lazy pointers with lazy-loaded object
     sections, refer to <a href="#9.3">Section 9.3, "Sections and
     Lazy Pointers"</a>.</p>

  <h2><a name="6.5">6.5 Using Custom Smart Pointers</a></h2>

  <p>While the ODB runtime and profile libraries provide support for
     the majority of widely-used pointers, it is also easy to add
     support for a custom smart pointer.</p>

  <p>To achieve this you will need to implement the
     <code>pointer_traits</code> class template specialization for
     your pointer. The first step is to determine the pointer kind
     since the interface of the <code>pointer_traits</code> specialization
     varies depending on the pointer kind. The supported pointer kinds
     are: <em>raw</em> (raw pointer or equivalent, that is, unmanaged),
          <em>unique</em> (smart pointer that doesn't support sharing),
          <em>shared</em> (smart pointer that supports sharing), and
          <em>weak</em> (weak counterpart of the shared pointer). Any of
     these pointers can be lazy, which also affects the
     interface of the <code>pointer_traits</code> specialization.</p>

  <p>Once you have determined the pointer kind for your smart pointer,
     use a specialization for one of the standard pointers found in
     the common ODB runtime library (<code>libodb</code>) as a base
     for your own implementation.</p>

  <p>Once the pointer traits specialization is ready, you will need to
     include it into the ODB compilation process using the
     <code>--odb-epilogue</code> option and into the generated header
     files with the <code>--hxx-prologue</code> option. As an example,
     suppose we have the <code>smart_ptr</code> smart pointer for which
     we have the traits specialization implemented in the
     <code>smart-ptr-traits.hxx</code> file. Then, we can create an ODB
     compiler options file for this pointer and save it to
     <code>smart-ptr.options</code>:</p>

  <pre>
# Options file for smart_ptr.
#
--odb-epilogue '#include "smart-ptr-traits.hxx"'
--hxx-prologue '#include "smart-ptr-traits.hxx"'
  </pre>

  <p>Now, whenever we compile a header file that uses <code>smart_ptr</code>,
     we can specify the following command line option to make sure it is
     recognized by the ODB compiler as a smart pointer and the traits file
     is included in the generated code:</p>

  <pre>
--options-file smart-ptr.options
  </pre>

  <p>It is also possible to implement a lazy counterpart for your
     smart pointer. The ODB runtime library provides a class template
     that encapsulates the object id management and loading
     functionality that is needed to implement a lazy pointer. All
     you need to do is wrap it with an interface that mimics
     your smart pointer. Using one of the existing lazy pointer
     implementations (either from the ODB runtime library or one
     of the profile libraries) as a base for your implementation
     is the easiest way to get started.</p>


  <!-- CHAPTER -->

  <hr class="page-break"/>
  <h1><a name="7">7 Value Types</a></h1>

  <p>In <a href="#3.1">Section 3.1, "Concepts and Terminology"</a> we have
     already discussed the notion of values and value types as well as the
     distinction between simple and composite values. This chapter covers
     simple and composite value types in more detail.</p>

  <h2><a name="7.1">7.1 Simple Value Types</a></h2>

  <p>A simple value type is a fundamental C++ type or a class type that
     is mapped to a single database column. For each supported database
     system the ODB compiler provides a default mapping to suitable
     database types for most fundamental C++ types, such as <code>int</code>
     or <code>float</code> as well as some class types, such as
     <code>std::string</code>. For more information about the default
     mapping for each database system refer to <a href="#II">Part II,
     Database Systems</a>. We can also provide a custom mapping for
     these or our own value types using the <code>db&nbsp;type</code>
     pragma (<a href="#14.3.1">Section 14.3.1, "<code>type</code>"</a>).</p>

  <h2><a name="7.2">7.2 Composite Value Types</a></h2>

  <p>A composite value type is a <code>class</code> or <code>struct</code>
     type that is mapped to more than one database column. To declare
     a composite value type we use the <code>db&nbsp;value</code> pragma,
     for example:</p>

  <pre class="cxx">
#pragma db value
class basic_name
{
  ...

  std::string first_;
  std::string last_;
};
  </pre>

  <p>The complete version of the above code fragment and the other code
     samples presented in this section can be found in the <code>composite</code>
     example in the <code>odb-examples</code> package.</p>

  <p>A composite value type does not have to define a default constructor,
     unless it is used as an element of a container. In this case the
     default constructor can be made private provided we also make the
     <code>odb::access</code> class, defined in the
     <code>&lt;odb/core.hxx></code> header, a friend of this value type.
     For example:</p>

  <pre class="cxx">
#include &lt;odb/core.hxx>

#pragma db value
class basic_name
{
public:
  basic_name (const std::string&amp; first, const std::string&amp; last);

  ...

private:
  friend class odb::access;

  basic_name () {} // Needed for storing basic_name in containers.

  ...
};
  </pre>

  <p>The ODB compiler also needs access to the non-transient
     (<a href="#14.4.11">Section 14.4.11, "<code>transient</code>"</a>)
     data members of a composite value type. It uses the same mechanisms
     as for persistent classes which are discussed in
     <a href="#3.2">Section 3.2, "Declaring Persistent Objects and
     Values"</a>.</p>

  <p>The members of a composite value can be other value types (either
     simple or composite), containers (<a href="#5">Chapter 5,
     "Containers"</a>), and pointers to objects (<a href="#6">Chapter 6,
     "Relationships"</a>).
     Similarly, a composite value type can be used in object members,
     as an element of a container, and as a base for another composite
     value type. In particular, composite value types can be used as
     element types in set containers (<a href="#5.2">Section 5.2, "Set
     and Multiset Containers"</a>) and as key types in map containers
     (<a href="#5.3">Section 5.3, "Map and Multimap Containers"</a>).
     A composite value type that is used as an element of a container
     cannot contain other containers since containers of containers
     are not allowed. The following example illustrates some of the
     possible use cases:</p>

  <pre class="cxx">
#pragma db value
class basic_name
{
  ...

  std::string first_;
  std::string last_;
};

typedef std::vector&lt;basic_name> basic_names;

#pragma db value
class name_extras
{
  ...

  std::string nickname_;
  basic_names aliases_;
};

#pragma db value
class name: public basic_name
{
  ...

  std::string title_;
  name_extras extras_;
};

#pragma db object
class person
{
  ...

  name name_;
};
  </pre>

  <p>A composite value type can be defined inside a persistent class,
     view, or another composite value and even made private, provided
     we make <code>odb::access</code> a friend of the containing class,
     for example:</p>

<pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db value
  class name
  {
    ...

    std::string first_;
    std::string last_;
  };

  name name_;
};
  </pre>

  <p>A composite value type can also be defined as an instantiation
     of a C++ class template, for example:</p>

  <pre class="cxx">
template &lt;typename T>
struct point
{
  T x;
  T y;
  T z;
};

typedef point&lt;int> int_point;
#pragma db value(int_point)

#pragma db object
class object
{
  ...

  int_point center_;
};
  </pre>

  <p>Note that the database support code for such a composite value type
     is generated when compiling the header containing the
     <code>db&nbsp;value</code> pragma and not the header containing
     the template definition or the <code>typedef</code> name. This
     allows us to use templates defined in other files, such as
     <code>std::pair</code> defined in the <code>utility</code>
     standard header file:</p>

  <pre class="cxx">
#include &lt;utility> // std::pair

typedef std::pair&lt;std::string, std::string> phone_numbers;
#pragma db value(phone_numbers)

#pragma db object
class person
{
  ...

  phone_numbers phone_;
};
  </pre>

  <p>We can also use data members from composite value types
     in database queries (<a href="#4">Chapter 4, "Querying the
     Database"</a>). For each composite value in a persistent class, the
     query class defines a nested member that contains members corresponding
     to the data members in the value type. We can then use the member access
     syntax (.) to refer to data members in value types. For example, the
     query class for the <code>person</code> object presented above
     contains the <code>name</code> member (its name is derived from
     the <code>name_</code> data member) which in turn contains the
     <code>extras</code> member (its name is derived from the
     <code>name::extras_</code> data member of the composite value type).
     This process continues recursively for nested composite value types
     and, as a result, we can use the <code>query::name.extras.nickname</code>
     expression while querying the database for the <code>person</code>
     objects. For example:</p>

  <pre class="cxx">
typedef odb::query&lt;person> query;
typedef odb::result&lt;person> result;

transaction t (db.begin ());

result r (db.query&lt;person> (
  query::name.extras.nickname == "Squeaky"));

...

t.commit ();
  </pre>

  <h3><a name="7.2.1">7.2.1 Composite Object Ids</a></h3>

  <p>An object id can be of a composite value type, for example:</p>

  <pre class="cxx">
#pragma db value
class name
{
  ...

  std::string first_;
  std::string last_;
};

#pragma db object
class person
{
  ...

  #pragma db id
  name name_;
};
  </pre>

  <p>However, a value type that can be used as an object id has a number
     of restrictions. Such a value type cannot have container, object
     pointer, or read-only data members. It also must be
     default-constructible, copy-constructible, and copy-assignable.
     Furthermore, if the persistent class in which
     this composite value type is used as object id has session support
     enabled (<a href="#11">Chapter 11, "Session"</a>), then it must also
     implement the less-than comparison operator (<code>operator&lt;</code>).</p>

  <h3><a name="7.2.2">7.2.2 Composite Value Column and Table Names</a></h3>

  <p>Customizing a column name for a data member of a simple value
     type is straightforward: we simply specify the desired name with
     the <code>db&nbsp;column</code> pragma (<a href="#14.4.9">Section
     14.4.9, "<code>column</code>"</a>). For composite value
     types things are slightly more complex since they are mapped to
     multiple columns. Consider the following example:</p>

  <pre class="cxx">
#pragma db value
class name
{
  ...

  std::string first_;
  std::string last_;
};

#pragma db object
class person
{
  ...

  #pragma db id auto
  unsigned long id_;

  name name_;
};
  </pre>

  <p>The column names for the <code>first_</code> and <code>last_</code>
     members are constructed by using the sanitized name of the
     <code>person::name_</code> member as a prefix and the names of the
     members in the value type (<code>first_</code> and <code>last_</code>)
     as suffixes. As a result, the database schema for the above classes
     will look like this:</p>

  <pre class="sql">
CREATE TABLE person (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  name_first TEXT NOT NULL,
  name_last TEXT NOT NULL);
  </pre>

 <p>We can customize both the prefix and the suffix using the
    <code>db&nbsp;column</code> pragma as shown in the following
    example:</p>

  <pre class="cxx">
#pragma db value
class name
{
  ...

  #pragma db column("first_name")
  std::string first_;

  #pragma db column("last_name")
  std::string last_;
};

#pragma db object
class person
{
  ...

  #pragma db column("person_")
  name name_;
};
  </pre>

  <p>The database schema changes as follows:</p>

  <pre class="sql">
CREATE TABLE person (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  person_first_name TEXT NOT NULL,
  person_last_name TEXT NOT NULL);
  </pre>

  <p>We can also make the column prefix empty, for example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db column("")
  name name_;
};
  </pre>

  <p>This will result in the following schema:</p>

  <pre class="sql">
CREATE TABLE person (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  first_name TEXT NOT NULL,
  last_name TEXT NOT NULL);
  </pre>

  <p>The same principle applies when a composite value type is used
     as an element of a container, except that instead of
     <code>db&nbsp;column</code>, either the <code>db&nbsp;value_column</code>
     (<a href="#14.4.36">Section 14.4.36, "<code>value_column</code>"</a>) or
     <code>db&nbsp;key_column</code>
     (<a href="#14.4.35">Section 14.4.35, "<code>key_column</code>"</a>)
     pragmas are used to specify the column prefix.</p>

  <p>When a composite value type contains a container, an extra table
     is used to store its elements (<a href="#5">Chapter 5, "Containers"</a>).
     The names of such tables are constructed in a way similar to the
     column names, except that by default both the object name and the
     member name are used as a prefix. For example:</p>

  <pre class="cxx">
#pragma db value
class name
{
  ...

  std::string first_;
  std::string last_;
  std::vector&lt;std::string> nicknames_;
};

#pragma db object
class person
{
  ...

  name name_;
};
  </pre>

  <p>The corresponding database schema will look like this:</p>

  <pre class="sql">
CREATE TABLE person_name_nicknames (
  object_id BIGINT UNSIGNED NOT NULL,
  index BIGINT UNSIGNED NOT NULL,
  value TEXT NOT NULL)

CREATE TABLE person (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  name_first TEXT NOT NULL,
  name_last TEXT NOT NULL);
  </pre>

  <p>To customize the container table name we can use the
     <code>db&nbsp;table</code> pragma (<a href="#14.4.20">Section
     14.4.20, "<code>table</code>"</a>), for example:</p>

  <pre class="cxx">
#pragma db value
class name
{
  ...

  #pragma db table("nickname")
  std::vector&lt;std::string> nicknames_;
};

#pragma db object
class person
{
  ...

  #pragma db table("person_")
  name name_;
};
  </pre>

  <p>This will result in the following schema changes:</p>

  <pre class="sql">
CREATE TABLE person_nickname (
  object_id BIGINT UNSIGNED NOT NULL,
  index BIGINT UNSIGNED NOT NULL,
  value TEXT NOT NULL)
  </pre>

  <p>Similar to columns, we can make the table prefix empty.</p>


  <h2><a name="7.3">7.3 Pointers and <code>NULL</code> Value Semantics</a></h2>

  <p>Relational database systems have a notion of the special
     <code>NULL</code> value that is used to indicate the absence
     of a valid value in a column. While by default ODB maps
     values to columns that do not allow <code>NULL</code> values,
     it is possible to change that with the <code>db&nbsp;null</code>
     pragma (<a href="#14.4.6">Section 14.4.6,
     "<code>null</code>/<code>not_null</code>"</a>).</p>

  <p>To properly support the <code>NULL</code> semantics, the
     C++ value type must have a notion of a <code>NULL</code>
     value or a similar special state concept. Most basic
     C++ types, such as <code>int</code> or <code>std::string</code>,
     do not have this notion and therefore cannot be used directly
     for <code>NULL</code>-enabled data members (in the case of a
     <code>NULL</code> value being loaded from the database,
     such data members will be default-initialized).</p>

  <p>To allow the easy conversion of value types that do not support
     the <code>NULL</code> semantics into the ones that do, ODB
     provides the <code>odb::nullable</code> class template. It
     allows us to wrap an existing C++ type into a container-like
     class that can either be <code>NULL</code> or contain a
     value of the wrapped type. ODB also automatically enables
     the <code>NULL</code> values for data members of the
     <code>odb::nullable</code> type. For example:</p>

  <pre class="cxx">
#include &lt;odb/nullable.hxx>

#pragma db object
class person
{
  ...

  std::string first_;                    // TEXT NOT NULL
  odb::nullable&lt;std::string> middle_;    // TEXT NULL
  std::string last_;                     // TEXT NOT NULL
};
  </pre>

  <p>The <code>odb::nullable</code> class template is defined
     in the <code>&lt;odb/nullable.hxx></code> header file and
     has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  template &lt;typename T>
  class nullable
  {
  public:
    typedef T value_type;

    nullable ();
    nullable (const T&amp;);
    nullable (const nullable&amp;);
    template &lt;typename Y> explicit nullable (const nullable&lt;Y>&amp;);

    nullable&amp; operator= (const T&amp;);
    nullable&amp; operator= (const nullable&amp;);
    template &lt;typename Y> nullable&amp; operator= (const nullable&lt;Y>&amp;);

    void swap (nullable&amp;);

    // Accessor interface.
    //
    bool null () const;

    T&amp;       get ();
    const T&amp; get () const;

    // Pointer interface.
    //
    operator bool_convertible () const;

    T*       operator-> ();
    const T* operator-> () const;

    T&amp;       operator* ();
    const T&amp; operator* () const;

    // Reset to the NULL state.
    //
    void reset ();
  };
}
  </pre>

  <p>The following example shows how we can use this interface:</p>

  <pre class="cxx">
  nullable&lt;string> ns;

  // Using the accessor interface.
  //
  if (ns.null ())
  {
    s = "abc";
  }
  else
  {
    string s (ns.get ());
    ns.reset ();
  }

  // The same using the pointer interface.
  //
  if (ns)
  {
    s = "abc";
  }
  else
  {
    string s (*ns);
    ns.reset ();
  }
  </pre>


  <p>The <code>odb::nullable</code> class template requires the wrapped
     type to have public default and copy constructors as well as the
     copy assignment operator. Note also that the <code>odb::nullable</code>
     implementation is not the most efficient in that it always contains
     a fully constructed value of the wrapped type. This is normally
     not a concern for simple types such as the C++ fundamental
     types or <code>std::string</code>. However, it may become
     an issue for more complex types. In such cases you may want to
     consider using a more efficient implementation of the
     <em>optional value</em> concept such as the
     <code>optional</code> class template from Boost
     (<a href="#23.4">Section 23.4, "Optional Library"</a>).</p>

  <p>Another common C++ representation of a value that can be
     <code>NULL</code> is a pointer. ODB will automatically
     handle data members that are pointers to values, however,
     it will not automatically enable <code>NULL</code> values
     for such data members, as is the case for <code>odb::nullable</code>.
     Instead, if the <code>NULL</code> value is desired, we will
     need to enable it explicitly using the <code>db&nbsp;null</code>
     pragma. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  std::string first_;

  #pragma db null
  std::auto_ptr&lt;std::string> middle_;

  std::string last_;
};
  </pre>

  <p>The ODB compiler includes built-in support for using
     <code>std::auto_ptr</code>, <code>std::unique_ptr</code> (C++11),
     and <code>shared_ptr</code> (TR1 or C++11) as pointers to values.
     Plus, ODB profile libraries, that are
     available for commonly used frameworks and libraries (such as Boost and
     Qt), provide support for smart pointers found in these frameworks
     and libraries (<a href="#III">Part III, "Profiles"</a>).</p>

  <p>ODB also supports the <code>NULL</code> semantics for composite
     values. In the relational database the <code>NULL</code> composite
     value is translated to <code>NULL</code> values for all the simple
     data members of this composite value. For example:</p>

  <pre class="cxx">
#pragma db value
struct name
{
  std::string first_;
  odb::nullable&lt;std::string> middle_;
  std::string last_;
};

#pragma db object
class person
{
  ...
  odb::nullable&lt;name> name_;
};
  </pre>

  <p>ODB does not support the <code>NULL</code> semantics for containers.
     This also means that a composite value that contains a container
     cannot be <code>NULL</code>. With this limitation in mind, we can
     still use smart pointers in data members of container types. The
     only restriction is that these pointers must not be <code>NULL</code>.
     For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  std::auto_ptr&lt;std::vector&lt;std::string> > aliases_;
};
  </pre>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="8">8 Inheritance</a></h1>

  <p>In C++ inheritance can be used to achieve two different goals.
     We can employ inheritance to reuse common data and functionality
     in multiple classes. For example:</p>

  <pre class="cxx">
class person
{
public:
  const std::string&amp; first () const;
  const std::string&amp; last () const;

private:
  std::string first_;
  std::string last_;
};

class employee: public person
{
  ...
};

class contractor: public person
{
  ...
};
  </pre>

 <p>In the above example both the <code>employee</code> and
    <code>contractor</code> classes inherit the <code>first_</code>
    and <code>last_</code> data members as well as the <code>first()</code>
    and <code>last()</code> accessors from the <code>person</code> base
    class.</p>

 <p>A common trait of this inheritance style, referred to as <em>reuse
    inheritance</em> from now on, is the lack of virtual functions and
    a virtual destructor in the base class. Also with this style the
    application code is normally written in terms of the derived classes
    instead of the base.</p>

 <p>The second way to utilize inheritance in C++ is to provide polymorphic
    behavior through a common interface. In this case the base class
    defines a number of virtual functions and, normally, a virtual
    destructor while the derived classes provide specific
    implementations of these virtual functions. For example:</p>

  <pre class="cxx">
class person
{
public:
  enum employment_status
  {
    unemployed,
    temporary,
    permanent,
    self_employed
  };

  virtual employment_status
  employment () const = 0;

  virtual
  ~person ();
};

class employee: public person
{
public:
  virtual employment_status
  employment () const
  {
    return temporary_ ? temporary : permanent;
  }

private:
  bool temporary_;
};

class contractor: public person
{
public:
  virtual employment_status
  employment () const
  {
    return self_employed;
  }
};
  </pre>

  <p>With this inheritance style, which we will call <em>polymorphism
     inheritance</em>, the application code normally works with derived
     classes via the base class interface. Note also that it is very common
     to mix both styles in the same hierarchy. For example, the above two
     code fragments can be combined so that the <code>person</code> base
     class provides the common data members and functions as well as
     defines the polymorphic interface.</p>

  <p>The following sections describe the available strategies for
     mapping reuse and polymorphism inheritance styles to a relational
     data model. Note also that the distinction between the two styles is
     conceptual rather than formal. For example, it is possible to treat
     a class hierarchy that defines virtual functions as a case of reuse
     inheritance if this results in the desired database mapping and
     semantics.</p>

  <p>Generally, classes that employ reuse inheritance are mapped to
     completely independent entities in the database. They use different
     object id spaces and should always be passed to and returned from
     the database operations as pointers or references to derived types.
     In other words, from the persistence point of view, such classes
     behave as if the data members from the base classes were copied
     verbatim into the derived ones.</p>

  <p>In contrast, classes that employ polymorphism inheritance share
     the object id space and can be passed to and returned from the
     database operations <em>polymorphically</em> as pointers or
     references to the base class.</p>

  <p>For both inheritance styles it is sometimes desirable to prevent
     instances of a base class from being stored in the database.
     To achieve this a persistent
     class can be declared abstract using the <code>db&nbsp;abstract</code>
     pragma (<a href="#14.1.3">Section 14.1.3, "<code>abstract</code>"</a>).
     Note that a <em>C++-abstract</em> class, or a class that
     has one or more pure virtual functions and therefore cannot be
     instantiated, is also <em>database-abstract</em>. However, a
     database-abstract class is not necessarily C++-abstract. The
     ODB compiler automatically treats C++-abstract classes as
     database-abstract.</p>

  <h2><a name="8.1">8.1 Reuse Inheritance</a></h2>

  <p>Each non-abstract class from the reuse inheritance hierarchy is
     mapped to a separate database table that contains all its data
     members, including those inherited from base classes. An abstract
     persistent class does not have to define an object id, nor a default
     constructor, and it does not have a corresponding database table.
     An abstract class cannot be a pointed-to object in a relationship.
     Multiple inheritance is supported as long as each base
     class is only inherited once. The following example shows a
     persistent class hierarchy employing reuse inheritance:</p>

  <pre class="cxx">
// Abstract person class. Note that it does not declare the
// object id.
//
#pragma db object abstract
class person
{
  ...

  std::string first_;
  std::string last_;
};

// Abstract employee class. It derives from the person class and
// declares the object id for all the concrete employee types.
//
#pragma db object abstract
class employee: public person
{
  ...

  #pragma db id auto
  unsigned long id_;
};

// Concrete permanent_employee class. Note that it doesn't define
// any data members of its own.
//
#pragma db object
class permanent_employee: public employee
{
  ...
};

// Concrete temporary_employee class. It adds the employment
// duration in months.
//
#pragma db object
class temporary_employee: public employee
{
  ...

  unsigned long duration_;
};

// Concrete contractor class. It derives from the person class
// (and not employee; an independent contractor is not considered
// an employee). We use the contractor's external email address
// as the object id.
//
#pragma db object
class contractor: public person
{
  ...

  #pragma db id
  std::string email_;
};
  </pre>

  <p>The sample database schema for this hierarchy is shown below.</p>

  <pre class="sql">
CREATE TABLE permanent_employee (
  first TEXT NOT NULL,
  last TEXT NOT NULL,
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT);

CREATE TABLE temporary_employee (
  first TEXT NOT NULL,
  last TEXT NOT NULL,
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
  duration BIGINT UNSIGNED NOT NULL);

CREATE TABLE contractor (
  first TEXT NOT NULL,
  last TEXT NOT NULL,
  email VARCHAR (255) NOT NULL PRIMARY KEY);
  </pre>

  <p>The complete version of the code presented in this section is
     available in the <code>inheritance/reuse</code> example in the
     <code>odb-examples</code> package.</p>

  <h2><a name="8.2">8.2 Polymorphism Inheritance</a></h2>

  <p>There are three general approaches to mapping a polymorphic
     class hierarchy to a relational database. These are
     <em>table-per-hierarchy</em>, <em>table-per-difference</em>,
     and <em>table-per-class</em>. With the table-per-hierarchy
     mapping, all the classes in a hierarchy are stored in a single,
     "wide" table. <code>NULL</code> values are stored in columns
     corresponding to data members of derived classes that are
     not present in any particular instance.</p>

  <p>In the table-per-difference mapping, each class is mapped
     to a separate table. For a derived class, this table contains
     only columns corresponding to the data members added by this
     derived class.</p>

  <p>Finally, in the table-per-class mapping, each class is mapped
     to a separate table. For a derived class, this table contains
     columns corresponding to all the data members, from this derived
     class all the way down to the root of the hierarchy.</p>

  <p>The table-per-difference mapping is generally considered as
     having the best balance of flexibility, performance, and space
     efficiency. It also results in a more canonical relational
     database model compared to the other two approaches. As a
     result, this is the mapping currently implemented in ODB.
     Other mappings may be supported in the future.</p>

  <p>A pointer or reference to an ordinary, non-polymorphic object
     has just one type &mdash; the class type of that object. When we
     start working with polymorphic objects, there are two types
     to consider: the <em>static type</em>, or the declaration type
     of a reference or pointer, and the object's actual or <em>dynamic
     type</em>. An example will help illustrate the difference:</p>

  <pre class="cxx">
class person {...};
class employee: public person {...};

person p;
employee e;

person&amp; r1 (p);
person&amp; r2 (e);

auto_ptr&lt;person> p1 (new employee);
  </pre>

  <p>In the above example, the <code>r1</code> reference's both static
     and dynamic types are <code>person</code>.
     In contrast, the <code>r2</code> reference's static type is
     <code>person</code> while its dynamic type (the actual object
     that it refers to) is <code>employee</code>. Similarly,
     <code>p1</code> points to the object of the <code>person</code>
     static type but <code>employee</code> dynamic type.</p>

  <p>In C++, the primary mechanisms for working with polymorphic objects
     are virtual functions. We call a virtual function only knowing the
     object's static type, but the version corresponding to the object's
     dynamic type is automatically executed. This is the essence of
     runtime polymorphism support in C++: we can operate in terms of a base
     class interface but get the derived class' behavior. Similarly, the
     essence of the runtime polymorphism support in ODB is to allow us to
     persist, load, update, and query in terms of the base class interface
     but have the derived class actually stored in the database.</p>

  <p>To declare a persistent class as polymorphic we use the
     <code>db&nbsp;polymorphic</code> pragma. We only need to
     declare the root class of a hierarchy as polymorphic; ODB will
     treat all the derived classes as polymorphic automatically. For
     example:</p>

  <pre class="cxx">
#pragma db object polymorphic
class person
{
  ...

  virtual
  ~person () = 0; // Automatically abstract.

  #pragma db id auto
  unsigned long id_;

  std::string first_;
  std::string last_;
};

#pragma db object
class employee: public person
{
  ...

  bool temporary_;
};

#pragma db object
class contractor: public person
{

  std::string email_;
};
  </pre>

  <p>A persistent class hierarchy declared polymorphic must also be
     polymorphic in the C++ sense, that is, the root class must
     declare or inherit at least one virtual function. It is
     recommended that the root class also declares a virtual destructor.
     The root class of the polymorphic hierarchy must contain
     the data member designated as object id (a persistent class
     without an object id cannot be polymorphic). Note also that,
     unlike reuse inheritance, abstract polymorphic classes have
     a table in the database, just like non-abstract classes.</p>

  <p>Persistent classes in the same polymorphic hierarchy must use the
     same kind of object pointer (<a href="#3.3">Section 3.3,
     "Object and View Pointers"</a>). If the object pointer
     for the root class is specified as a template or using the
     special raw pointer syntax (<code>*</code>), then the ODB
     compiler will automatically use the same object pointer
     for all the derived classes. For example:</p>

  <pre class="cxx">
#pragma db object polymorphic pointer(std::shared_ptr)
class person
{
  ...
};

#pragma db object // Object pointer is std::shared_ptr&lt;employee>.
class employee: public person
{
  ...
};

#pragma db object // Object pointer is std::shared_ptr&lt;contractor>.
class contractor: public person
{
  ...
};
  </pre>

  <p>Similarly, if we enable or disable session support
     (<a href="#11">Chapter 11, "Session"</a>) for the root class, then
     the ODB compiler will automatically enable or disable it for all
     the derived classes.</p>

  <p>For polymorphic persistent classes, all the database operations can
     be performed on objects with different static and dynamic types.
     Similarly, operations that load persistent objects from the
     database (<code>load()</code>, <code>query()</code>, etc.), can
     return objects with different static and dynamic types. For
     example:</p>

  <pre class="cxx">
unsigned long id1, id2;

// Persist.
//
{
  shared_ptr&lt;person> p1 (new employee (...));
  shared_ptr&lt;person> p2 (new contractor (...));

  transaction t (db.begin ());
  id1 = db.persist (p1); // Stores employee.
  id2 = db.persist (p2); // Stores contractor.
  t.commit ();
}

// Load.
//
{
  shared_ptr&lt;person> p;

  transaction t (db.begin ());
  p = db.load&lt;person> (id1); // Loads employee.
  p = db.load&lt;person> (id2); // Loads contractor.
  t.commit ();
}

// Query.
//
{
  typedef odb::query&lt;person> query;
  typedef odb::result&lt;person> result;

  transaction t (db.begin ());

  result r (db.query&lt;person> (query::last == "Doe"));

  for (result::iterator i (r.begin ()); i != r.end (); ++i)
  {
    person&amp; p (*i); // Can be employee or contractor.
  }

  t.commit ();
}

// Update.
//
{
  shared_ptr&lt;person> p;
  shared_ptr&lt;employee> e;

  transaction t (db.begin ());

  e = db.load&lt;employee> (id1);
  e->temporary (false);
  p = e;
  db.update (p); // Updates employee.

  t.commit ();
}

// Erase.
//
{
  shared_ptr&lt;person> p;

  transaction t (db.begin ());
  p = db.load&lt;person> (id1); // Loads employee.
  db.erase (p);              // Erases employee.
  db.erase&lt;person> (id2);    // Erases contractor.
  t.commit ();
}
  </pre>


  <p>The table-per-difference mapping, as supported by ODB, requires
     two extra columns, in addition to those corresponding to the
     data members. The first, called <em>discriminator</em>, is added
     to the table corresponding to the root class of the hierarchy.
     This column is used to determine the dynamic type of each
     object. The second column is added to tables corresponding
     to the derived classes and contains the object id. This
     column is used to form a foreign key constraint referencing
     the root class table.</p>

  <p>When querying the database for polymorphic objects, it is
     possible to obtain the discriminator value without
     instantiating the object. For example:</p>

  <pre class="cxx">
typedef odb::query&lt;person> query;
typedef odb::result&lt;person> result;

transaction t (db.begin ());

result r (db.query&lt;person> (query::last == "Doe"));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
{
  std::string d (i.discriminator ());
  ...
}

t.commit ();
  </pre>

  <p>In the current implementation, ODB has limited support for
     customizing names, types, and values of the extra columns.
     Currently, the discriminator column is always called
     <code>typeid</code> and contains a namespace-qualified class
     name (for example, <code>"employee"</code> or
     <code>"hr::employee"</code>). The id column in the derived
     class table has the same name as the object id column in
     the root class table. Future versions of ODB will add support
     for customizing these extra columns.</p>

  <p>The sample database schema for the above polymorphic hierarchy
     is shown below.</p>

  <pre class="sql">
CREATE TABLE person (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
  typeid VARCHAR(255) NOT NULL,
  first TEXT NOT NULL,
  last TEXT NOT NULL);

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  temporary TINYINT(1) NOT NULL,

  CONSTRAINT employee_id_fk
    FOREIGN KEY (id)
    REFERENCES person (id)
    ON DELETE CASCADE);

CREATE TABLE contractor (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  email TEXT NOT NULL,

  CONSTRAINT contractor_id_fk
    FOREIGN KEY (id)
    REFERENCES person (id)
    ON DELETE CASCADE);
  </pre>

  <p>The complete version of the code presented in this section is
     available in the <code>inheritance/polymorphism</code> example
     in the <code>odb-examples</code> package.</p>

  <h3><a name="8.2.1">8.2.1 Performance and Limitations</a></h3>

  <p>A database operation on a non-polymorphic object normally translates
     to a single database statement execution (objects with containers
     and eager object pointers can be the exception). Because polymorphic
     objects have their data members
     stored in multiple tables, some database operations on such objects
     may result in multiple database statements being executed while others
     may require more complex statements. There is also some functionality
     that is not available to polymorphic objects.</p>

  <p>The first part of this section discusses the performance implications
     to keep in mind when designing and working with polymorphic hierarchies.
     The second part talks about limitations of polymorphic objects.</p>

  <p>The most important aspect of a polymorphic hierarchy that
     affects database performance is its depth. The distance between
     the root of the hierarchy and the derived class translates
     directly to the number of database statements that will have to
     be executed in order to persist, update, or erase this derived class.
     It also translates directly to the number of SQL <code>JOIN</code>
     clauses that will be needed to load or query the database for this
     derived class. As a result, to achieve best performance, we should
     try to keep our polymorphic hierarchies as flat as possible.</p>

  <p>When loading an object or querying the database for objects,
     ODB will need to execute two statements if this object's static
     and dynamic types are different but only one statement if
     they are the same. This example will help illustrate the
     difference:</p>

  <pre class="cxx">
unsigned long id;

{
  employee e (...);

  transaction t (db.begin ());
  id = db.persist (e);
  t.commit ();
}

{
  shared_ptr&lt;person> p;

  transaction t (db.begin ());
  p = db.load&lt;person> (id);   // Requires two statement.
  p = db.load&lt;employee> (id); // Requires only one statement.
  t.commit ();
}
  </pre>

  <p>As a result, we should try to load and query using the most
     derived class possible.</p>

  <p>Finally, for polymorphic objects, erasing via the object instance
     is faster than erasing via its object id. In the former case the
     object's dynamic type can be determined locally in the application
     while in the latter case an extra statement has to be executed to
     achieve the same result. For example:</p>

  <pre class="cxx">
shared_ptr&lt;person> p = ...;

transaction t (db.begin ());
db.erase&lt;person> (p.id ()); // Slower (executes extra statement).
db.erase (p);               // Faster.
t.commit ();
  </pre>

  <p>Polymorphic objects can use all the mechanisms that are available
     to ordinary objects. These include containers (<a href="#5">Chapter 5,
     "Containers"</a>), object relationships, including to polymorphic
     objects (<a href="#6">Chapter 6, "Relationships"</a>), views
     (<a href="#10">Chapter 10, "Views"</a>), session (<a href="#11">Chapter
     11, "Session"</a>), and optimistic concurrency (<a href="#12">Chapter
     12, "Optimistic Concurrency"</a>). There are, however, a few
     limitations, mainly due to the underlying use of SQL to access the
     data.</p>

  <p>When a polymorphic object is "joined" in a view, and the join
     condition (either in the form of an object pointer or a custom
     condition) comes from the object itself (as opposed to one of
     the objects joined previously), then this condition must only
     use data members from the derived class. For example, consider
     the following polymorphic object hierarchy and a view:</p>


  <pre class="cxx">
#pragma db object polymorphic
class employee
{
  ...
};

#pragma db object
class permanent_employee: public employee
{
  ...
};

#pragma db object
class temporary_employee: public employee
{
  ...

  shared_ptr&lt;permanent_employee> manager_;
};

#pragma db object
class contractor: public temporary_employee
{
  shared_ptr&lt;permanent_employee> manager_;
};

#pragma db view object(permanent_employee) \
                object(contractor: contractor::manager_)
struct contractor_manager
{
  ...
};
  </pre>

  <p>This view will not function correctly because the join condition
     (<code>manager_</code>) comes from the base class
     (<code>temporary_employee</code>) instead of the derived
     (<code>contractor</code>). The reason for this limitation is the
     <code>JOIN</code> clause order in the underlying SQL <code>SELECT</code>
     statement. In the view presented above, the table corresponding
     to the base class (<code>temporary_employee</code>) will have to
     be joined first which will result in this view matching both
     the <code>temporary_employee</code> and <code>contractor</code>
     objects instead of just <code>contractor</code>. It is usually
     possible to resolve this issue by reordering the objects in the
     view. Our example, for instance, can be fixed by swapping the
     two objects:</p>

  <pre class="cxx">
#pragma db view object(contractor) \
                object(permanent_employee: contractor::manager_)
struct contractor_manager
{
  ...
};
  </pre>

  <p>The <code>erase_query()</code> database function (<a href="#3.11">Section
     3.11, "Deleting Persistent Objects"</a>) also has limited functionality
     when used on polymorphic objects. Because many database implementations
     do not support <code>JOIN</code> clauses in the SQL <code>DELETE</code>
     statement, only data members from the derived class being erased can
     be used in the query condition. For example:</p>

  <pre class="cxx">
typedef odb::query&lt;employee> query;

transaction t (db.begin ());
db.erase_query&lt;employee> (query::permanent);     // Ok.
db.erase_query&lt;employee> (query::last == "Doe"); // Error.
t.commit ();
  </pre>

  <h2><a name="8.3">8.3 Mixed Inheritance</a></h2>

  <p>It is possible to mix the reuse and polymorphism inheritance
     styles in the same hierarchy. In this case, the reuse inheritance
     must be used for the "bottom" (base) part of the hierarchy while
     the polymorphism inheritance &mdash; for the "top" (derived) part.
     For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
};

#pragma db object polymorphic
class employee: public person // Reuse inheritance.
{
  ...
};

#pragma db object
class temporary_employee: public employee // Polymorphism inheritance.
{
  ...
};

#pragma db object
class permanent_employee: public employee // Polymorphism inheritance.
{
  ...
};
  </pre>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="9">9 Sections</a></h1>

  <p>ODB sections are an optimization mechanism that allows us to
     partition data members of a persistent class into groups that
     can be separately loaded and/or updated. This can be useful,
     for example, if an object contains expensive to load or update
     data members (such as <code>BLOB</code>s or containers) and
     that are accessed or modified infrequently. For example:</p>

  <pre class="cxx">
#include &lt;odb/section.hxx>

#pragma db object
class person
{
  ...

  #pragma db load(lazy) update(manual)
  odb::section keys_;

  #pragma db section(keys_) type("BLOB")
  char public_key_[1024];

  #pragma db section(keys_) type("BLOB")
  char private_key_[1024];
};

transaction t (db.begin ());

auto_ptr&lt;person> p (db.load&lt;person> (...)); // Keys are not loaded.

if (need_keys)
{
  db.load (*p, p->keys_); // Load keys.
  ...
}

db.update (*p); // Keys are not updated.

if (update_keys)
{
  ...
  db.update (*p, p->keys_); // Update keys.
}

t.commit ();
  </pre>

  <p>A complete example that shows how to use sections is available in
     the <code>section</code> directory in the <code>odb-examples</code>
     package.</p>

  <p>Why do we need to group data members into sections? Why can't
     each data member be loaded and updated independently if and
     when necessary? The reason for this requirement is that loading
     or updating a group of data members with a single database
     statement is significantly more efficient than loading or updating
     each data member with a separate statement. Because ODB
     prepares and caches statements used to load and update
     persistent objects, generating a custom statement for
     a specific set of data members that need to be loaded or
     updated together is not a viable approach either. To resolve
     this, ODB allows us to group data members that are
     often updated and/or loaded together into sections. To
     achieve the best performance, we should aim to find a balance
     between having too many sections with too few data
     members and too few sections with too many data
     members. We can use the access and modification patterns
     of our application as a base for this decision.</p>

  <p>To add a new section to a persistent class we declare a new
     data member of the <code>odb::section</code> type. At this
     point we also need to specify the loading and updating behavior
     of this section with the <code>db&nbsp;load</code> and
     <code>db&nbsp;update</code> pragmas, respectively.</p>

  <p>The loading behavior of a section can be either <code>eager</code>
     or <code>lazy</code>. An eager-loaded section is always loaded as
     part of the object load. A lazy-loaded section is not loaded
     as part of the object load and has to be explicitly loaded with
     the <code>database::load()</code> function (discussed below) if
     and when necessary.</p>

  <p>The updating behavior of a section can be <code>always</code>,
     <code>change</code>, or <code>manual</code>. An always-updated
     section is always updated as part of the object update,
     provided it has been loaded. A change-updated section
     is only updated as part of the object update if it has been loaded
     and marked as changed. A manually-updated section is never updated
     as part of the object update and has to be explicitly updated with
     the <code>database::update()</code> function (discussed below) if
     and when necessary.</p>

  <p>If no loading behavior is specified explicitly, then an eager-loaded
     section is assumed. Similarly, if no updating behavior is specified,
     then an always-updated section is assumed. An eager-loaded, always-updated
     section is pointless and therefore illegal. Only persistent classes
     with an object id can have sections.</p>

  <p>To specify that a data member belongs to a section we use the
     <code>db&nbsp;section</code> pragma with the section's member
     name as its single argument. Except for special data members
     such as the object id and optimistic concurrency version, any
     direct, non-transient member of a persistent class can belong
     to a section, including composite values, containers, and
     pointers to objects. For example:</p>

  <pre class="cxx">
#pragma db value
class text
{
  std::string data;
  std::string lang;
};

#pragma db object
class person
{
  ...

  #pragma db load(lazy)
  odb::section extras_;

  #pragma db section(extras_)
  text bio_;

  #pragma db section(extras_)
  std::vector&lt;std::string> nicknames_;

  #pragma db section(extras_)
  std::shared_ptr&lt;person> emergency_contact_;
};
  </pre>

  <p>An empty section is pointless and therefore illegal, except
     in abstract or polymorphic classes where data members can be
     added to a section by derived classes (see <a href="#9.1">Section
     9.1, "Sections and Inheritance"</a>).</p>

  <p>The <code>odb::section</code> class is defined in the
     <code>&lt;odb/section.hxx></code> header file and has the
     following interface:</p>

  <pre class="cxx">
namespace odb
{
  class section
  {
  public:
    // Load state.
    //
    bool
    loaded () const;

    void
    unload ();

    // Change state.
    //
    bool
    changed () const;

    void
    change ();

    // User data.
    //
    unsigned char
    user_data () const;

    void
    user_data (unsigned char);
  };
}
  </pre>

  <p>The <code>loaded()</code> accessor can be used to determine
     whether a section is already loaded. The <code>unload()</code>
     modifier marks a loaded section as not loaded. This, for example,
     can be useful if you don't want the section to be reloaded during
     the object reload.</p>

  <p>The <code>changed()</code> accessor can be used to query the
     section's change state. The <code>change()</code> modifier
     marks the section as changed. It is valid to call this modifier
     for an unloaded (or transient) section, however, the state will
     be reset back to unchanged once the section (or object) is loaded.
     The change state is only relevant to sections with change-updated
     behavior and is ignored for all other sections.</p>

  <p>The size of the section class is one byte with four bits available
     to store a custom state via the <code>user_data()</code> accessor
     and modifier.</p>

  <p>The <code>odb::database</code> class provides special
     versions of the <code>load()</code> and <code>update()</code>
     functions that allow us to load and update sections of a
     persistent class. Their signatures are as follows:</p>

  <pre class="cxx">
  template &lt;typename T>
  void
  load (T&amp; object, section&amp;);

  template &lt;typename T>
  void
  update (const T&amp; object, const section&amp;);
  </pre>

  <p>Before calling the section <code>load()</code> function, the
     object itself must already be loaded. If the section is already
     loaded, then the call to <code>load()</code> will reload its
     data members. It is illegal to explicitly load an eager-loaded
     section.</p>

  <p>Before calling the section <code>update()</code> function, the
     section (and therefore the object) must be in the loaded state.
     If the section is not loaded, the <code>odb::section_not_loaded</code>
     exception is thrown. The section <code>update()</code> function
     does not check but does clear the section's change state. In
     other words, section <code>update()</code> will always update
     section data members in the database and clear the change flag.
     Note also that any section, that is, always-, change-, or
     manually-updated, can be explicitly updated with this function.</p>

  <p>Both section <code>load()</code> and <code>update()</code>, just
     like the rest of the database operations, must be performed within
     a transaction. Notice also that both <code>load()</code> and
     <code>update()</code> expect a reference to the section as
     their second argument. This reference must refer to the data
     member in the object passed as the first argument. If instead
     it refers to some other instance of the <code>section</code>
     class, for example, a local copy or a temporary, then the
     <code>odb::section_not_in_object</code> exception is thrown.
     For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
public:
  ...

  odb::section
  keys () const {return keys_;}

private:
  odb::section keys_;

  ...
};

auto_ptr&lt;person> p (db.load&lt;person> (...));

section s (p->keys ());
db.load (*p, s);            // Throw section_not_in_object, copy.

db.update (*p, p->keys ()); // Throw section_not_in_object, copy.
  </pre>

  <p>At first glance it may seem more appropriate to make the
     <code>section</code> class non-copyable in order to prevent
     such errors from happening. However, it is perfectly reasonable
     to expect to be able to copy (or assign) sections as part of
     the object copying (or assignment). As a result, sections are
     left copyable and copy-assignable, however, this functionality
     should not be used in accessors or modifiers. Instead, section
     accessors and modifiers should always be by-reference. Here is
     how we can fix our previous example:</p>

<pre class="cxx">
#pragma db object
class person
{
public:
  ...

  const odb::section&amp;
  keys () const {return keys_;}

  odb::section&amp;
  keys () {return keys_;}

private:
  odb::section keys_;

  ...
};

auto_ptr&lt;person> p (db.load&lt;person> (...));

section&amp; s (p->keys ());
db.load (*p, s);            // Ok, reference.

db.update (*p, p->keys ()); // Ok, reference.
  </pre>

  <p>Several other database operations affect sections. The state of
     a section in a transient object is undefined. That is, before
     the call to object <code>persist()</code> or <code>load()</code>
     functions, or after the call to object <code>erase()</code>
     function, the values returned by the <code>section::loaded()</code> and
     <code>section::changed()</code> accessors are undefined.</p>

  <p>After the call to <code>persist()</code>, all sections, including
     eager-loaded ones, are marked as loaded and unchanged. If instead we
     are loading an object with the <code>load()</code> call or as
     a result of a query, then eager-loaded sections are loaded
     and marked as loaded and unchanged while lazy-loaded ones are marked
     as unloaded. If a lazy-loaded section is later loaded with the
     section <code>load()</code> call, then it is marked as loaded and
     unchanged.</p>

  <p>When we update an object with the <code>update()</code> call,
     manually-updated sections are ignored while always-updated
     sections are updated if they are loaded. Change-updated
     sections are only updated if they are both loaded and marked
     as changed. After the update, such sections are reset to the
     unchanged state. When we reload an object with the
     <code>reload()</code> call, sections that were loaded are
     automatically reloaded and reset to the unchanged state.</p>

  <p>To further illustrate the state transitions of a section,
     consider this example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db load(lazy) update(change)
  odb::section keys_;

  ...
};

transaction t (db.begin ());

person p ("John", "Doe"); // Section state is undefined (transient).

db.persist (p);           // Section state: loaded, unchanged.

auto_ptr&lt;person> l (
  db.load&lt;person> (...)); // Section state: unloaded, unchanged.

db.update (*l);           // Section not updated since not loaded.
db.update (p);            // Section not updated since not changed.

p.keys_.change ();        // Section state: loaded, changed.
db.update (p);            // Section updated, state: loaded, unchanged.

db.update (*l, l->keys_); // Throw section_not_loaded.
db.update (p, p.keys_);   // Section updated even though not changed.

db.reload (*l);           // Section not reloaded since not loaded.
db.reload (p);            // Section reloaded, state: loaded, unchanged.

db.load (*l, l->keys_);   // Section loaded, state: loaded, unchanged.
db.load (p, p.keys_);     // Section reloaded, state: loaded, unchanged.

db.erase (p);             // Section state is undefined (transient).

t.commit ();
  </pre>

  <p>When using change-updated behavior, it is our responsibility to
     mark the section as changed when any of the data members belonging
     to this section is modified. A natural place to mark the section
     as changed is the modifiers for section data members, for example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  typedef std::array&lt;char, 1024> key_type;

  const key_type&amp;
  public_key () const {return public_key_;}

  void
  public_key (const key_type&amp; k)
  {
    public_key_ = k;
    keys_.change ();
  }

  const key_type&amp;
  private_key () const {return private_key_;}

  void
  private_key (const key_type&amp; k)
  {
    private_key_ = k;
    keys_.change ();
  }

private:
  #pragma db load(lazy) update(change)
  odb::section keys_;

  #pragma db section(keys_) type("BLOB")
  key_type public_key_;

  #pragma db section(keys_) type("BLOB")
  key_type private_key_;

  ...
};
  </pre>

  <p>One interesting aspect of change-updated sections is what happens
     when a transaction that performed an object or section update is
     later rolled back. In this case, while the change state of a
     section has been reset (after update), actual changes were not
     committed to the database. Change-updated sections handle this
     case by automatically registering a rollback callback and then,
     if it is called, restoring the original change state. The
     following code illustrates this semantics (continuing with
     the previous example):</p>

  <pre class="cxx">
auto_ptr&lt;person> p;

try
{
  transaction t (db.begin ());
  p = db.load&lt;person> (...);
  db.load (*p, p->keys_);

  p->private_key (new_key); // The section is marked changed.
  db.update (*p);           // The section is reset to unchanged.

  throw failed ();          // Triggers rollback.
  t.commit ();
}
catch (const failed&amp;)
{
  // The section is restored back to changed.
}
  </pre>


  <h2><a name="9.1">9.1 Sections and Inheritance</a></h2>

  <p>With both reuse and polymorphism inheritance (<a href="#8">Chapter 8,
     "Inheritance"</a>) it is possible to add new sections to derived
     classes. It is also possible to add data members from derived
     classes to sections declared in the base. For example:</p>

  <pre class="cxx">
#pragma db object polymorphic
class person
{
  ...

  virtual void
  print ();

  #pragma db load(lazy)
  odb::section print_;

  #pragma db section(print_)
  std::string bio_;
};

#pragma db object
class employee: public person
{
  ...

  virtual void
  print ();

  #pragma db section(print_)
  std::vector&lt;std::string> employment_history_;
};

transaction t (db.begin ());

auto_ptr&lt;person> p (db.load&lt;person> (...)); // Person or employee.
db.load (*p, p->print_); // Load data members needed for print.
p->print ();

t.commit ();
  </pre>

  <p>When data members of a section are spread over several classes in a
     reuse inheritance hierarchy, both section load and update are
     performed with a single database statement. In contrast, with
     polymorphism inheritance, section load is performed with a
     single statement while update requires a separate statement
     for each class that adds to the section.</p>

  <p>Note also that in polymorphism inheritance the section-to-object
     association is static. Or, in other words, you can load a section
     via an object only if its static type actually contains this
     section. The following example will help illustrate this
     point further:</p>

  <pre class="cxx">
#pragma db object polymorphic
class person
{
  ...
};

#pragma db object
class employee: public person
{
  ...

  #pragma db load(lazy)
  odb::section extras_;

  ...
};

#pragma db object
class manager: public employee
{
  ...
};

auto_ptr&lt;manager> m (db.load&lt;manager> (...));

person&amp; p (*m);
employee&amp; e (*m);
section&amp; s (m->extras_);

db.load (p, s); // Error: extras_ is not in person.
db.load (e, s); // Ok: extras_ is in employee.
  </pre>

  <h2><a name="9.2">9.2 Sections and Optimistic Concurrency</a></h2>

  <p>When sections are used in a class with the optimistic concurrency
     model (<a href="#12">Chapter 12, "Optimistic Concurrency"</a>),
     both section update and load operations compare the object version
     to that in the database and throw the <code>odb::object_changed</code>
     exception if they do not match. In addition, the section update
     operation increments the version to indicate that the object state
     has changed. For example:</p>

  <pre class="cxx">
#pragma db object optimistic
class person
{
  ...

  #pragma db version
  unsigned long long version_;

  #pragma db load(lazy)
  odb::section extras_;

  #pragma db section(extras_)
  std::string bio_;
};

auto_ptr&lt;person> p;

{
  transaction t (db.begin ());
  p = db.load&lt;person> (...);
  t.commit ();
}

{
  transaction t (db.begin ());

  try
  {
    db.load (*p, p->extras_); // Throws if object state has changed.
  }
  catch (const object_changed&amp;)
  {
    db.reload (*p);
    db.load (*p, p->extras_); // Cannot fail.
  }

  t.commit ();
}
  </pre>

  <p>Note also that if an object update triggers one or more
     section updates, then each such update will increment the
     object version. As a result, an update of an object that
     contains sections may result in a version increment by
     more than one.</p>

  <p>When sections are used together with optimistic concurrency and
     inheritance, an extra step may be required to enable this
     functionality. If you plan to add new sections to derived
     classes, then the root class of the hierarchy
     (the one that declares the version data member) must be
     declared as sectionable with the <code>db&nbsp;sectionable</code>
     pragma. For example:</p>

  <pre class="cxx">
#pragma db object polymorphic sectionable
class person
{
  ...

  #pragma db version
  unsigned long long version_;
};

#pragma db object
class employee: public person
{
  ...

  #pragma db load(lazy)
  odb::section extras_;

  #pragma db section(extras_)
  std::vector&lt;std::string> employment_history_;
};
  </pre>

  <p>This requirement has to do with the need to generate extra
     version increment code in the root class that will be used
     by sections added in the derived classes. If you forget to
     declare the root class as sectionable and later add a
     section to one of the derived classes, the ODB compiler
     will issue diagnostics.</p>

  <h2><a name="9.3">9.3 Sections and Lazy Pointers</a></h2>

  <p>If a lazy pointer (<a href="#6.4">Section 6.4, "Lazy Pointers"</a>)
     belongs to a lazy-loaded section, then we end up with two levels of
     lazy loading. Specifically, when the section is loaded, the lazy
     pointer is initialized with the object id but the object itself
     is not loaded. For example:</p>

  <pre class="cxx">
#pragma db object
class employee
{
  ...

  #pragma db load(lazy)
  odb::section extras_;

  #pragma db section(extras_)
  odb::lazy_shared_ptr&lt;employer> employer_;
};

transaction t (db.begin ());

auto_ptr&lt;employee> e (db.load&lt;employee> (...)); // employer_ is NULL.

db.load (*e, e->extras_); // employer_ contains valid employer id.

e->employer_.load (); // employer_ points to employer object.

t.commit ();
  </pre>

  <h2><a name="9.4">9.4 Sections and Change-Tracking Containers</a></h2>

  <p>If a change-tracking container (<a href="#5.4">Section 5.4,
     "Change-Tracking Containers"</a>) belongs to a change-updated
     section, then prior to an object update ODB will check if the
     container has been changed and if so, automatically mark the
     section as changed. For example:</p>

<pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db load(lazy) update(change)
  odb::section extras_;

  #pragma db section(extras_)
  odb::vector&lt;std::string> nicknames_;
};

transaction t (db.begin ());

auto_ptr&lt;person> p (db.load&lt;person> (...));
db.load (*p, p->extras_);

p->nicknames_.push_back ("JD");

db.update (*p); // Section is automatically updated even
                // though it was not marked as changed.
t.commit ();
  </pre>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="10">10 Views</a></h1>

  <p>An ODB view is a C++ <code>class</code> or <code>struct</code> type
     that embodies a light-weight, read-only projection of one or more
     persistent objects or database tables or the result of a native SQL
     query execution.</p>

  <p>Some of the common applications of views include loading a subset
     of data members from objects or columns from database tables, executing
     and handling results of arbitrary SQL queries, including aggregate
     queries and stored procedure calls, as well as joining multiple
     objects and/or database tables using object relationships or custom
     join conditions.</p>

  <p>Many relational databases also define the concept of views. Note,
     however, that ODB views are not mapped to database views. Rather,
     by default, an ODB view is mapped to an SQL <code>SELECT</code>
     query. However, if desired, it is easy to create an ODB view
     that is based on a database view.</p>

  <p>Usually, views are defined in terms of other persistent entities,
     such as persistent objects, database tables, sequences, etc.
     Therefore, before we can examine our first view, we need to
     define a few persistent objects and a database table. We will
     use this model in examples throughout this chapter. Here we
     assume that you are familiar with ODB object relationship
     support (<a href="#6">Chapter 6, "Relationships"</a>).</p>

  <pre class="cxx">
#pragma db object
class country
{
  ...

  #pragma db id
  std::string code_; // ISO 2-letter country code.

  std::string name_;
};

#pragma db object
class employer
{
  ...

  #pragma db id
  unsigned long id_;

  std::string name_;
};

#pragma db object
class employee
{
  ...

  #pragma db id
  unsigned long id_;

  std::string first_;
  std::string last_;

  unsigned short age_;

  shared_ptr&lt;country> residence_;
  shared_ptr&lt;country> nationality_;

  shared_ptr&lt;employer> employed_by_;
};
  </pre>

  <p>Besides these objects, we also have the legacy
     <code>employee_extra</code> table that is not mapped to any persistent
     class. It has the following definition:</p>

  <pre class="sql">
CREATE TABLE employee_extra(
  employee_id INTEGER NOT NULL,
  vacation_days INTEGER NOT NULL,
  previous_employer_id INTEGER)
  </pre>

  <p>The above persistent objects and database table as well as many of
     the views shown in this chapter are based on the
     <code>view</code> example which can be found in the
     <code>odb-examples</code> package of the ODB distribution.</p>

  <p>To declare a view we use the <code>db&nbsp;view</code> pragma,
     for example:</p>

  <pre class="cxx">
#pragma db view object(employee)
struct employee_name
{
  std::string first;
  std::string last;
};
  </pre>

  <p>The above example shows one of the simplest views that we can create.
     It has a single associated object (<code>employee</code>) and its
     purpose is to extract the employee's first and last names without
     loading any other data, such as the referenced <code>country</code>
     and <code>employer</code> objects.</p>

  <p>Views use the same query facility (<a href="#4">Chapter 4, "Querying
     the Database"</a>) as persistent objects. Because support for queries
     is optional and views cannot be used without this support, you need
     to compile any header that defines a view with the
     <code>--generate-query</code> ODB compiler option.</p>

  <p>To query the database for a view we use the
     <code>database::query()</code>, <code>database::query_one()</code>, or
     <code>database::query_value()</code> functions in exactly the same way
     as we would use them to query the database for an object. For example,
     the following code fragment shows how we can find the names of all the
     employees that are younger than 31:</p>

  <pre class="cxx">
typedef odb::query&lt;employee_name> query;
typedef odb::result&lt;employee_name> result;

transaction t (db.begin ());

result r (db.query&lt;employee_name> (query::age &lt; 31));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
{
  const employee_name&amp; en (*i);
  cout &lt;&lt; en.first &lt;&lt; " " &lt;&lt; en.last &lt;&lt; endl;
}

t.commit ();
  </pre>

  <p>A view can be defined as a projection of one or more objects, one
     or more tables, a combination of objects and tables, or it can be
     the result of a custom SQL query. The following sections discuss each
     of these kinds of view in more detail.</p>

  <h2><a name="10.1">10.1 Object Views</a></h2>

  <p>To associate one or more objects with a view we use the
     <code>db&nbsp;object</code> pragma (<a href="#14.2.1">Section
     14.2.1, "<code>object</code>"</a>). We have already seen
     a simple, single-object view in the introduction to this chapter.
     To associate the second and subsequent objects we repeat the
     <code>db&nbsp;object</code> pragma for each additional object,
     for example:</p>

  <pre class="cxx">
#pragma db view object(employee) object(employer)
struct employee_employer
{
  std::string first;
  std::string last;
  std::string name;
};
  </pre>

  <p>The complete syntax of the <code>db&nbsp;object</code> pragma is
     shown below:</p>

  <p><code><b>object(</b><i>name</i>
                     [<b>=</b> <i>alias</i>]
                     [<i>join-type</i>]
                     [<b>:</b> <i>join-condition</i>]<b>)</b></code></p>

  <p>The <i>name</i> part is a potentially qualified persistent class
     name that has been defined previously. The optional <i>alias</i>
     part gives this object an alias. If provided, the alias is used
     in several contexts instead of the object's unqualified name. We
     will discuss aliases further as we cover each of these contexts
     below. The optional <i>join-type</i> part specifies the way this
     object is associated. It can be <code>left</code>, <code>right</code>,
     <code>full</code>, <code>inner</code>, and <code>cross</code>
     with <code>left</code> being the default.
     Finally, the optional <i>join-condition</i> part provides the
     criteria which should be used to associate this object with any
     of the previously associated objects or, as we will see in
     <a href="#10.4">Section 10.4, "Mixed Views"</a>, tables. Note that
     while the first associated object can have an alias, it cannot
     have a join type or condition.</p>

  <p>For each subsequent associated object the ODB compiler needs
     a join condition and there are several ways to specify
     it. The easiest way is to omit it altogether and let the ODB
     compiler try to come up with a join condition automatically.
     To do this the ODB compiler will examine each previously
     associated object for object relationships
     (<a href="#6">Chapter 6, "Relationships"</a>) that
     may exist between these objects and the object being associated.
     If such a relationship exists and is unambiguous, that is
     there is only one such relationship, then the ODB compiler
     will automatically use it to come up with the join condition for
     this object. This is exactly what happens in the previous
     example: there is a single relationship
     (<code>employee::employed_by</code>) between the
     <code>employee</code> and <code>employer</code> objects.</p>

  <p>On the other hand, consider this view:</p>

  <pre class="cxx">
#pragma db view object(employee) object(country)
struct employee_residence
{
  std::string first;
  std::string last;
  std::string name;
};
  </pre>

  <p>While there is a relationship between <code>country</code> and
     <code>employee</code>, it is ambiguous. It can be
     <code>employee::residence_</code> (which is what we want) or
     it can be <code>employee::nationality_</code> (which we don't
     want). As result, when compiling the above view, the ODB
     compiler will issue an error indicating an ambiguous object
     relationship. To resolve this ambiguity, we can explicitly
     specify the object relationship that should be used to create
     the join condition as the name of the corresponding data member.
     Here is how we can fix the <code>employee_residence</code>
     view:</p>

  <pre class="cxx">
#pragma db view object(employee) object(country: employee::residence_)
struct employee_residence
{
  std::string first;
  std::string last;
  std::string name;
};
  </pre>

  <p>It is possible to associate the same object with a single view
     more than once using different join conditions. However, in
     this case, we have to use aliases to assign different names
     for each association. For example:</p>

  <pre class="cxx">
#pragma db view object(employee) \
  object(country = res_country: employee::residence_) \
  object(country = nat_country: employee::nationality_)
struct employee_country
{
  ...
};
  </pre>

  <p>Note that correctly defining data members in this view requires
     the use of a mechanism that we haven't yet covered. We will
     see how to do this shortly.</p>

  <p>If we assign an alias to an object and refer to a data member of
     this object in one of the join conditions, we have to use the
     unqualified alias name instead of the potentially qualified
     object name. For example:</p>

  <pre class="cxx">
#pragma db view object(employee = ee) object(country: ee::residence_)
struct employee_residence
{
  ...
};
  </pre>

  <p>The last way to specify a join condition is to provide a custom
     query expression. This method is primarily useful if you would
     like to associate an object using a condition that does not
     involve an object relationship. Consider, for example, a
     modified <code>employee</code> object from the beginning of
     the chapter with an added country of birth member. For one
     reason or another we have decided not to use a relationship to
     the <code>country</code> object, as we have done with
     residence and nationality.</p>

  <pre class="cxx">
#pragma db object
class employee
{
  ...

  std::string birth_place_; // Country name.
};
  </pre>

  <p>If we now want to create a view that returns the birth country code
     for an employee, then we have to use a custom join condition when
     associating the <code>country</code> object. For example:</p>

  <pre class="cxx">
#pragma db view object(employee) \
  object(country: employee::birth_place_ == country::name_)
struct employee_birth_code
{
  std::string first;
  std::string last;
  std::string code;
};
  </pre>

  <p>The syntax of the query expression in custom join conditions
     is the same as in the query facility used to query the database
     for objects (<a href="#4">Chapter 4, "Querying the Database"</a>)
     except that for query members, instead of using
     <code>odb::query&lt;object>::member</code> names, we refer directly
     to object members.</p>

  <p>Looking at the views we have defined so far, you may be wondering
     how the ODB compiler knows which view data members correspond to which
     object data members. While the names are similar, they are not exactly
     the same, for example <code>employee_name::first</code> and
     <code>employee::first_</code>.</p>

  <p>As with join conditions, when it comes to associating data members,
     the ODB compiler tries to do this automatically. It first searches
     all the associated objects for an exact name match. If no match is
     found, then the ODB compiler compares the so-called public names.
     A public name of a member is obtained by removing the common member
     name decorations, such as leading and trailing underscores, the
     <code>m_</code> prefix, etc. In both of these searches the ODB
     compiler also makes sure that the types of the two members are the
     same or compatible.</p>

  <p>If one of the above searches returned a match and it is unambiguous, that
     is there is only one match, then the ODB compiler will automatically
     associate the two members. On the other hand, if no match is found
     or the match is ambiguous, the ODB compiler will issue an error.
     To associate two differently-named members or to resolve an ambiguity,
     we can explicitly specify the member association using the
     <code>db&nbsp;column</code> pragma (<a href="#14.4.9">Section 14.4.9,
     "<code>column</code>"</a>). For example:</p>

  <pre class="cxx">
#pragma db view object(employee) object(employer)
struct employee_employer
{
  std::string first;
  std::string last;

  #pragma db column(employer::name_)
  std::string employer_name;
};
  </pre>

  <p>If an object data member specifies the SQL type with
     the <code>db&nbsp;type</code> pragma (<a href="#14.4.3">Section
     14.4.3, "<code>type</code>"</a>), then this type is also used for
     the associated view data members.</p>

  <p>Note also that similar to join conditions, if we assign an alias to
     an object and refer to a data member of this object in one of the
     <code>db&nbsp;column</code> pragmas, then we have to use the
     unqualified alias name instead of the potentially qualified
     object name. For example:</p>

  <pre class="cxx">
#pragma db view object(employee) \
  object(country = res_country: employee::residence_) \
  object(country = nat_country: employee::nationality_)
struct employee_country
{
  std::string first;
  std::string last;

  #pragma db column(res_country::name_)
  std::string res_country_name;

  #pragma db column(nat_country::name_)
  std::string nat_country_name;
};
  </pre>

  <p>Besides specifying just the object member, we can also specify a
     <em>+-expression</em> in the <code>db&nbsp;column</code> pragma. A
     +-expression consists of string literals and object
     member references connected using the <code>+</code> operator.
     It is primarily useful for defining aggregate views based on
     SQL aggregate functions, for example:</p>

  <pre class="cxx">
#pragma db view object(employee)
struct employee_count
{
  #pragma db column("count(" + employee::id_ + ")")
  std::size_t count;
};
  </pre>

  <p>When querying the database for a view, we may want to provide
     additional query criteria based on the objects associated with
     this view. To support this a view defines query members for all
     the associated objects which allows us to refer to such objects'
     members using the <code>odb::query&lt;view>::member</code> expressions.
     This is similar to how we can refer to object members using the
     <code>odb::query&lt;object>::member</code> expressions when
     querying the database for an object. For example:</p>

  <pre class="cxx">
typedef odb::query&lt;employee_count> query;

transaction t (db.begin ());

// Find the number of employees with the Doe last name. Result of this
// aggregate query contains only one element so use the query_value()
// shortcut function.
//
employee_count ec (
  db.query_value&lt;employee_count> (query::last == "Doe"));

cout &lt;&lt; ec.count &lt;&lt; endl;

t.commit ();
  </pre>

  <p>In the above query we used the last name data member from the associated
     <code>employee</code> object to only count employees with the specific
     name.</p>

  <p>When a view has only one associated object, the query members
     corresponding to this object are defined directly in the
     <code>odb::query&lt;view></code> scope. For instance,
     in the above example, we referred to the last name member as
     <code>odb::query&lt;employee_count>::last</code>. However, if
     a view has multiple associated objects, then query members
     corresponding to each such object are defined in a nested
     scope named after the object. As an example, consider
     the <code>employee_employer</code> view again:</p>

  <pre class="cxx">
#pragma db view object(employee) object(employer)
struct employee_employer
{
  std::string first;
  std::string last;

  #pragma db column(employer::name_)
  std::string employer_name;
};
  </pre>

  <p>Now, to refer to the last name data member from the <code>employee</code>
     object we use the
     <code>odb::query&lt;...>::employee::last</code> expression.
     Similarly, to refer to the employer name, we use the
     <code>odb::query&lt;...>::employer::name</code> expression.
     For example:</p>

  <pre class="cxx">
typedef odb::result&lt;employee_employer> result;
typedef odb::query&lt;employee_employer> query;

transaction t (db.begin ());

result r (db.query&lt;employee_employer> (
  query::employee::last == "Doe" &amp;&amp;
  query::employer::name == "Simple Tech Ltd"));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
  cout &lt;&lt; i->first &lt;&lt; " " &lt;&lt; i->last &lt;&lt;  " " &lt;&lt; i->employer_name &lt;&lt; endl;

t.commit ();
  </pre>

  <p>If we assign an alias to an object, then this alias is used to
     name the query members scope instead of the object name. As an
     example, consider the <code>employee_country</code> view again:</p>

  <pre class="cxx">
#pragma db view object(employee) \
  object(country = res_country: employee::residence_) \
  object(country = nat_country: employee::nationality_)
struct employee_country
{
  ...
};
  </pre>

  <p>And a query which returns all the employees that have the same
     country of residence and nationality:</p>

  <pre class="cxx">
typedef odb::query&lt;employee_country> query;
typedef odb::result&lt;employee_country> result;

transaction t (db.begin ());

result r (db.query&lt;employee_country> (
  query::res_country::name == query::nat_country::name));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
  cout &lt;&lt; i->first &lt;&lt; " " &lt;&lt; i->last &lt;&lt; " " &lt;&lt; i->res_country_name &lt;&lt; endl;

t.commit ();
  </pre>

  <p>Note also that unlike object query members, view query members do
     no support referencing members in related objects. For example,
     the following query is invalid:</p>

  <pre class="cxx">
typedef odb::query&lt;employee_name> query;
typedef odb::result&lt;employee_name> result;

transaction t (db.begin ());

result r (db.query&lt;employee_name> (
  query::employed_by->name == "Simple Tech Ltd"));

t.commit ();
  </pre>

  <p>To get this behavior, we would instead need to associate the
     <code>employer</code> object with this view and then use the
     <code>query::employer::name</code> expression instead of
     <code>query::employed_by->name</code>.</p>

  <p>As we have discussed above, if specified, an object alias is
     used instead of the object name in the join condition, data
     member references in the <code>db&nbsp;column</code> pragma,
     as well as to name the query members scope. The object alias
     is also used as a table name alias in the underlying
     <code>SELECT</code> statement generated by the ODB compiler.
     Normally, you would not use the table alias directly with
     object views. However, if for some reason you need to refer
     to a table column directly, for example, as part of a native
     query expression, and you need to qualify the column with
     the table, then you will need to use the table alias instead.</p>

  <h2><a name="10.2">10.2 Object Loading Views</a></h2>

  <p>A special variant of object views is object loading views. Object
     loading views allow us to load one or more complete objects
     instead of, or in addition to, a subset of data member. While we
     can often achieve the same end result by calling
     <code>database::load()</code>, using a view has several advantages.</p>

  <p>If we need to load multiple objects, then using a view allows us
     to do this with a single <code>SELECT</code> statement execution
     instead of one for each object that would be necessary in case of
     <code>load()</code>. A view can also be useful for loading only
     a single object if the query criterion that we would like to use
     involves other, potentially unrelated, objects. We will examine
     concrete examples of these and other scenarios in the rest of this
     section.</p>

  <p>To load a complete object as part of a view we use a data member of
     the pointer to object type, just like for object relationships
     (<a href="#6">Chapter 6, "Relationships"</a>). As an example, here
     is how we can load both the <code>employee</code> and
     <code>employer</code> objects from the previous section with a single
     statement:</p>

  <pre class="cxx">
#pragma db view object(employee) object(employer)
struct employee_employer
{
  shared_ptr&lt;employee> ee;
  shared_ptr&lt;employer> er;
};
  </pre>

  <p>We use an object loading view just like any other view. In the
     result of a query, as we would expect, the pointer data members
     point to the loaded objects. For example:</p>

  <pre class="cxx">
typedef odb::query&lt;employee_employer> query;

transaction t (db.begin ());

for (const employee_employer&amp; r:
       db.query&lt;employee_employer> (query::employee::age &lt; 31))
{
  cout &lt;&lt; r.ee->age () &lt;&lt; " " &lt;&lt; r.er->name () &lt;&lt; endl;
}

t.commit ();
  </pre>

  <p>As another example, consider a query that loads the <code>employer</code>
     objects using some condition based on its employees. For instance, we
     want to find all the employers that employ people over 65 years old.
     We can use this object loading view to implement such a query (notice
     the <code>distinct</code> result modifier discussed later in
     <a href="#10.5">Section 10.5, "View Query Conditions"</a>):</p>

  <pre class="cxx">
#pragma db view object(employer) object(employee) query(distinct)
struct employer_view
{
  shared_ptr&lt;employer> er;
};
  </pre>

  <p>And this is how we can use this view to find all the employers that
     employ seniors:</p>

  <pre class="cxx">
typedef odb::query&lt;employer_view> query;

db.query&lt;employer_view> (query::employee::age > 65)
  </pre>

  <p>We can even use object loading views to load completely unrelated
     (from the ODB object relationships point of view) objects. For example,
     the following view will load all the employers that are named the
     same as a country (notice the <code>inner</code> join type):</p>

  <pre class="cxx">
#pragma db view object(employer) \
  object(country inner: employer::name == country::name)
struct employer_named_country
{
  shared_ptr&lt;employer> e;
  shared_ptr&lt;country> c;
};
  </pre>

  <p>An object loading view can contain ordinary data members
     in addition to object pointers. For example, if we are only
     interested in the country code in the above view, then we
     can reimplement it like this:</p>

  <pre class="cxx">
#pragma db view object(employer) \
  object(country inner: employer::name == country::name)
struct employer_named_country
{
  shared_ptr&lt;employer> e;
  std::string code;
};
  </pre>

  <p>Object loading views also have a few rules and restrictions.
     Firstly, the pointed-to object in the data member must be associated
     with the view. Furthermore, if the associated object has an alias,
     then the data member name must be the same as the alias (more
     precisely, the public name derived from the data member must
     match the alias; which means we can use normal data member
     decorations such as trailing underscores, etc., see the previous
     section for more information on public names). The following view
     illustrates the use of aliases as data member names:</p>

  <pre class="cxx">
#pragma db view object(employee)               \
  object(country = res: employee::residence_)  \
  object(country = nat: employee::nationality_)
struct employee_country
{
  shared_ptr&lt;country> res;
  shared_ptr&lt;country> nat_;
};
  </pre>

  <p>Finally, the object pointers must be direct data members of
     the view. Using, for example, a composite value that contains
     pointers as a view data member is not supported. Note also
     that depending on the join type you are using, some of the
     resulting pointers might be <code>NULL</code>.</p>

  <p>Up until now we have consistently used <code>shared_ptr</code>
     as an object pointer in our views. Can we use other pointers,
     such as <code>unique_ptr</code> or raw pointers? To answer
     this question we first need to discuss what happens with
     object pointers that may be inside objects that a view
     loads. As a concrete example, let us revisit the
     <code>employee_employer</code> view from the beginning of
     this section:</p>

  <pre class="cxx">
#pragma db view object(employee) object(employer)
struct employee_employer
{
  shared_ptr&lt;employee> ee;
  shared_ptr&lt;employer> er;
};
  </pre>

  <p>This view loads two objects: <code>employee</code> and
     <code>employer</code>. The <code>employee</code> object,
     however, also contains a pointer to <code>employer</code>
     (see the <code>employed_by_</code> data member). In fact,
     this is the same object that the view loads since <code>employer</code>
     is associated with the view using this same relationship (ODB
     automatically uses it since it is the only one). The correct
     result of loading such a view is then clear: both <code>er</code> and
     <code>er->employed_by_</code> must point to (or share) the
     same instance.</p>

  <p>Just like object loading via the <code>database</code> class
     functions, views achieve this correct behavior of only loading
     a single instance of the same object with the help of session's
     object cache (<a href="#11">Chapter 11, "Session"</a>). In fact,
     object loading views enforce this by throwing the
     <code>session_required</code> exception if there is no current
     session and the view loads an object that is also indirectly
     loaded by one of the other objects. The ODB compiler will also
     issue diagnostics if such an object has session support
     disabled (<a href="#14.1.10">Section 14.1.10,
     "<code>session</code>"</a>).</p>

  <p>With this understanding we can now provide the correct implementation
     of our transaction that uses the <code>employee_employer</code> view:</p>

  <pre class="cxx">
typedef odb::query&lt;employee_employer> query;

transaction t (db.begin ());
odb::session s;

for (const employee_employer&amp; r:
       db.query&lt;employee_employer> (query::employee::age &lt; 31))
{
  assert (r.ee->employed_by_ == r.er);
  cout &lt;&lt; r.ee->age () &lt;&lt; " " &lt;&lt; r.er->name () &lt;&lt; endl;
}

t.commit ();
  </pre>

  <p>It might seem logical, then, to always load all the objects from
     all the eager relationships with the view. After all, this will
     lead to them all being loaded with a single statement. While
     this is theoretically true, the reality is slightly more nuanced.
     If there is a high probability of the object already have been
     loaded and sitting in the cache, then not loading the object
     as part of the view (and therefore not fetching all its data
     from the database) might result in better performance.</p>

  <p>Now we can also answer the question about which pointers we can
     use in object loading views. From the above discussion it should
     be clear that if an object that we are loading is also part of a
     relationship inside another object that we are loading, then we
     should use some form of a shared ownership pointer. If, however,
     there are no relationships involved, as is the case, for example,
     in our <code>employer_named_country</code> and
     <code>employee_country</code> views above, then we can use a
     unique ownership pointer such as <code>unique_ptr</code>.</p>

  <p>Note also that your choice of a pointer type can be limited by the
     "official" object pointer type assigned to the object
     (<a href="#3.3">Section 3.3, "Object and View Pointers"</a>).
     For example, if the object pointer type is <code>shared_ptr</code>,
     you will not be able to use <code>unique_ptr</code> to load
     such an object into a view since initializing <code>unique_ptr</code>
     from <code>shared_ptr</code> would be a mistake.</p>

  <p>Unless you want to perform your own object cleanup, raw object
     pointers in views are not particularly useful. They do have one
     special semantics, however: If a raw pointer is used as a view
     member, then, before creating a new instance, the implementation
     will check if the member is <code>NULL</code>. If it is not, then
     it is assumed to point to an existing instance and the implementation
     will load the data into it instead of creating a new one. The
     primary use of this special functionality is to implement by-value
     loading with the ability to detect <code>NULL</code> values.</p>

  <p>To illustrate this functionality, consider the following view that
     load the employee's residence country by value:</p>

  <pre class="cxx">
#pragma db view object(employee) \
  object(country = res: employee::residence_) transient
struct employee_res_country
{
  typedef country* country_ptr;

  #pragma db member(res_) virtual(country_ptr) get(&amp;this.res) \
    set(this.res_null = ((?) == nullptr))

  country res;
  bool res_null;
};
  </pre>

  <p>Here we are using a virtual data member
     (<a href="#14.4.13">Section 14.4.13, "<code>virtual</code>"</a>) to
     add an object pointer member to the view. Its accessor expression
     returns the pointer to the <code>res</code> member so that
     the implementation can load the data into it. The modifier
     expression checks the passed pointer to initialize the
     <code>NULL</code> value indicator. Here, the two possible
     values that can be passed to the modifier expression are
     the address of the <code>res</code> member that we returned
     earlier from the accessor and <code>NULL</code> (strictly
     speaking, there is a third possibility: the address of an
     object that was found in the session cache).</p>

  <p>If we are not interested in the <code>NULL</code> indicator,
     then the above view can simplified to this:</p>

  <pre class="cxx">
#pragma db view object(employee) \
  object(country = res: employee::residence_) transient
struct employee_res_country
{
  typedef country* country_ptr;

  #pragma db member(res_) virtual(country_ptr) get(&amp;this.res) set()

  country res;
};
  </pre>

  <p>That is, we specify an empty modifier expression which leads to
     the value being ignored.</p>

  <p>As another example of by-value loading, consider a view that allows
     us to load objects into existing instances that have been allocated
     outside the view:</p>

  <pre class="cxx">
#pragma db view object(employee)               \
  object(country = res: employee::residence_)  \
  object(country = nat: employee::nationality_)
struct employee_country
{
  employee_country (country&amp; r, country&amp; n): res (&amp;r), nat (&amp;n) {}

  country* res;
  country* nat;
};
  </pre>

  <p>And here is how we can use this view:</p>

  <pre class="cxx">
typedef odb::result&lt;employee_country> result;

transaction t (db.begin ());

result r (db.query&lt;employee_country> (...);

for (result::iterator i (r.begin ()); i != r.end (); ++i)
{
  country res, nat;
  employee_country v (res, nat);
  i.load (v);

  if (v.res != nullptr)
    ... // Result is in res.

  if (v.nat != nullptr)
    ... // Result is in nat.
}

t.commit ();
  </pre>

  <p>As a final example of the by-value loading, consider the following
     view which implements a slightly more advanced logic: if the object
     is already in the session cache, then it sets the pointer data member
     in the view (<code>er_p</code>) to that. Otherwise, it loads the data
     into the by-value instance (<code>er</code>). We can also check
     whether the pointer data member points to the instance to distinguish
     between the two outcomes. And we can check it for <code>nullptr</code>
     to detect <code>NULL</code> values.</p>

  <pre class="cxx">
#pragma db view object(employer)
struct employer_view
{
  // Since we may be getting the pointer as both smart and raw, we
  // need to create a bit of support code to use in the modifier
  // expression.
  //
  void set_er (employer* p) {er_p = p;}                   // &amp;er or NULL.
  void set_er (shared_ptr&lt;employer> p) {er_p = p.get ();} // From cache.

  #pragma db get(&amp;this.er) set(set_er(?))
  employer* er_p;

  #pragma db transient
  employer er;

  // Return-by-value support (e.g., query_value()).
  //
  employer_view (): er_p (0) {}
  employer_view (const employer_view&amp; x)
    : er_p (x.er_p == &amp;x.er ? &amp;er : x.er_p), er (x.er) {}
};
  </pre>

  <p>We can use object loading views with polymorphic objects
     (<a href="#8.2">Section 8.2, "Polymorphism Inheritance"</a>). Note,
     however, that when loading a derived object via the base pointer
     in a view, a separate statement will be executed to load the
     dynamic part of the object. There is no support for by-value
     loading for polymorphic objects.</p>

  <p>We can also use object loading views with objects without id
     (<a href="#14.1.6">Section 14.1.6, "<code>no_id</code>"</a>).
     Note, however, that for such objects, <code>NULL</code> values
     are not automatically detected (since there is no primary key,
     which is otherwise guaranteed to be not <code>NULL</code>, there
     might not be a column on which to base this detection). The
     workaround for this limitation is to load an otherwise not
     <code>NULL</code> column next to the object which will serve
     as an indicator. For example:</p>

  <pre class="cxx">
#pragma db object no_id
class object
{
  ...

  int n; // NOT NULL
  std::string s;
};

#include &lt;odb/nullable.hxx>

#pragma db view object(object)
struct view
{

  odb::nullable&lt;int> n; // If 'n' is NULL, then, logically, so is 'o'.
  unique_ptr&lt;object> o;
};
  </pre>

  <h2><a name="10.3">10.3 Table Views</a></h2>

  <p>A table view is similar to an object view except that it is
     based on one or more database tables instead of persistent
     objects. Table views are primarily useful when dealing with
     ad-hoc tables that are not mapped to persistent classes.</p>

  <p>To associate one or more tables with a view we use the
     <code>db&nbsp;table</code> pragma (<a href="#14.2.2">Section 14.2.2,
     "<code>table</code>"</a>). To associate the second and subsequent
     tables we repeat the <code>db&nbsp;table</code> pragma for each
     additional table. For example, the following view is based on the
     <code>employee_extra</code> legacy table we have defined at the
     beginning of the chapter.</p>

  <pre class="cxx">
#pragma db view table("employee_extra")
struct employee_vacation
{
  #pragma db column("employee_id") type("INTEGER")
  unsigned long employee_id;

  #pragma db column("vacation_days") type("INTEGER")
  unsigned short vacation_days;
};
  </pre>

  <p>Besides the table name in the <code>db&nbsp;table</code> pragma
     we also have to specify the column name for each view data
     member. Note that unlike for object views, the ODB compiler
     does not try to automatically come up with column names for
     table views. Furthermore, we cannot use references to object
     members either, since there are no associated objects in table
     views. Instead, the actual column name or column expression
     must be specified as a string literal. The column name can
     also be qualified with a table name either in the
     <code>"table.column"</code> form or, if either a table
     or a column name contains a period, in the
     <code>"table"."column"</code> form. The following example
     illustrates the use of a column expression:</p>

  <pre class="cxx">
#pragma db view table("employee_extra")
struct employee_max_vacation
{
  #pragma db column("max(vacation_days)") type("INTEGER")
  unsigned short max_vacation_days;
};
  </pre>

  <p>Both the asociated table names and the column names can be qualified
     with a database schema, for example:</p>

  <pre class="cxx">
#pragma db view table("hr.employee_extra")
struct employee_max_vacation
{
  #pragma db column("hr.employee_extra.vacation_days") type("INTEGER")
  unsigned short vacation_days;
};
  </pre>

  <p>For more information on database schemas and the format of the
     qualified names, refer to <a href="#14.1.8">Section 14.1.8,
     "<code>schema</code>"</a>.</p>

  <p>Note also that in the above examples we specified the SQL type
     for each of the columns to make sure that the ODB compiler
     has knowledge of the actual types as specified in the database
     schema. This is required to obtain correct and optimal
     generated code.</p>


  <p>The complete syntax of the <code>db&nbsp;table</code> pragma
     is similar to the <code>db&nbsp;object</code> pragma and is shown
     below:</p>

  <p><code><b>table("</b><i>name</i><b>"</b>
                    [<b>=</b> <b>"</b><i>alias</i><b>"</b>]
                    [<i>join-type</i>]
                    [<b>:</b> <i>join-condition</i>]<b>)</b></code></p>

  <p>The <i>name</i> part is a database table name. The optional
     <i>alias</i> part gives this table an alias. If provided, the
     alias must be used instead of the table whenever a reference
     to a table is used. Contexts where such a reference may
     be needed include the join condition (discussed below),
     column names, and query expressions. The optional <i>join-type</i>
     part specifies the way this table is associated. It can
     be <code>left</code>, <code>right</code>, <code>full</code>,
     <code>inner</code>, and <code>cross</code> with <code>left</code>
     being the default. Finally, the optional <i>join-condition</i>
     part provides the criteria which should be used to associate this
     table with any of the previously associated tables or, as we will see in
     <a href="#10.4">Section 10.4, "Mixed Views"</a>, objects. Note that
     while the first associated table can have an alias, it cannot have
     a join type or condition.</p>

  <p>Similar to object views, for each subsequent associated table the
     ODB compiler needs a join condition. However, unlike for object views,
     for table views the ODB compiler does not try to come up with one
     automatically. Furthermore, we cannot use references to object
     members corresponding to object relationships either, since there
     are no associated objects in table views. Instead, for each
     subsequent associated table, a join condition must be
     specified as a custom query expression. While the syntax of the
     query expression is the same as in the query facility used to query
     the database for objects (<a href="#4">Chapter 4, "Querying the
     Database"</a>), a join condition for a table is normally specified
     as a single string literal containing a native SQL query expression.</p>

  <p>As an example of a multi-table view, consider the
     <code>employee_health</code> table that we define in addition
     to <code>employee_extra</code>:</p>

  <pre class="sql">
CREATE TABLE employee_health(
  employee_id INTEGER NOT NULL,
  sick_leave_days INTEGER NOT NULL)
  </pre>

  <p>Given these two tables we can now define a view that returns both
     the vacation and sick leave information for each employee:</p>

  <pre class="cxx">
#pragma db view table("employee_extra" = "extra") \
  table("employee_health" = "health": \
        "extra.employee_id = health.employee_id")
struct employee_leave
{
  #pragma db column("extra.employee_id") type("INTEGER")
  unsigned long employee_id;

  #pragma db column("vacation_days") type("INTEGER")
  unsigned short vacation_days;

  #pragma db column("sick_leave_days") type("INTEGER")
  unsigned short sick_leave_days;
};
  </pre>

  <p>Querying the database for a table view is the same as for an
     object view except that we can only use native query expressions.
     For example:</p>

  <pre class="cxx">
typedef odb::query&lt;employee_leave> query;
typedef odb::result&lt;employee_leave> result;

transaction t (db.begin ());

unsigned short v_min = ...
unsigned short l_min = ...

result r (db.query&lt;employee_leave> (
  "vacation_days > " + query::_val(v_min) + "AND"
  "sick_leave_days > " + query::_val(l_min)));

t.commit ();
  </pre>


  <h2><a name="10.4">10.4 Mixed Views</a></h2>

  <p>A mixed view has both associated objects and tables. As a first
     example of a mixed view, let us improve <code>employee_vacation</code>
     from the previous section to return the employee's first
     and last names instead of the employee id. To achieve this we
     have to associate both the <code>employee</code> object and
     the <code>employee_extra</code> table with the view:</p>

  <pre class="cxx">
#pragma db view object(employee) \
  table("employee_extra" = "extra": "extra.employee_id = " + employee::id_)
struct employee_vacation
{
  std::string first;
  std::string last;

  #pragma db column("extra.vacation_days") type("INTEGER")
  unsigned short vacation_days;
};
  </pre>

  <p>When querying the database for a mixed view, we can use query members
     for the parts of the query expression that involves object members
     but have to fall back to using the native syntax for the parts that
     involve table columns. For example:</p>

  <pre class="cxx">
typedef odb::query&lt;employee_vacation> query;
typedef odb::result&lt;employee_vacation> result;

transaction t (db.begin ());

result r (db.query&lt;employee_vacation> (
  (query::last == "Doe") + "AND extra.vacation_days &lt;> 0"));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
  cout &lt;&lt; i->first &lt;&lt; " " &lt;&lt; i->last &lt;&lt; " " &lt;&lt; i->vacation_days &lt;&lt; endl;

t.commit ();
  </pre>

  <p>As another example, consider a more advanced view that associates
     two objects via a legacy table. This view allows us to find the
     previous employer name for each employee:</p>

  <pre class="cxx">
#pragma db view object(employee) \
  table("employee_extra" = "extra": "extra.employee_id = " + employee::id_) \
  object(employer: "extra.previous_employer_id = " + employer::id_)
struct employee_prev_employer
{
  std::string first;
  std::string last;

  // If previous_employer_id is NULL, then the name will be NULL as well.
  // We use the odb::nullable wrapper to handle this.
  //
  #pragma db column(employer::name_)
  odb::nullable&lt;std::string> prev_employer_name;
};
  </pre>

  <h2><a name="10.5">10.5 View Query Conditions</a></h2>

  <p>Object, table, and mixed views can also specify an optional query
     condition that should be used whenever the database is queried for
     this view. To specify a query condition we use the
     <code>db&nbsp;query</code> pragma (<a href="#14.2.3">Section 14.2.3,
     "<code>query</code>"</a>).</p>

  <p>As an example, consider a view that returns some information about
     all the employees that are over a predefined retirement age.
     One way to implement this would be to define a standard object
     view as we have done in the previous sections and then use a
     query like this:</p>

  <pre class="cxx">
result r (db.query&lt;employee_retirement> (query::age > 50));
  </pre>

  <p>The problem with the above approach is that we have to keep
     repeating the <code>query::age > 50</code> expression every
     time we execute the query, even though this expression always
     stays the same. View query conditions allow us to solve this
     problem. For example:</p>

  <pre class="cxx">
#pragma db view object(employee) query(employee::age > 50)
struct employee_retirement
{
  std::string first;
  std::string last;
  unsigned short age;
};
  </pre>

  <p>With this improvement we can rewrite our query like this:</p>

  <pre class="cxx">
result r (db.query&lt;employee_retirement> ());
  </pre>

   <p>But what if we may also need to restrict the result set based on
      some varying criteria, such as the employee's last name? Or, in other
      words, we may need to combine a constant query expression specified
      in the <code>db&nbsp;query</code> pragma with the varying expression
      specified at the query execution time. To allow this, the
      <code>db&nbsp;query</code> pragma syntax supports the use of the special
      <code>(?)</code> placeholder that indicates the position in the
      constant query expression where the runtime expression should be
      inserted. For example:</p>

  <pre class="cxx">
#pragma db view object(employee) query(employee::age > 50 &amp;&amp; (?))
struct employee_retirement
{
  std::string first;
  std::string last;
  unsigned short name;
};
  </pre>

  <p>With this change we can now use additional query criteria in our
     view:</p>

  <pre class="cxx">
result r (db.query&lt;employee_retirement> (query::last == "Doe"));
  </pre>

  <p>The syntax of the expression in a query condition is the same as in
     the query facility used to query the database for objects
     (<a href="#4">Chapter 4, "Querying the Database"</a>) except for
     two differences. Firstly, for query members, instead of
     using <code>odb::query&lt;object>::member</code> names, we refer
     directly to object members, using the object alias instead of the
     object name if an alias was assigned. Secondly, query conditions
     support the special <code>(?)</code> placeholder which can be used
     both in the C++-integrated query expressions as was shown above
     and in native SQL expressions specified as string literals. The
     following view is an example of the latter case:</p>

  <pre class="cxx">
#pragma db view table("employee_extra") \
  query("vacation_days &lt;> 0 AND (?)")
struct employee_vacation
{
  ...
};
  </pre>

  <p>Another common use case for query conditions are views with the
     <code>ORDER BY</code> or <code>GROUP BY</code> clause. Such
     clauses are normally present in the same form in every query
     involving such views. As an example, consider an aggregate
     view which calculate the minimum and maximum ages of employees
     for each employer:</p>

  <pre class="cxx">
#pragma db view object(employee) object(employer) \
  query((?) + "GROUP BY" + employer::name_)
struct employer_age
{
  #pragma db column(employer::name_)
  std::string employer_name;

  #pragma db column("min(" + employee::age_ + ")")
  unsigned short min_age;

  #pragma db column("max(" + employee::age_ + ")")
  unsigned short max_age;
};
  </pre>

  <p>The query condition can be optionally followed (or replaced,
     if no constant query expression is needed) by one or more
     <em>result modifiers</em>. Currently supported result modifiers
     are <code>distinct</code> (which is translated to <code>SELECT
     DISTINCT</code>) and <code>for_update</code> (which is translated
     to <code>FOR UPDATE</code> or equivalent for database systems
     that support it). As an example, consider a view that
     allows us to get some information about employers ordered
     by the object id and without any duplicates:</p>

  <pre class="cxx">
#pragma db view object(employer) object(employee) \
  query((?) + "ORDER BY" + employer::name_, distinct)
struct employer_info
{
  ...
};
  </pre>

  <p>If we don't require ordering, then this view can be re-implemented
     like this:</p>

  <pre class="cxx">
#pragma db view object(employer) object(employee) query(distinct)
struct employer_info
{
  ...
};
  </pre>

  <h2><a name="10.6">10.6 Native Views</a></h2>

  <p>The last kind of view supported by ODB is a native view. Native
     views are a low-level mechanism for capturing results of native
     SQL queries, stored procedure calls, etc. Native views don't have
     associated tables or objects. Instead, we use the
     <code>db&nbsp;query</code> pragma to specify the native SQL query,
     which should normally include the select-list and, if applicable,
     the from-list. For example, here is how we can re-implement the
     <code>employee_vacation</code> table view from Section 10.3 above
     as a native view:</p>

  <pre class="cxx">
#pragma db view query("SELECT employee_id, vacation_days " \
                      "FROM employee_extra")
struct employee_vacation
{
  #pragma db type("INTEGER")
  unsigned long employee_id;

  #pragma db type("INTEGER")
  unsigned short vacation_days;
};
  </pre>

  <p>In native views the columns in the query select-list are
     associated with the view data members in the order specified.
     That is, the first column is stored in the first member, the
     second column &mdash; in the second member, and so on. The ODB compiler
     does not perform any error checking in this association. As a result
     you must make sure that the number and order of columns in the
     query select-list match the number and order of data members
     in the view. This is also the reason why we are not
     required to provide the column name for each data member in native
     views, as is the case for object and table views.</p>

  <p>Note also that while it is always possible to implement a table
     view as a native view, the table views must be preferred since
     they are safer. In a native view, if you add, remove, or
     rearrange data members without updating the column list in the
     query, or vice versa, at best, this will result in a runtime
     error. In contrast, in a table view such changes will result
     in the query being automatically updated.</p>

  <p>Similar to object and table views, the query specified for
     a native view can contain the special <code>(?)</code>
     placeholder which is replaced with the query expression
     specified at the query execution time.
     If the native query does not contain a placeholder, as in
     the example above, then any query expression specified at
     the query execution time is appended to the query text
     along with the <code>WHERE</code> keyword, if required.
     The following example shows the usage of the placeholder:</p>

  <pre class="cxx">
#pragma db view query("SELECT employee_id, vacation_days " \
                      "FROM employee_extra " \
                      "WHERE vacation_days &lt;> 0 AND (?)")
struct employee_vacation
{
  ...
};
  </pre>

  <p>As another example, consider a view that returns the next
     value of a database sequence:</p>

  <pre class="cxx">
#pragma db view query("SELECT nextval('my_seq')")
struct sequence_value
{
  unsigned long long value;
};
  </pre>

  <p>While this implementation can be acceptable in some cases, it has
     a number of drawbacks. Firstly, the name of the sequence is
     fixed in the view, which means if we have a second sequence, we
     will have to define another, almost identical view. Similarly,
     the operation that we perform on the sequence is also fixed.
     In some situations, instead of returning the next value, we may
     need the last value.</p>

  <p>Note that we cannot use the placeholder mechanism to resolve
     these problems since placeholders can only be used in the
     <code>WHERE</code>, <code>GROUP BY</code>, and similar
     clauses. In other words, the following won't work:</p>

  <pre class="cxx">
#pragma db view query("SELECT nextval('(?)')")
struct sequence_value
{
  unsigned long long value;
};

result r (db.query&lt;sequence_value> ("my_seq"));
  </pre>

  <p>To support these kinds of use cases, ODB allows us to specify the
     complete query for a native view at runtime rather than at the view
     definition. To indicate that a native view has a runtime query,
     we can either specify the empty <code>db&nbsp;query</code>
     pragma or omit the pragma altogether. For example:</p>

  <pre class="cxx">
#pragma db view
struct sequence_value
{
  unsigned long long value;
};
  </pre>

  <p>Given this view, we can perform the following queries:</p>

  <pre class="cxx">
typedef odb::query&lt;sequence_value> query;
typedef odb::result&lt;sequence_value> result;

string seq_name = ...

result l (db.query&lt;sequence_value> (
  "SELECT lastval('" + seq_name + "')"));

result n (db.query&lt;sequence_value> (
  "SELECT nextval('" + seq_name + "')"));
  </pre>

   <p>Native views can also be used to call and handle results of
      stored procedures. The semantics and limitations of stored
      procedures vary greatly between database systems while some
      do not support this functionality at all. As a result, support
      for calling stored procedures using native views is described
      for each database system in <a href="#II">Part II, "Database
      Systems"</a>.</p>

  <h2><a name="10.7">10.7 Other View Features and Limitations</a></h2>

  <p>Views cannot be derived from other views. However, you can derive
     a view from a transient C++ class. View data members cannot be
     object pointers. If you need to access data from a pointed-to
     object, then you will need to associate such an object with
     the view. Similarly, view data members cannot be containers.
     These two limitations also apply to composite value types that
     contain object pointers or containers. Such composite values
     cannot be used as view data members.</p>

  <p>On the other hand, composite values that do not contain object
     pointers or containers can be used in views. As an example,
     consider a modified version of the <code>employee</code> persistent
     class that stores a person's name as a composite value:</p>

  <pre class="cxx">
#pragma db value
class person_name
{
  std::string first_;
  std::string last_;
};

#pragma db object
class employee
{
  ...

  person_name name_;

  ...
};
  </pre>

  <p>Given this change, we can re-implement the <code>employee_name</code>
     view like this:</p>

  <pre class="cxx">
#pragma db view object(employee)
struct employee_name
{
  person_name name;
};
  </pre>

  <p>It is also possible to extract some or all of the nested members
     of a composite value into individual view data members. Here is
     how we could have defined the <code>employee_name</code> view
     if we wanted to keep its original structure:</p>

  <pre class="cxx">
#pragma db view object(employee)
struct employee_name
{
  #pragma db column(employee::name.first_)
  std::string first;

  #pragma db column(employee::name.last_)
  std::string last;
};
  </pre>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="11">11 Session</a></h1>

  <p>A session is an application's unit of work that may encompass several
     database transactions. In this version of ODB a session is just an
     object cache. In future versions it may provide additional
     functionality, such as delayed database operations and automatic
     object state change tracking. As discussed later in
     <a href="#11.2">Section 11.2, "Custom Sessions"</a>, it is also
     possible to provide a custom session implementation that provides
     these or other features.</p>

  <p>Session support is optional and can be enabled or disabled on the
     per object basis using the <code>db&nbsp;session</code> pragma, for
     example:</p>

  <pre class="cxx">
#pragma db object session
class person
{
  ...
};
  </pre>

  <p>We can also enable or disable session support for a group of
     objects at the namespace level:</p>

  <pre class="cxx">
#pragma db namespace session
namespace accounting
{
  #pragma db object                // Session support is enabled.
  class employee
  {
    ...
  };

  #pragma db object session(false) // Session support is disabled.
  class employer
  {
    ...
  };
}
  </pre>

  <p>Finally, we can pass the <code>--generate-session</code> ODB compiler
     option to enable session support by default. With this option session
     support will be enabled for all the persistent classes except those
     for which it was explicitly disabled using the
     <code>db&nbsp;session</code>. An alternative to this method with the
     same effect is to enable session support for the global namespace:</p>

  <pre class="cxx">
#pragma db namespace() session
  </pre>

  <p>Each thread of execution in an application can have only one active
     session at a time. A session is started by creating an instance of
     the <code>odb::session</code> class and is automatically terminated
     when this instance is destroyed. You will need to include the
     <code>&lt;odb/session.hxx></code> header file to make this class
     available in your application. For example:</p>

  <pre class="cxx">
#include &lt;odb/database.hxx>
#include &lt;odb/session.hxx>
#include &lt;odb/transaction.hxx>

using namespace odb::core;

{
  session s;

  // First transaction.
  //
  {
    transaction t (db.begin ());
    ...
    t.commit ();
  }

  // Second transaction.
  //
  {
    transaction t (db.begin ());
    ...
    t.commit ();
  }

  // Session 's' is terminated here.
}
  </pre>

  <p>The <code>session</code> class has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  class session
  {
  public:
    session (bool make_current = true);
    ~session ();

    // Copying or assignment of sessions is not supported.
    //
  private:
    session (const session&amp;);
    session&amp; operator= (const session&amp;);

    // Current session interface.
    //
  public:
    static session&amp;
    current ();

    static bool
    has_current ();

    static void
    current (session&amp;);

    static void
    reset_current ();

    static session*
    current_pointer ();

    static void
    current_pointer (session*);

    // Object cache interface.
    //
  public:
    template &lt;typename T>
    struct cache_position {...};

    template &lt;typename T>
    cache_position&lt;T>
    cache_insert (database&amp;,
                  const object_traits&lt;T>::id_type&amp;,
                  const object_traits&lt;T>::pointer_type&amp;);

    template &lt;typename T>
    object_traits&lt;T>::pointer_type
    cache_find (database&amp;, const object_traits&lt;T>::id_type&amp;) const;

    template &lt;typename T>
    void
    cache_erase (const cache_position&lt;T>&amp;);

    template &lt;typename T>
    void
    cache_erase (database&amp;, const object_traits&lt;T>::id_type&amp;);
  };
}
  </pre>

  <p>The session constructor creates a new session and, if the
     <code>make_current</code> argument is <code>true</code>, sets it as a
     current session for this thread. If we try to make a session current
     while there is already another session in effect for this thread,
     then the constructor throws the <code>odb::already_in_session</code>
     exception. The destructor clears the current session for this
     thread if this session is the current one.</p>

  <p>The static <code>current()</code> accessor returns the currently active
     session for this thread. If there is no active session, this function
     throws the <code>odb::not_in_session</code> exception. We can check
     whether there is a session in effect in this thread using the
     <code>has_current()</code> static function.</p>

  <p>The static <code>current()</code> modifier allows us to set the
     current session for this thread. The <code>reset_current()</code>
     static function clears the current session. These two functions
     allow for more advanced use cases, such as multiplexing
     two or more sessions on the same thread.</p>

  <p>The static <code>current_pointer()</code> overloaded functions
     provided the same functionality but using pointers. Specifically,
     the <code>current_pointer()</code> accessor can be used to
     test whether there is a current session and get a pointer to it
     all with a single call.</p>

  <p>We normally don't use the object cache interface directly. However,
     it could be useful in some cases, for example, to find out whether
     an object has already been loaded. Note that when calling
     <code>cache_insert()</code>, <code>cache_find()</code>, or
     the second version of <code>cache_erase()</code>, you need to
     specify the template argument (object type) explicitly. It is
     also possible to access the underlying cache data structures
     directly. This can be useful if, for example, you want to
     iterate over the objects store in the cache. Refer to the ODB
     runtime header files for more details on this direct access.</p>

  <h2><a name="11.1">11.1 Object Cache</a></h2>

  <p>A session is an object cache. Every time a session-enabled object is
     made persistent by calling the <code>database::persist()</code> function
     (<a href="#3.8">Section 3.8, "Making Objects Persistent"</a>), loaded
     by calling the <code>database::load()</code> or <code>database::find()</code>
     function (<a href="#3.9">Section 3.9, "Loading Persistent Objects"</a>),
     or loaded by iterating over a query result (<a href="#4.4">Section 4.4,
     "Query Result"</a>), the pointer to the persistent object, in the form
     of the canonical object pointer (<a href="#3.3">Section 3.3, "Object
     and View Pointers"</a>), is stored in the session. For as long as the
     session is in effect, any subsequent calls to load the same object will
     return the cached instance. When an object's state is deleted from the
     database with the <code>database::erase()</code> function
     (<a href="#3.11">Section 3.11, "Deleting Persistent Objects"</a>), the
     cached object pointer is removed from the session. For example:</p>

  <pre class="cxx">
shared_ptr&lt;person> p (new person ("John", "Doe"));

session s;
transaction t (db.begin ());

unsigned long id (db.persist (p));            // p is cached in s.
shared_ptr&lt;person> p1 (db.load&lt;person> (id)); // p1 same as p.

t.commit ();
  </pre>


  <p>The per-object caching policies depend on the object pointer kind
     (<a href="#6.5">Section 6.5, "Using Custom Smart Pointers"</a>).
     Objects with a unique pointer, such as <code>std::auto_ptr</code>
     or <code>std::unique_ptr</code>, as an object pointer are never
     cached since it is not possible to have two such pointers pointing
     to the same object. When an object is persisted via a pointer or
     loaded as a dynamically allocated instance, objects with both raw
     and shared pointers as object pointers are cached. If an object is
     persisted as a reference or loaded into a pre-allocated instance,
     the object is only cached if its object pointer is a raw pointer.</p>

  <p>Also note that when we persist an object as a constant reference
     or constant pointer, the session caches such an object as
     unrestricted (non-<code>const</code>). This can lead to undefined
     behavior if the object being persisted was actually created as
     <code>const</code> and is later found in the session cache and
     used as non-<code>const</code>. As a result, when using sessions,
     it is recommended that all persistent objects be created as
     non-<code>const</code> instances. The following code fragment
     illustrates this point:</p>

  <pre class="cxx">
void save (database&amp; db, shared_ptr&lt;const person> p)
{
  transaction t (db.begin ());
  db.persist (p); // Persisted as const pointer.
  t.commit ();
}

session s;

shared_ptr&lt;const person> p1 (new const person ("John", "Doe"));
unsigned long id1 (save (db, p1)); // p1 is cached in s as non-const.

{
  transaction t (db.begin ());
  shared_ptr&lt;person> p (db.load&lt;person> (id1)); // p == p1
  p->age (30); // Undefined behavior since p1 was created const.
  t.commit ();
}

shared_ptr&lt;const person> p2 (new person ("Jane", "Doe"));
unsigned long id2 (save (db, p2)); // p2 is cached in s as non-const.

{
  transaction t (db.begin ());
  shared_ptr&lt;person> p (db.load&lt;person> (id2)); // p == p2
  p->age (30); // Ok, since p2 was not created const.
  t.commit ();
}
  </pre>

  <h2><a name="11.2">11.2 Custom Sessions</a></h2>

  <p>ODB can use a custom session implementation instead of the
     default <code>odb::session</code>. There could be multiple
     reasons for an application to provide its own session. For
     example, the application may already include a notion of an
     object cache or registry which ODB can re-use. A custom
     session can also provide additional functionality, such as
     automatic change tracking, delayed database operations, or
     object eviction. Finally, the session-per-thread approach used
     by <code>odb::session</code> may not be suitable for all
     applications. For instance, some may need a thread-safe
     session that can be shared among multiple threads. For
     an example of a custom session that implements automatic
     change tracking by keeping original copies of the objects,
     refer to the <code>common/session/custom</code> test
     in the <code>odb-tests</code> package.</p>

  <p>To use a custom session we need to specify its type with
     the <code>--session-type</code> ODB compiler command line
     option. We also need to include its definition into the
     generated header file. This can be achieved with the
     <code>--hxx-prologue</code> option. For example, if our
     custom session is called <code>app::session</code> and
     is defined in the <code>app/session.hxx</code> header
     file, then the corresponding ODB compiler options would
     look like this:</p>

  <pre class="terminal">
odb --hxx-prologue "#include \"app/session.hxx\"" \
--session-type ::app::session ...
  </pre>

  <p>A custom session should provide the following interface:</p>

  <pre class="cxx">
class custom_session
{
public:
  template &lt;typename T>
  struct cache_position
  {
    ...
  };

  // Cache management functions.
  //
  template &lt;typename T>
  static cache_position&lt;T>
  _cache_insert (odb::database&amp;,
                 const typename odb::object_traits&lt;T>::id_type&amp;,
                 const typename odb::object_traits&lt;T>::pointer_type&amp;);

  template &lt;typename T>
  static typename odb::object_traits&lt;T>::pointer_type
  _cache_find (odb::database&amp;,
               const typename odb::object_traits&lt;T>::id_type&amp;);

  template &lt;typename T>
  static void
  _cache_erase (const cache_position&lt;T>&amp;);

  // Notification functions.
  //
  template &lt;typename T>
  static void
  _cache_persist (const cache_position&lt;T>&amp;);

  template &lt;typename T>
  static void
  _cache_load (const cache_position&lt;T>&amp;);

  template &lt;typename T>
  static void
  _cache_update (odb::database&amp;, const T&amp; obj);

  template &lt;typename T>
  static void
  _cache_erase (odb::database&amp;,
                const typename odb::object_traits&lt;T>::id_type&amp;);
};
  </pre>

  <p>The <code>cache_position</code> class template represents a position
     in the cache of the inserted object. It should be default and
     copy-constructible as well as copy-assignable. The default
     constructor shall create a special empty/<code>NULL</code>
     position. A call of any of the cache management or notification
     functions with such an empty/<code>NULL</code> position shall be
     ignored.</p>

  <p>The <code>_cache_insert()</code> function shall add the object into
     the object cache and return its position. The <code>_cache_find()</code>
     function looks an object up in the object cache given its id.
     It returns a <code>NULL</code> pointer if the object is not
     found. The <code>_cache_erase()</code> cache management function
     shall remove the object from the cache. It is called
     if the database operation that caused the object to be inserted
     (for example, load) failed. Note also that after insertion the object
     state is undefined. You can only access the object state
     (for example, make a copy or clear a flag) from one of the
     notification functions discussed below.</p>

  <p>The notification functions are called after an object has
     been persisted, loaded, updated, or erased, respectively. If
     your session implementation does not need some of the
     notifications, you still have to provide their functions,
     however, you can leave their implementations empty.</p>

  <p>Notice also that all the cache management and notification
     functions are static. This is done in order to allow for a
     custom notion of a current session. Normally, the first
     step a non-empty implementation will perform is lookup the
     current session.</p>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="12">12 Optimistic Concurrency</a></h1>

  <p>The ODB transaction model (<a href="#3.5">Section 3.5,
     "Transactions"</a>) guarantees consistency as long as we perform all the
     database operations corresponding to a specific application transaction
     in a single database transaction. That is, if we load an object within a
     database transaction and update it in the same transaction, then we are
     guaranteed that the object state that we are updating in the database is
     exactly the same as the state we have loaded. In other words, it is
     impossible for another process or thread to modify the object state
     in the database between these load and update operations.</p>

  <p>In this chapter we use the term <em>application transaction</em>
     to refer to a set of operations on persistent objects that an
     application needs to perform in order to implement some
     application-specific functionality. The term <em>database
     transaction</em> refers to the set of database operations
     performed between the ODB <code>begin()</code> and <code>commit()</code>
     calls. Up until now we have treated application transactions and
     database transactions as essentially the same thing.</p>

  <p>While this model is easy to understand and straightforward to use,
     it may not be suitable for applications that have long application
     transactions. The canonical example of such a situation is an
     application transaction that requires user input between loading
     an object and updating it. Such an operation may take an arbitrary
     long time to complete and performing it within a single database
     transaction will consume database resources as well as prevent
     other processes/threads from updating the object for too long.</p>

  <p>The solution to this problem is to break up the long-lived
     application transaction into several short-lived database
     transactions. In our example that would mean loading the object
     in one database transaction, waiting for user input, and then
     updating the object in another database transaction. For example:</p>

  <pre class="cxx">
unsigned long id = ...;
person p;

{
  transaction t (db.begin ());
  db.load (id, p);
  t.commit ();
}

cerr &lt;&lt; "enter age for " &lt;&lt; p.first () &lt;&lt; " " &lt;&lt; p.last () &lt;&lt; endl;
unsigned short age;
cin >> age;
p.age (age);

{
  transaction t (db.begin ());
  db.update (p);
  t.commit ();
}
  </pre>

  <p>This approach works well if we only have one process/thread that can ever
     update the object. However, if we have multiple processes/threads
     modifying the same object, then this approach does not guarantee
     consistency anymore. Consider what happens in the above example if
     another process updates the person's last name while we are waiting for
     the user input. Since we loaded the object before this change occured,
     our version of the person's data will still have the old name. Once we
     receive the input from the user, we go ahead and update the object,
     overwriting both the old age with the new one (correct) and the new name
     with the old one (incorrect).</p>

  <p>While there is no way to restore the consistency guarantee in
     an application transaction that consists of multiple database
     transactions, ODB provides a mechanism, called optimistic
     concurrency, that allows applications to detect and potentially
     recover from such inconsistencies.</p>

  <p>In essence, the optimistic concurrency model detects mismatches
     between the current object state in the database and the state
     when it was loaded into the application memory. Such a mismatch
     would mean that the object was changed by another process or
     thread. There are several ways to implement such state mismatch
     detection. Currently, ODB uses object versioning while other
     methods, such as timestamps, may be supported in the future.</p>

  <p>To declare a persistent class with the optimistic concurrency model we
     use the <code>optimistic</code> pragma (<a href="#14.1.5">Section 14.1.5,
     "<code>optimistic</code>"</a>). We also use the <code>version</code>
     pragma (<a href="#14.4.16">Section 14.4.16, "<code>version</code>"</a>)
     to specify which data member will store the object version. For
     example:</p>

  <pre class="cxx">
#pragma db object optimistic
class person
{
  ...

  #pragma db version
  unsigned long version_;
};
  </pre>

  <p>The version data member is managed by ODB. It is initialized to
     <code>1</code> when the object is made persistent and incremented
     by <code>1</code> with each update. The <code>0</code> version value
     is not used by ODB and the application can use it as a special value,
     for example, to indicate that the object is transient. Note that
     for optimistic concurrency to function properly, the application
     should not modify the version member after making the object persistent
     or loading it from the database and until deleting the state of this
     object from the database. To avoid any accidental modifications
     to the version member, we can declare it <code>const</code>, for
     example:</p>

  <pre class="cxx">
#pragma db object optimistic
class person
{
  ...

  #pragma db version
  const unsigned long version_;
};
  </pre>

  <p>When we call the <code>database::update()</code> function
     (<a href="#3.10">Section 3.10, "Updating Persistent Objects"</a>) and pass
     an object that has an outdated state, the <code>odb::object_changed</code>
     exception is thrown. At this point the application has two
     recovery options: it can abort and potentially restart the
     application transaction or it can reload the new object
     state from the database, re-apply or merge the changes, and call
     <code>update()</code> again. Note that aborting an application
     transaction that performs updates in multiple database transactions
     may require reverting changes that have already been committed to
     the database. As a result, this strategy works best if all the
     updates are performed in the last database transaction of the
     application transaction. This way the changes can be reverted
     by simply rolling back this last database transaction.</p>

  <p>The following example shows how we can reimplement the above
     transaction using the second recovery option:</p>

  <pre class="cxx">
unsigned long id = ...;
person p;

{
  transaction t (db.begin ());
  db.load (id, p);
  t.commit ();
}

cerr &lt;&lt; "enter age for " &lt;&lt; p.first () &lt;&lt; " " &lt;&lt; p.last () &lt;&lt; endl;
unsigned short age;
cin >> age;
p.age (age);

{
  transaction t (db.begin ());

  try
  {
    db.update (p);
  }
  catch (const object_changed&amp;)
  {
    db.reload (p);
    p.age (age);
    db.update (p);
  }

  t.commit ();
}
  </pre>

  <p>An important point to note in the above code fragment is that the second
     <code>update()</code> call cannot throw the <code>object_changed</code>
     exception because we are reloading the state of the object
     and updating it within the same database transaction.</p>

  <p>Depending on the recovery strategy employed by the application,
     an application transaction with a failed update can be significantly
     more expensive than a successful one. As a result, optimistic
     concurrency works best for situations with low to medium contention
     levels where the majority of the application transactions complete
     without update conflicts. This is also the reason why this concurrency
     model is called optimistic.</p>

  <p>In addition to updates, ODB also performs state mismatch detection
     when we are deleting an object from the database
     (<a href="#3.11">Section 3.11, "Deleting Persistent Objects"</a>).
     To understand why this can be important, consider the following
     application transaction:</p>

  <pre class="cxx">
unsigned long id = ...;
person p;

{
  transaction t (db.begin ());
  db.load (id, p);
  t.commit ();
}

string answer;
cerr &lt;&lt; "age is " &lt;&lt; p.age () &lt;&lt; ", delete?" &lt;&lt; endl;
getline (cin, answer);

if (answer == "yes")
{
  transaction t (db.begin ());
  db.erase (p);
  t.commit ();
}
  </pre>

  <p>Consider again what happens if another process or thread updates
     the object by changing the person's age while we are waiting for
     the user input. In this case, the user makes the decision based on
     a certain age while we may delete (or not delete) an object that has
     a completely different age. Here is how we can  fix this problem
     using optimistic concurrency:</p>

  <pre class="cxx">
unsigned long id = ...;
person p;

{
  transaction t (db.begin ());
  db.load (id, p);
  t.commit ();
}

string answer;
for (bool done (false); !done; )
{
  if (answer.empty ())
    cerr &lt;&lt; "age is " &lt;&lt; p.age () &lt;&lt; ", delete?" &lt;&lt; endl;
  else
    cerr &lt;&lt; "age changed to " &lt;&lt; p.age () &lt;&lt; ", still delete?" &lt;&lt; endl;

  getline (cin, answer);

  if (answer == "yes")
  {
    transaction t (db.begin ());

    try
    {
      db.erase (p);
      done = true;
    }
    catch (const object_changed&amp;)
    {
      db.reload (p);
    }

    t.commit ();
  }
  else
    done = true;
}
  </pre>

  <p>Note that state mismatch detection is performed only if we delete
     an object by passing the object instance to the <code>erase()</code>
     function. If we want to delete an object with the optimistic concurrency
     model regardless of its state, then we need to use the <code>erase()</code>
     function that deletes an object given its id, for example:</p>

  <pre class="cxx">
{
  transaction t (db.begin ());
  db.erase (p.id ());
  t.commit ();
}
  </pre>

  <p>Finally, note that for persistent classes with the optimistic concurrency
     model both the <code>update()</code> function as well as the
     <code>erase()</code> function that accepts an object instance as its
     argument no longer throw the <code>object_not_persistent</code>
     exception if there is no such object in the database. Instead,
     this condition is treated as a change of object state and the
     <code>object_changed</code> exception is thrown instead.</p>

  <p>For complete sample code that shows how to use optimistic
     concurrency, refer to the <code>optimistic</code> example in
     the <code>odb-examples</code> package.</p>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="13">13 Database Schema Evolution</a></h1>

  <p>When we add new persistent classes or change the existing ones, for
     example, by adding or deleting data members, the database schema
     necessary to store the new object model changes as well. At the
     same time, we may have existing databases that contain existing data.
     If new versions of your application don't need to handle
     old databases, then the schema creating functionality is all that
     you need. However, most applications will need to work with data
     stored by older versions of the same application.</p>

  <p>We will call <em>database schema evolution</em> the overall task
     of updating the database to match the changes in the object model.
     Schema evolution usually consists of two sub-tasks: <em>schema
     migration</em> and <em>data migration</em>. Schema migration
     modifies the database schema to correspond to the current
     object model. In a relational database, this, for example, could
     require adding or dropping tables and columns. The data migration
     task involves converting the data stored in the existing database
     from the old format to the new one.</p>

  <p>If performed manually, database schema evolution is a tedious and
     error-prone task. As a result, ODB provides comprehensive support
     for automated or, more precisely, semi-automated schema
     evolution. Specifically, ODB does fully-automatic schema
     migration and provides facilities to help you with data
     migration.</p>

  <p>The topic of schema evolution is a complex and sensitive
     issue since normally there would be valuable, production data at
     stake. As a result, the approach taken by ODB is to provide simple
     and bullet-proof elementary building blocks (or migration steps)
     that we can understand and trust. Using these elementary blocks we
     can then implement more complex migration scenarios. In particular,
     ODB does not try to handle data migration automatically since in most
     cases this requires understanding of application-specific semantics.
     In other words, there is no magic.</p>

  <p>There are two general approaches to working with older data: the
     application can either convert it to correspond to the new format
     or it can be made capable of working with multiple versions of this
     format. There is also a hybrid approach where the application
     may convert the data to the new format gradually as part of its
     normal functionality. ODB is capable of handling all these
     scenarios. That is, there is support for working with older
     models without performing any migration (schema or data).
     Alternatively, we can migrate the schema after
     which we have the choice of either also immediately migrating the
     data (<em>immediate data migration</em>) or doing it gradually
     (<em>gradual data migration</em>).</p>

  <p>Schema evolution is already a complex task and we should not
     unnecessarily use a more complex approach where a simpler one
     would be sufficient. From the above, the simplest approach is
     the immediate schema migration that does not require any data
     migration. An example of such a change would be adding a new
     data member with the default value (<a href="#14.3.4">Section
     14.3.4, "<code>default</code>"</a>). This case ODB can handle
     completely automatically.</p>

  <p>If we do require data migration, then the next simplest approach
     is the immediate schema and data migration. Here we have to write
     custom migration code. However, it is separate from the rest of
     the core application logic and is executed at a well defined point
     (database migration). In other words, the core application logic
     need not be aware of older model versions. The potential drawback
     of this approach is performance. It may take a lot of resources
     and/or time to convert all the data upfront.</p>

  <p>If the immediate migration is not possible, then the next option
     is the immediate schema migration followed by the gradual data
     migration. With this approach, both old and new data must co-exist
     in the new database. We also have to change the application
     logic to both account for different sources of the same data (for
     example, when either an old or new version of the object is loaded)
     as well as migrate the data when appropriate (for example, when
     the old version of the object is updated). At some point, usually
     when the majority of the data has been converted, gradual migrations
     are terminated with an immediate migration.</p>

  <p>The most complex approach is working with multiple versions of
     the database without performing any migrations, schema or data.
     ODB does provide support for implementing this approach
     (<a href="#13.4">Section 13.4, "Soft Object Model Changes"</a>),
     however we will not cover it any further in this chapter.
     Generally, this will require embedding knowledge about each
     version into the core application logic which makes it hard
     to maintain for any non-trivial object model.</p>

  <p>Note also that when it comes to data migration, we can use
     the immediate variant for some changes and gradual for others.
     We will discuss various migration scenarios in greater detail
     in section <a href="#13.3">Section 13.3, "Data Migration"</a>.</p>

  <h2><a name="13.1">13.1 Object Model Version and Changelog</a></h2>

  <p>To enable schema evolution support in ODB we need to specify
     the object model version, or, more precisely, two versions.
     The first is the base model version. It is the lowest
     version from which we will be able to migrate. The second
     version is the current model version. In ODB we can migrate
     from multiple previous versions by successively migrating
     from one to the next until we reach the current version.
     We use the <code>db&nbsp;model&nbsp;version</code> pragma
     to specify both the base and current versions.</p>

  <p>When we enable schema evolution for the first time, our
     base and current versions will be the same, for example:</p>

  <pre class="cxx">
#pragma db model version(1, 1)
  </pre>

  <p>Once we release our application, its users may create databases
     with the schema corresponding to this version of the object
     model. This means that if we make any modifications to our
     object model that also change the schema, then we will need
     to be able to migrate the old databases to this new schema.
     As a result, before making any new changes after a release,
     we increment the current version, for example:</p>

  <pre class="cxx">
#pragma db model version(1, 2)
  </pre>

  <p>To put this another way, we can stay on the same version
     during development and keep adding new changes to it. But
     once we release it, any new changes to the object model will
     have to be done in a new version.</p>

  <p>It is easy to forget to increment the version before
     making new changes to the object model. To help solve this
     problem, the <code>db&nbsp;model&nbsp;version</code> pragma
     accepts a third optional argument that specify whether the
     current version is open or closed for changes. For example:</p>

  <pre class="cxx">
#pragma db model version(1, 2, open)   // Can add new changes to
                                       // version 2.
  </pre>

  <pre class="cxx">
#pragma db model version(1, 2, closed) // Can no longer add new
                                       // changes to version 2.
  </pre>

  <p>If the current version is closed, ODB will refuse to accept
     any new schema changes. In this situation you would
     normally increment the current version and mark it as open
     or you could re-open the existing version if, for example,
     you need to fix something. Note, however, that re-opening
     versions that have been released will most likely result
     in migration malfunctions. By default the version is open.</p>

  <p>Normally, an application will have a range of older database
     versions from which it is able to migrate. When we change
     this range by removing support for older versions, we also
     need to adjust the base model version. This will make sure
     that ODB does not keep unnecessary information around.</p>

  <p>A model version (both base and current) is a 64-bit unsigned
     integer (<code>unsigned&nbsp;long&nbsp;long</code>). <code>0</code>
     is reserved to signify special situations, such as the lack of
     schema in the database. Other than that, we can use any values
     as versions as long as they are monotonically increasing. In
     particular, we don't have to start with version <code>1</code>
     and can increase the versions by any increment.</p>

  <p>One versioning approach is to use an independent
     object model version by starting from version <code>1</code>
     and also incrementing by <code>1</code>. The alternative
     is to make the model version correspond to the application
     version. For example, if our application is using the
     <code>X.Y.Z</code> version format, then we could encode it
     as a hexadecimal number and use that as our model version,
     for example:</p>

  <pre class="cxx">
#pragma db model version(0x020000, 0x020306) // 2.0.0-2.3.6
  </pre>

  <p>Most real-world object models will be spread over multiple
     header files and it will be burdensome to repeat the
     <code>db&nbsp;model&nbsp;version</code> pragma in each of
     them. The recommended way to handle this situation is to
     place the <code>version</code> pragma into a separate header
     file and include it into the object model files. If your
     project already has a header file that defines the
     application version, then it is natural to place this
     pragma there. For example:</p>

  <pre class="cxx">
// version.hxx
//
// Define the application version.
//

#define MYAPP_VERSION 0x020306 // 2.3.6

#ifdef ODB_COMPILER
#pragma db model version(1, 7)
#endif
  </pre>

  <p>Note that we can also use macros in the <code>version</code>
     pragma which allows us to specify all the versions in a single
     place. For example:</p>

  <pre class="cxx">
#define MYAPP_VERSION      0x020306 // 2.3.6
#define MYAPP_BASE_VERSION 0x020000 // 2.0.0

#ifdef ODB_COMPILER
#pragma db model version(MYAPP_BASE_VERSION, MYAPP_VERSION)
#endif
  </pre>

  <p>It is also possible to have multiple object models within the
     same application that have different versions. Such models
     must be independent, that is, no headers from one model shall
     include a header from another. You will also need to assign
     different schema names to each model with the
     <code>--schema-name</code> ODB compiler option.</p>

  <p>Once we specify the object model version, the ODB compiler
     starts tracking database schema changes in a changelog file.
     Changelog has an XML-based, line-oriented format. It uses
     XML in order to provide human readability while also
     facilitating, if desired, processing and analysis with
     custom tools. The line orientation makes it easy to review
     with tools like <code>diff</code>.</p>

  <p>The changelog is maintained by the ODB compiler. Specifically,
     you do not need to make any manual changes to this file. You
     will, however, need to keep it around from one invocation of
     the ODB compiler to the next. In other words, the changelog
     file is both the input and the output of the ODB compiler. This,
     for example, means that if your project's source code is stored
     in a version control repository, then you will most likely want
     to store the changelog there as well. If you delete the changelog,
     then any ability to do schema migration will be lost.</p>

  <p>The only operation that you may want to perform with the
     changelog is to review the database schema changes that resulted
     from the C++ object model changes. For this you can use a tool
     like <code>diff</code> or, better yet, the change review facilities
     offered by your revision control system. For this purpose the
     contents of a changelog will be self-explanatory.</p>

  <p>As an example, consider the following initial object model:</p>

  <pre class="cxx">
// person.hxx
//

#include &lt;string>

#pragma db model version(1, 1)

#pragma db object
class person
{
  ...

  #pragma db id auto
  unsigned long id_;

  std::string first_;
  std::string last_;
};
  </pre>

  <p>We then compile this header file with the ODB compiler (using the
     PostgreSQL database as an example):</p>

  <pre class="terminal">
odb --database pgsql --generate-schema person.hxx
  </pre>

  <p>If we now look at the list of generated files, then in addition to
     the now familiar <code>person-odb.?xx</code> and <code>person.sql</code>,
     we will also see <code>person.xml</code> &mdash; the changelog file.
     Just for illustration, below are the contents of this changelog.</p>

  <pre class="xml">
&lt;changelog database="pgsql">
  &lt;model version="1">
    &lt;table name="person" kind="object">
      &lt;column name="id" type="BIGINT" null="false"/>
      &lt;column name="first" type="TEXT" null="false"/>
      &lt;column name="last" type="TEXT" null="false"/>
      &lt;primary-key auto="true">
        &lt;column name="id"/>
      &lt;/primary-key>
    &lt;/table>
  &lt;/model>
&lt;/changelog>
  </pre>

  <p>Let's say we now would like to add another data member to the
     <code>person</code> class &mdash; the middle name. We increment
     the version and make the change:</p>

  <pre class="cxx">
#pragma db model version(1, 2)

#pragma db object
class person
{
  ...

  #pragma db id auto
  unsigned long id_;

  std::string first_;
  std::string middle_;
  std::string last_;
};
  </pre>

  <p>We use exactly the same command line to re-compile our file:</p>

  <pre class="terminal">
odb --database pgsql --generate-schema person.hxx
  </pre>

  <p>This time the ODB compiler will read the old changelog, update
     it, and write out the new version. Again, for illustration only,
     below are the updated changelog contents:</p>

  <pre class="xml">
&lt;changelog database="pgsql">
  &lt;changeset version="2">
    &lt;alter-table name="person">
      &lt;add-column name="middle" type="TEXT" null="false"/>
    &lt;/alter-table>
  &lt;/changeset>

  &lt;model version="1">
    &lt;table name="person" kind="object">
      &lt;column name="id" type="BIGINT" null="false"/>
      &lt;column name="first" type="TEXT" null="false"/>
      &lt;column name="last" type="TEXT" null="false"/>
      &lt;primary-key auto="true">
        &lt;column name="id"/>
      &lt;/primary-key>
    &lt;/table>
  &lt;/model>
&lt;/changelog>
  </pre>

  <p>Just to reiterate, while the changelog may look like it could
     be written by hand, it is maintained completely automatically
     by the ODB compiler and the only reason you may want to look
     at its contents is to review the database schema changes. For
     example, if we compare the above two changelogs with
     <code>diff</code>, we will get the following summary of the
     database schema changes:</p>

  <pre class="xml">
--- person.xml.orig
+++ person.xml
@@ -1,4 +1,10 @@
&lt;changelog database="pgsql">
<span style="color: #009E00">+  &lt;changeset version="2">
+    &lt;alter-table name="person">
+      &lt;add-column name="middle" type="TEXT" null="false"/>
+    &lt;/alter-table>
+  &lt;/changeset>
+</span>
  &lt;model version="1">
    &lt;table name="person" kind="object">
      &lt;column name="id" type="BIGINT" null="false"/>
  </pre>

  <p>The changelog is only written when we generate the database schema,
     that is, the <code>--generate-schema</code> option is specified.
     Invocations of the ODB compiler that only produce the database
     support code (C++) do not read or update the changelog. To put it
     another way, the changelog tracks changes in the resulting database
     schema, not the C++ object model.</p>

  <p>ODB ignores column order when comparing database schemas. This means
     that we can re-order data members in a class without causing any
     schema changes. Member renames, however, will result in schema
     changes since the column name changes as well (unless we specified
     the column name explicitly). From ODB's perspective such a rename
     looks like the deletion of one data member and the addition of
     another. If we don't want this to be treated as a schema change,
     then we will need to keep the old column name by explicitly
     specifying it with the <code>db&nbsp;column</code> pragma. For
     example, here is how we can rename <code>middle_</code> to
     <code>middle_name_</code> without causing any schema changes:</p>

  <pre class="cxx">
#pragma db model version(1, 2)

#pragma db object
class person
{
  ...

  #pragma db column("middle") // Keep the original column name.
  std::string middle_name_;

  ...
};
  </pre>

  <p>If your object model consists of a large number of header files and
     you generate the database schema for each of them individually, then
     a changelog will be created for each of your header files. This may
     be what you want, however, the large number of changelogs can quickly
     become unwieldy. In fact, if you are generating the database schema
     as standalone SQL files, then you may have already experienced a
     similar problem caused by a large number of <code>.sql</code> files,
     one for each header.</p>

  <p>The solution to both of these problems is to generate a combined
     database schema file and a single changelog. For example, assume
     we have three header files in our object model:
     <code>person.hxx</code>, <code>employee.hxx</code>, and
     <code>employer.hxx</code>. To generate the database support code
     we compile them as usual but without specifying the
     <code>--generate-schema</code> option. In this case no changelog
     is created or updated:</p>

  <pre class="terminal">
odb --database pgsql person.hxx
odb --database pgsql employee.hxx
odb --database pgsql employer.hxx
  </pre>

  <p>To generate the database schema, we perform a separate invocation
     of the ODB compiler. This time, however, we instruct it to only
     generate the schema (<code>--generate-schema-only</code>) and
     produce it combined (<code>--at-once</code>) for all the files
     in our object model:</p>

  <pre class="terminal">
odb --database pgsql --generate-schema-only --at-once \
--input-name company person.hxx employee.hxx employer.hxx
  </pre>

  <p>The result of the above command is a single <code>company.sql</code>
     file (the name is derived from the <code>--input-name</code> value)
     that contains the database schema for our entire object model. There
     is also a single corresponding changelog file &mdash;
     <code>company.xml</code>.</p>

  <p>The same can be achieved for the embedded schema by instructing
     the ODB compiler to generate the database creation code into a
     separate C++ file (<code>--schema-format&nbsp;separate</code>):</p>

  <pre class="terminal">
odb --database pgsql --generate-schema-only --schema-format separate \
--at-once --input-name company person.hxx employee.hxx employer.hxx
  </pre>

  <p>The result of this command is a single <code>company-schema.cxx</code>
     file and, again, <code>company.xml</code>.</p>

  <p>Note also that by default the changelog file is not placed into
     the directory specified with the <code>--output-dir</code> option.
     This is due to the changelog being both an input and an output file
     at the same time. As a result, by default, the ODB compiler will
     place it in the directory of the input header file.</p>

  <p>There is, however, a number of command line options (including
     <code>--changelog-dir</code>) that allow us to fine-tune the name and
     location of the changelog file. For example, you can instruct the ODB
     compiler to read the changelog from one file while writing it to
     another. This, for example, can be useful if you want to review
     the changes before discarding the old file. For more information
     on these options, refer to the
     <a href="http://www.codesynthesis.com/products/odb/doc/odb.xhtml">ODB
     Compiler Command Line Manual</a> and search for "changelog".</p>

  <p>When we were discussing version increments above, we used the
     terms <em>development</em> and <em>release</em>. Specifically,
     we talked about keeping the same object model versions during
     development periods and incrementing them after releases.
     What is a development period and a release in this context?
     These definitions can vary from project to project.
     Generally, during a development period we work on one or
     more changes to the object model that result in the changes
     to the database schema. A release is a point where we
     make our changes available to someone else who may have an
     older database to migrate from. In the traditional sense, a release
     is a point where you make a new version of your application available
     to its users. However, for schema evolution purposes, a release
     could also mean simply making your schema-altering changes
     available to other developers on your team. Let us consider
     two common scenarios to illustrate how all this fits together.</p>

  <p>One way to setup a project would be to re-use the application
     development period and application release for schema evolution.
     That is, during a new application version development we keep
     a single object model version and when we release the application,
     we increment the model version. In this case it makes sense to
     also reuse the application version as a model version for
     consistency. Here is a step-by-step guide for this setup:</p>

  <ol>
    <li>During development, keep the current object model version open.</li>

    <li>Before the release (for example, when entering a "feature freeze")
        close the version.</li>

    <li>After the release, update the version and open it.</li>

    <li>For each new feature, review the changeset at the top of the
        changelog, for example, with <code>diff</code> or your
        version control facilities. If you are using a version
        control, then this is best done just before committing
        your changes to the repository.</li>
  </ol>

  <p>An alternative way to setup schema versioning in a project would
     be to define the development period as working on a single
     feature and the release as making this feature available to
     other people (developers, testers, etc.) on your team, for
     example, by committing the changes to a public version control
     repository. In this case, the object model version will be
     independent of the application version and can simply be
     a sequence that starts with <code>1</code> and is
     incremented by <code>1</code>. Here is a step-by-step guide
     for this setup:</p>

  <ol>
    <li>Keep the current model version closed. Once a change is made
        that affects the database schema, the ODB compiler will refuse
        to update the changelog.</li>

    <li>If the change is legitimate, open a new version, that is,
        increment the current version and make it open.</li>

    <li>Once the feature is implemented and tested, review the final
        set of database changes (with <code>diff</code> or your
        version control facilities), close the version, and commit
        the changes to the version control repository (if using).</li>
  </ol>

  <p>If you are using a version control repository that supports
     pre-commit checks, then you may want to consider adding such
     a check to make sure the committed version is always closed.</p>

  <p>If we are just starting schema evolution in our project, which
     approach should we choose? The two approaches will work better
     in different situations since they have a different set of
     advantages and disadvantages. The first approach, which we
     can call version per application release, is best suited
     for simpler projects with smaller releases since otherwise
     a single migration will bundle a large number of unrelated
     actions corresponding to different features. This can
     become difficult to review and, if things go wrong, debug.</p>

  <p>The second approach, which we can call version per feature,
     is much more modular and provides a number of additional benefits.
     We can perform migrations for each feature as a discreet step
     which makes it easier to debug. We can also place each such
     migration step into a separate transaction further improving
     reliability. It also scales much better in larger teams
     where multiple developers can work concurrently on features
     that affect the database schema. For example, if you find
     yourself in a situation where another developer on your
     team used the same version as you and managed to commit his
     changes before you (that is, you have a merge conflict),
     then you can simply change the version to the next available
     one, regenerate the changelog, and continue with your commit.</p>

  <p>Overall, unless you have strong reasons to prefer the version
     per application release approach, rather choose version per
     feature even though it may seem more complex at the
     beginning. Also, if you do select the first approach, consider
     provisioning for switching to the second method by reserving
     a sub-version number. For example, for an application version
     in the form <code>2.3.4</code> you can make the object model
     version to be in the form <code>0x0203040000</code>, reserving
     the last two bytes for a sub-version. Later on you can use it to
     switch to the version per feature approach.</p>

  <h2><a name="13.2">13.2 Schema Migration</a></h2>

  <p>Once we enable schema evolution by specifying the object model
     version, in addition to the schema creation statements, the
     ODB compiler starts generating schema migration statements
     for each version all the way from the base to the current.
     As with schema creation, schema migration can be generated
     either as a set of SQL files or embedded into the generated
     C++ code (<code>--schema-format</code> option).</p>

  <p>For each migration step, that is from one version to the next,
     ODB generates two sets of statements: pre-migration and
     post-migration. The pre-migration statements <em>"relax"</em>
     the database schema so that both old and new data can co-exist.
     At this stage new columns and tables are added while old
     constraints are dropped. The post-migration statements
     <em>"tighten"</em> the database schema back so that only
     data conforming to the new format can remain. At this stage
     old columns and tables are dropped and new constraints are
     added. Now you can probably guess where the data
     migration fits into this &mdash; between the pre and post
     schema migrations where we can both access the old data
     and create the new one.</p>

  <p>If the schema is being generated as standalone SQL files,
     then we end up with a pair of files for each step: the pre-migration
     file and the post-migration file. For the <code>person</code>
     example we started in the previous section we will have the
     <code>person-002-pre.sql</code> and <code>person-002-post.sql</code>
     files. Here <code>002</code> is the version <em>to</em> which
     we are migrating while the <code>pre</code> and <code>post</code>
     suffixes specify the migration stage. So if we wanted to migrate
     a <code>person</code> database from version <code>1</code>
     to <code>2</code>, then we would first execute
     <code>person-002-pre.sql</code>, then migrate the data, if any
     (discussed in more detail in the next section), and finally
     execute <code>person-002-post.sql</code>. If our database is
     several versions behind, for example the database has version
     <code>1</code> while the current version is <code>5</code>,
     then we simply perform this set of steps for each version
     until we reach the current version.</p>

  <p>If we look at the contents of the <code>person-002-pre.sql</code>
     file, we will see the following (or equivalent, depending on the
     database used) statement:</p>

  <pre class="sql">
ALTER TABLE "person"
  ADD COLUMN "middle" TEXT NULL;
  </pre>

  <p>As we would expect, this statement adds a new column corresponding
     to the new data member. An observant reader would notice,
     however, that the column is added as <code>NULL</code>
     even though we never requested this semantics in our object model.
     Why is the column added as <code>NULL</code>? If during migration
     the <code>person</code> table already contains rows (that is, existing
     objects), then an attempt to add a non-<code>NULL</code> column that
     doesn't have a default value will fail. As a result, ODB will initially
     add a new column that doesn't have a default value as <code>NULL</code>
     but then clean this up at the post-migration stage. This way your data
     migration code is given a chance to assign some meaningful values for
     the new data member for all the existing objects. Here are the contents
     of the <code>person-002-post.sql</code> file:</p>

  <pre class="sql">
ALTER TABLE "person"
  ALTER COLUMN "middle" SET NOT NULL;
  </pre>

  <p>Currently ODB directly supports the following elementary database
     schema changes:</p>

  <ul class="list">
    <li>add table</li>
    <li>drop table</li>
    <li>add column</li>
    <li>drop column</li>
    <li>alter column, set <code>NULL</code>/<code>NOT NULL</code></li>
    <li>add foreign key</li>
    <li>drop foreign key</li>
    <li>add index</li>
    <li>drop index</li>
  </ul>

  <p>More complex changes can normally be implemented in terms of
     these building blocks. For example, to change a type of a
     data member (which leads to a change of a column type), we
     can add a new data member with the desired type (add column),
     migrate the data, and then delete the old data member (drop
     column). ODB will issue diagnostics for cases that are
     currently not supported directly. Note also that some database
     systems (notably SQLite) have a number of limitations in their
     support for schema changes. For more information on these
     database-specific limitations, refer to the "Limitations" sections
     in <a href="#II">Part II, "Database Systems"</a>.</p>

  <p>How do we know what the current database version is? That is, the
     version <em>from</em> which we need to migrate? We need to know this,
     for example, in order to determine the set of migrations we have to
     perform. By default, when schema evolution is enabled, ODB maintains
     this information in a special table called <code>schema_version</code>
     that has the following (or equivalent, depending on the database
     used) definition:</p>

  <pre class="sql">
CREATE TABLE "schema_version" (
  "name" TEXT NOT NULL PRIMARY KEY,
  "version" BIGINT NOT NULL,
  "migration" BOOLEAN NOT NULL);
  </pre>

  <p>The <code>name</code> column is the schema name as specified with
     the <code>--schema-name</code> option. It is empty for the default
     schema. The <code>version</code> column contains the current database
     version. And, finally, the <code>migration</code> flag indicates
     whether we are in the process of migrating the database, that is,
     between the pre and post-migration stages.</p>

  <p>The schema creation statements (<code>person.sql</code> in our case)
     create this table and populate it with the initial model version. For
     example, if we executed <code>person.sql</code> corresponding to
     version <code>1</code> of our object model, then <code>name</code>
     would have been empty (which signifies the default schema since we
     didn't specify <code>--schema-name</code>), <code>version</code> will
     be <code>1</code> and <code>migration</code> will be
     <code>FALSE</code>.</p>

  <p>The pre-migration statements update the version and set the migration
     flag to <code>TRUE</code>. Continuing with our example, after executing
     <code>person-002-pre.sql</code>, <code>version</code> will
     become <code>2</code> and <code>migration</code> will be set to
     <code>TRUE</code>. The post-migration statements simply clear the
     migration flag. In our case, after running
     <code>person-002-post.sql</code>, <code>version</code> will
     remain <code>2</code> while <code>migration</code> will be reset
     to <code>FALSE</code>.</p>

  <p>Note also that above we mentioned that the schema creation statements
     (<code>person.sql</code>) create the <code>schema_version</code> table.
     This means that if we enable schema evolution support in the middle
     of a project, then we could already have existing databases that
     don't include this table. As a result, ODB will not be able to handle
     migrations for such databases unless we manually add the
     <code>schema_version</code> table and populate it with the correct
     version information. For this reason, it is highly recommended that
     you consider whether to use schema evolution and, if so, enable it
     from the beginning of your project.</p>

  <p>The <code>odb::database</code> class provides an API for accessing
     and modifying the current database version:</p>

  <pre class="cxx">
namespace odb
{
  typedef unsigned long long schema_version;

  struct LIBODB_EXPORT schema_version_migration
  {
    schema_version_migration (schema_version = 0,
                              bool migration = false);

    schema_version version;
    bool migration;

    // This class also provides the ==, !=, &lt;, >, &lt;=, and >= operators.
    // Version ordering is as follows: {1,f} &lt; {2,t} &lt; {2,f} &lt; {3,t}.
  };

  class database
  {
  public:
    ...

    schema_version
    schema_version (const std::string&amp; name = "") const;

    bool
    schema_migration (const std::string&amp; name = "") const;

    const schema_version_migration&amp;
    schema_version_migration (const std::string&amp; name = "") const;

    // Set schema version and migration state manually.
    //
    void
    schema_version_migration (schema_version,
                              bool migration,
                              const std::string&amp; name = "");

    void
    schema_version_migration (const schema_version_migration&amp;,
                              const std::string&amp; name = "");

    // Set default schema version table for all schemas.
    //
    void
    schema_version_table (const std::string&amp; table_name);

    // Set schema version table for a specific schema.
    //
    void
    schema_version_table (const std::string&amp; table_name,
                          const std::string&amp; name);
  };
}
  </pre>

  <p>The <code>schema_version()</code> and <code>schema_migration()</code>
     accessors return the current database version and migration flag,
     respectively. The optional <code>name</code> argument is the schema
     name. If the database schema hasn't been created (that is, there is
     no corresponding entry in the <code>schema_version</code> table or
     this table does not exist), then <code>schema_version()</code> returns
     <code>0</code>. The <code>schema_version_migration()</code> accessor
     returns both version and migration flag together in the
     <code>schema_version_migration</code> <code>struct</code>.</p>

  <p>You may already have a version table in your database or you (or your
     database administrator) may prefer to keep track of versions your own
     way. You can instruct ODB not to create the <code>schema_version</code>
     table with the <code>--suppress-schema-version</code> option. However,
     ODB still needs to know the current database version in order for certain
     schema evolution mechanisms to function properly. As a result, in
     this case, you will need to set the schema version on the database
     instance manually using the schema_version_migration() modifier.
     Note that the modifier API is not thread-safe. That is, you should
     not modify the schema version while other threads may be accessing
     or modifying the same information.</p>

  <p>Note also that the accessors we discussed above will only query the
     <code>schema_version</code> table once and, if the version could
     be determined, cache the result. If, however, the version could
     not be determined (that is, <code>schema_version()</code> returned
     0), then a subsequent call will re-query the table. While it is
     probably a bad idea to modify the database schema while the
     application is running (other than via the <code>schema_catalog</code>
     API, as discussed below), if for some reason you need ODB to re-query
     the version, then you can manually set it to 0 using the
     <code>schema_version_migration()</code> modifier.</p>

  <p>It is also possible to change the name of the table that stores
     the schema version using the <code>--schema-version-table</code>
     option. You will also need to specify this alternative name on
     the <code>database</code> instance using the <code>schema_version_table()</code>
     modifier. The first version specifies the default table that is
     used for all the schema names. The second version specifies the
     table for a specific schema. The table name should be
     database-quoted, if necessary.</p>

  <p>If we are generating our schema migrations as standalone SQL files,
     then the migration workflow could look like this:</p>

  <ol>
    <li>The database administrator determines the current database version.
        If migration is required, then for each migration step (that
        is, from one version to the next), he performs the following:</li>

    <li>Execute the pre-migration file.</li>

    <li>Execute our application (or a separate migration program)
        to perform data migration (discussed later). Our application
        can determine that is is being executed in the "migration mode"
        by calling <code>schema_migration()</code> and then which
        migration code to run by calling <code>schema_version()</code>.</li>

    <li>Execute the post-migration file.</li>
  </ol>

  <p>These steps become more integrated and automatic if we embed the
     schema creation and migration code into the generated C++ code.
     Now we can perform schema creation, schema migration, and data
     migration as well as determine when each step is necessary
     programmatically from within the application.</p>

  <p>Schema evolution support adds the following extra functions to
     the <code>odb::schema_catalog</code> class, which we first discussed
     in <a href="#3.4">Section 3.4, "Database"</a>.</p>

  <pre class="cxx">
namespace odb
{
  class schema_catalog
  {
  public:
    ...


    // Schema migration.
    //
    static void
    migrate_schema_pre (database&amp;,
                        schema_version,
                        const std::string&amp; name = "");

    static void
    migrate_schema_post (database&amp;,
                         schema_version,
                         const std::string&amp; name = "");

    static void
    migrate_schema (database&amp;,
                    schema_version,
                    const std::string&amp; name = "");

    // Data migration.
    //
    // Discussed in the next section.


    // Combined schema and data migration.
    //
    static void
    migrate (database&amp;,
             schema_version = 0,
             const std::string&amp; name = "");

    // Schema version information.
    //
    static schema_version
    base_version (const database&amp;,
                  const std::string&amp; name = "");

    static schema_version
    base_version (database_id,
                  const std::string&amp; name = "");

    static schema_version
    current_version (const database&amp;,
                     const std::string&amp; name = "");

    static schema_version
    current_version (database_id,
                     const std::string&amp; name = "");

    static schema_version
    next_version (const database&amp;,
                  schema_version = 0,
                  const std::string&amp; name = "");

    static schema_version
    next_version (database_id,
                  schema_version,
                  const std::string&amp; name = "");
  };
}
  </pre>

  <p>The <code>migrate_schema_pre()</code> and
     <code>migrate_schema_post()</code> static functions perform
     a single stage (that is, pre or post) of a single migration
     step (that is, from one version to the next). The <code>version</code>
     argument specifies the version we are migrating to. For
     instance, in our <code>person</code> example, if we know that
     the database version is <code>1</code> and the next version
     is <code>2</code>, then we can execute code like this:</p>

  <pre class="cxx">
transaction t (db.begin ());

schema_catalog::migrate_schema_pre (db, 2);

// Data migration goes here.

schema_catalog::migrate_schema_post (db, 2);

t.commit ();
  </pre>

  <p>If you don't have any data migration code to run, then you can
     perform both stages with a single call using the
     <code>migrate_schema()</code> static function.</p>

  <p>The <code>migrate()</code> static function perform both schema
     and data migration (we discuss data migration in the next section).
     It can also perform several migration steps at once. If we don't
     specify its target version, then it will migrate (if necessary)
     all the way to the current model version. As an extra convenience,
     <code>migrate()</code> will also create the database schema if
     none exists. As a result, if we don't have any data migration
     code or we have registered it with <code>schema_catalog</code> (as
     discussed later), then the database schema creation and migration,
     whichever is necessary, if at all, can be performed with a single
     function call:</p>

  <pre class="cxx">
transaction t (db.begin ());
schema_catalog::migrate (db);
t.commit ();
  </pre>

  <p>Note also that <code>schema_catalog</code> is integrated with the
    <code>odb::database</code> schema version API. In particular,
    <code>schema_catalog</code> functions will query and synchronize
    the schema version on the <code>database</code> instance if and
    when required.</p>

  <p>The <code>schema_catalog</code> class also allows you to iterate
     over known versions (remember, there could be "gaps" in version
     numbers) with the <code>base_version()</code>,
     <code>current_version()</code> and <code>next_version()</code>
     static functions. The <code>base_version()</code> and
     <code>current_version()</code> functions return the base and
     current object model versions, respectively. That is, the
     lowest version from which we can migrate and the version that
     we ultimately want to migrate to. The <code>next_version()</code>
     function returns the next known version. If the passed version is
     greater or equal to the current version, then this function
     will return the current version plus one (that is, one past
     current). If we don't specify the version, then
     <code>next_version()</code> will use the current database version
     as the starting point. Note also that the schema version information
     provided by these functions is only available if we embed the schema
     migration code into the generated C++ code. For standalone SQL file
     migrations this information is normally not needed since the migration
     process is directed by an external entity, such as a database
     administrator or a script.</p>

  <p>Most <code>schema_catalog</code> functions presented above also
     accept the optional schema name argument. If the passed schema
     name is not found, then the <code>odb::unknown_schema</code> exception
     is thrown. Similarly, functions that accept the schema version
     argument will throw the <code>odb::unknown_schema_version</code> exception
     if the passed version is invalid. Refer to <a href="#3.14">Section
     3.14, "ODB Exceptions"</a> for more information on these exceptions.</p>

  <p>To illustrate how all these parts fit together, consider the
     following more realistic database schema management example.
     Here we want to handle the schema creation in a special way
     and perform each migration step in its own transaction.</p>

  <pre class="cxx">
schema_version v (db.schema_version ());
schema_version bv (schema_catalog::base_version (db));
schema_version cv (schema_catalog::current_version (db));

if (v == 0)
{
  // No schema in the database. Create the schema and
  // initialize the database.
  //
  transaction t (db.begin ());
  schema_catalog::create_schema (db);

  // Populate the database with initial data, if any.

  t.commit ();
}
else if (v &lt; cv)
{
  // Old schema (and data) in the database, migrate them.
  //

  if (v &lt; bv)
  {
    // Error: migration from this version is no longer supported.
  }

  for (v = schema_catalog::next_version (db, v);
       v &lt;= cv;
       v = schema_catalog::next_version (db, v))
  {
    transaction t (db.begin ());
    schema_catalog::migrate_schema_pre (db, v);

    // Data migration goes here.

    schema_catalog::migrate_schema_post (db, v);
    t.commit ();
  }
}
else if (v > cv)
{
  // Error: old application trying to access new database.
}
  </pre>

  <h2><a name="13.3">13.3 Data Migration</a></h2>

  <p>In quite a few cases specifying the default value for new data
     members will be all that's required to handle the existing objects.
     For example, the natural default value for the new middle name
     that we have added is an empty string. And we can handle
     this case with the <code>db&nbsp;default</code> pragma and without
     any extra C++ code:</p>

  <pre class="cxx">
#pragma db model version(1, 2)

#pragma db object
class person
{
  ...


  #pragma db default("")
  std::string middle_;
};
  </pre>

  <p>However, there will be situations where we would need to perform
     more elaborate data migrations, that is, convert old data to the
     new format. As an example, suppose we want to add gender to our
     <code>person</code> class. And, instead of leaving it unassigned
     for all the existing objects, we will try to guess it from the
     first name. This is not particularly accurate but it could be
     sufficient for our hypothetical application:</p>

  <pre class="cxx">
#pragma db model version(1, 3)

enum gender {male, female};

#pragma db object
class person
{
  ...

  gender gender_;
};
  </pre>

  <p>As we have discussed earlier, there are two ways to perform data
     migration: immediate and gradual. To recap, with immediate
     migration we migrate all the existing objects at once, normally
     after the schema pre-migration statements but before the
     post-migration statements. With gradual migration, we make sure
     the new object model can accommodate both old and new data and
     gradually migrate existing objects as the application runs and
     the opportunities to do so arise, for example, an object is
     updated.</p>

  <p>There is also another option for data migration that is not
     discussed further in this section. Instead of using our C++
     object model we could execute ad-hoc SQL statements that
     perform the necessary conversions and migrations directly
     on the database server. While in certain cases this can be
     a better option from the performance point of view, this
     approach is often limited in terms of the migration logic
     that we can handle.</p>

  <h2><a name="13.3.1">13.3.1 Immediate Data Migration</a></h2>

  <p>Let's first see how we can implement an immediate migration for the
     new <code>gender_</code> data member we have added above. If we
     are using standalone SQL files for migration, then we could add
     code along these lines somewhere early in <code>main()</code>,
     before the main application logic:</p>

  <pre class="cxx">
int
main ()
{
  ...

  odb::database&amp; db = ...

  // Migrate data if necessary.
  //
  if (db.schema_migration ())
  {
    switch (db.schema_version ())
    {
    case 3:
      {
        // Assign gender to all the existing objects.
        //
        transaction t (db.begin ());

        for (person&amp; p: db.query&lt;person> ())
        {
          p.gender (guess_gender (p.first ()));
          db.update (p);
        }

        t.commit ();
        break;
      }
    }
  }

  ...
}
  </pre>

  <p>If you have a large number of objects to migrate, it may also be
     a good idea, from the performance point of view, to break one big
     transaction that we now have into multiple smaller transactions
     (<a href="#3.5">Section 3.5, "Transactions"</a>). For example:</p>

  <pre class="cxx">
case 3:
  {
    transaction t (db.begin ());

    size_t n (0);
    for (person&amp; p: db.query&lt;person> ())
    {
      p.gender (guess_gender (p.first ()));
      db.update (p);

      // Commit the current transaction and start a new one after
      // every 100 updates.
      //
      if (n++ % 100 == 0)
      {
        t.commit ();
        t.reset (db.begin ());
      }
    }

    t.commit ();
    break;
  }
  </pre>

  <p>While it looks straightforward enough, as we add more migration
     snippets, this approach can quickly become unmaintainable. Instead
     of having all the migrations in a single function and determining
     when to run each piece ourselves, we can package each migration into
     a separate function, register it with the <code>schema_catalog</code>
     class, and let ODB figure out when to run which migration functions.
     To support this functionality, <code>schema_catalog</code> provides
     the following data migration API:</p>

  <pre class="cxx">
namespace odb
{
  class schema_catalog
  {
  public:
    ...

    // Data migration.
    //
    static std::size_t
    migrate_data (database&amp;,
                  schema_version = 0,
                  const std::string&amp; name = "");

    typedef void data_migration_function_type (database&amp;);

    // Common (for all the databases) data migration, C++98/03 version:
    //
    template &lt;schema_version v, schema_version base>
    static void
    data_migration_function (data_migration_function_type*,
                             const std::string&amp; name = "");

    // Common (for all the databases) data migration, C++11 version:
    //
    template &lt;schema_version v, schema_version base>
    static void
    data_migration_function (std::function&lt;data_migration_function_type>,
                             const std::string&amp; name = "");

    // Database-specific data migration, C++98/03 version:
    //
    template &lt;schema_version v, schema_version base>
    static void
    data_migration_function (database&amp;,
                             data_migration_function_type*,
                             const std::string&amp; name = "");

    template &lt;schema_version v, schema_version base>
    static void
    data_migration_function (database_id,
                             data_migration_function_type*,
                             const std::string&amp; name = "");

    // Database-specific data migration, C++11 version:
    //
    template &lt;schema_version v, schema_version base>
    static void
    data_migration_function (database&amp;,
                             std::function&lt;data_migration_function_type>,
                             const std::string&amp; name = "");

    template &lt;schema_version v, schema_version base>
    static void
    data_migration_function (database_id,
                             std::function&lt;data_migration_function_type>,
                             const std::string&amp; name = "");
  };

  // Static data migration function registration, C++98/03 version:
  //
  template &lt;schema_version v, schema_version base>
  struct data_migration_entry
  {
    data_migration_entry (data_migration_function_type*,
                          const std::string&amp; name = "");

    data_migration_entry (database_id,
                          data_migration_function_type*,
                          const std::string&amp; name = "");
  };

  // Static data migration function registration, C++11 version:
  //
  template &lt;schema_version v, schema_version base>
  struct data_migration_entry
  {
    data_migration_entry (std::function&lt;data_migration_function_type>,
                          const std::string&amp; name = "");

    data_migration_entry (database_id,
                          std::function&lt;data_migration_function_type>,
                          const std::string&amp; name = "");
  };
}
  </pre>

  <p>The <code>migrate_data()</code> static function performs data
     migration for the specified version. If no version is specified,
     then it will use the current database version and also check
     whether the database is in migration, that is,
     <code>database::schema_migration()</code> returns <code>true</code>.
     As a result, all we need to do in our <code>main()</code> is call
     this function. It will check if migration is required and if so,
     call all the migration functions registered for this version. For
     example:</p>

  <pre class="cxx">
int
main ()
{
  ...

  database&amp; db = ...

  // Check if we need to migrate any data and do so
  // if that's the case.
  //
  schema_catalog::migrate_data (db);

  ...
}
  </pre>

  <p>The <code>migrate_data()</code> function returns the number of
     migration functions called. You can use this value for debugging
     or logging.</p>

  <p>The only other step that we need to perform is register our data
     migration functions with <code>schema_catalog</code>. At the
     lower level we can call the <code>data_migration_function()</code>
     static function for every migration function we have, for example,
     at the beginning of <code>main()</code>. For each version, data
     migration functions are called in the order of registration.</p>

  <p>A more convenient approach, however, is to use the
     <code>data_migration_entry</code> helper class template to register the
     migration functions during static initialization. This way we
     can keep the migration function and its registration code next
     to each other. Here is how we can reimplement our <code>gender</code>
     migration code to use this mechanism:</p>

  <pre class="cxx">
static void
migrate_gender (odb::database&amp; db)
{
  transaction t (db.begin ());

  for (person&amp; p: db.query&lt;person> ())
  {
    p.gender (guess_gender (p.first ()));
    db.update (p);
  }

  t.commit ();
}

static const odb::data_migration_entry&lt;3, MYAPP_BASE_VERSION>
migrate_gender_entry (&amp;migrate_gender);
  </pre>

  <p>The first template argument to the <code>data_migration_entry</code>
     class template is the version we want this data migration function
     to be called for. The second template argument is the base model
     version. This second argument is necessary to detect the situation
     where we no longer need this data migration function. Remember
     that when we move the base model version forward, migrations from
     any version below the new base are no longer possible. We, however,
     may still have migration functions registered for those lower
     versions. Since these functions will never be called, they are
     effectively dead code and it would be useful to identify and
     remove them. To assist with this, <code>data_migration_entry</code>
     (and lower lever <code>data_migration_function()</code>) will
     check at compile time (that is, <code>static_assert</code>) that
     the registration version is greater than the base model version.</p>

  <p>In the above example we use the <code>MYAPP_BASE_VERSION</code>
     macro that is presumably defined in a central place, for example,
     <code>version.hxx</code>. This is the recommended approach since
     we can update the base version in a single place and have the
     C++ compiler automatically identify all the data migration
     functions that can be removed.</p>

  <p>In C++11 we can also create a template alias so that we don't
     have to repeat the base model macro in every registration, for
     example:</p>

  <pre class="cxx">
template &lt;schema_version v>
using migration_entry = odb::data_migration_entry&lt;v, MYAPP_BASE_VERSION>;

static const migration_entry&lt;3>
migrate_gender_entry (&amp;migrate_gender);
  </pre>

  <p>For cases where you need to by-pass the base version check, for
     example, to implement your own registration helper, ODB also
     provides "unsafe" versions of the <code>data_migration_function()</code>
     functions that take the version as a function argument rather than
     as a template parameter.</p>

  <p>In C++11 we can also use lambdas as migration functions, which makes
     the migration code more concise:</p>

  <pre class="cxx">
static const migration_entry&lt;3>
migrate_gender_entry (
  [] (odb::database&amp; db)
  {
    transaction t (db.begin ());

    for (person&amp; p: db.query&lt;person> ())
    {
      p.gender (guess_gender (p.first ()));
      db.update (p);
    }

    t.commit ();
  });
  </pre>

  <p>If we are using embedded schema migrations, then both schema and
     data migration is integrated and can be performed with a single
     call to the <code>schema_catalog::migrate()</code> function that
     we discussed earlier. For example:</p>

<pre class="cxx">
int
main ()
{
  ...

  database&amp; db = ...

  // Check if we need to migrate the database and do so
  // if that's the case.
  //
  {
    transaction t (db.begin ());
    schema_catalog::migrate (db);
    t.commit ();
  }

  ...
}
  </pre>

  <p>Note, however, that in this case we call <code>migrate()</code>
     within a transaction (for the schema migration part) which means
     that our migration functions will also be called within this
     transaction. As a result, we will need to adjust our migration
     functions not to start their own transaction:</p>

  <pre class="cxx">
static void
migrate_gender (odb::database&amp; db)
{
  // Assume we are already in a transaction.
  //
  for (person&amp; p: db.query&lt;person> ())
  {
    p.gender (guess_gender (p.first ()));
    db.update (p);
  }
}
  </pre>

  <p>If, however, we want more granular transactions, then we can
     use the lower-level <code>schema_catalog</code> functions to
     gain more control, as we have seen at the end of the previous
     section.  Here is the relevant part of that example with
     an added data migration call:</p>

  <pre class="cxx">
  // Old schema (and data) in the database, migrate them.
  //
  for (v = schema_catalog::next_version (db, v);
       v &lt;= cv;
       v = schema_catalog::next_version (db, v))
  {
    transaction t (db.begin ());
    schema_catalog::migrate_schema_pre (db, v);
    schema_catalog::migrate_data (db, v);
    schema_catalog::migrate_schema_post (db, v);
    t.commit ();
  }
  </pre>

  <h2><a name="13.3.2">13.3.2 Gradual Data Migration</a></h2>

  <p>If the number of existing objects that require migration is large,
     then an all-at-once, immediate migration, while simple, may not
     be practical from a performance point of view. In this case,
     we can perform a gradual migration as the application does
     its normal functions.</p>

  <p>With gradual migrations, the object model must be capable of
     representing data that conforms to both old and new formats at
     the same time since, in general, the database will contain a
     mixture of old and new objects. For example, in case of our
     <code>gender</code> data member, we need a special value that
     represents the "no gender assigned yet" case (an old object).
     We also need to assign this special value to all the existing
     objects during the schema pre-migration stage. One way to do
     this would be add a special value to our <code>gender</code>
     enum and then make it the default value with the
     <code>db&nbsp;default</code> pragma. A cleaner and easier approach,
     however, is to use <code>NULL</code> as a special value. We
     can add support for the <code>NULL</code> value semantics
     to any existing type by wrapping it with
     <code>odb::nullable</code>, <code>boost::optional</code>
     or similar (<a href="#7.3">Section 7.3, "Pointers and <code>NULL</code>
     Value Semantics"</a>). We also don't need to specify the default value
     explicitly since <code>NULL</code> is used automatically. Here
     is how we can use this approach in our <code>gender</code>
     example:</p>

  <pre class="cxx">
#include &lt;odb/nullable.hxx>

#pragma db object
class person
{
  ...

  odb::nullable&lt;gender> gender_;
};
  </pre>

  <p>A variety of strategies can be employed to implement gradual
     migrations. For example, we can migrate the data when the object
     is updated as part of the normal application logic. While there
     is no migration cost associated with this approach (the object
     is updated anyway), depending on how often objects are typically
     updated, this strategy can take a long time to complete. An
     alternative strategy would be to perform an update whenever
     an old object is loaded. Yet another strategy is to have a
     separate thread that slowly migrates all the old objects as
     the application runs.</p>

  <p>As an example, let us implement the first approach for our
     <code>gender</code> migration. While we could have added
     the necessary code throughout the application, from the
     maintenance point of view, it is best to try and localize
     the gradual migration logic to the persistent classes that
     it affects. And for this database operation callbacks
     (<a href="#14.1.7">Section 14.1.7, "<code>callback</code>"</a>)
     are a very useful mechanism. In our case, all we have to do is handle
     the <code>post_load</code> event where we guess the gender
     if it is <code>NULL</code>:</p>

  <pre class="cxx">
#include &lt;odb/core.hxx>     // odb::database
#include &lt;odb/callback.hxx> // odb::callback_event
#include &lt;odb/nullable.hxx>

#pragma db object callback(migrate)
class person
{
  ...

  void
  migrate (odb::callback_event e, odb::database&amp;)
  {
    if (e == odb::callback_event::post_load)
    {
      // Guess gender if not assigned.
      //
      if (gender_.null ())
        gender_ = guess_gender (first_);
    }
  }

  odb::nullable&lt;gender> gender_;
};
  </pre>

  <p>In particular, we don't have to touch any of the accessors
     or modifiers or the application logic &mdash; all of them
     can assume that the value can never be <code>NULL</code>.
     And when the object is next updated, the new <code>gender</code>
     value will be stored automatically.</p>

  <p>All gradual migrations normally end up with a terminating
     immediate migration some number of versions down the line,
     when the bulk of the objects has presumably been converted.
     This way we don't have to keep the gradual migration code
     around forever. Here is how we could implement a terminating
     migration for our example:</p>

  <pre class="cxx">
// person.hxx
//
#pragma db model version(1, 4)

#pragma db object
class person
{
  ...

  gender gender_;
};

// person.cxx
//
static void
migrate_gender (odb::database&amp; db)
{
  typedef odb::query&lt;person> query;

  for (person&amp; p: db.query&lt;person> (query::gender.is_null ()))
  {
    p.gender (guess_gender (p.first ()));
    db.update (p);
  }
}

static const odb::data_migration_entry&lt;4, MYAPP_BASE_VERSION>
migrate_gender_entry (&amp;migrate_gender);
  </pre>

  <p>A couple of points to note about this code. Firstly, we
     removed all the gradual migration logic (the callback)
     from the class and replaced it with the immediate migration
     function. We also removed the <code>odb::nullable</code>
     wrapper (and therefore disallowed the <code>NULL</code> values)
     since after this migration all the objects will have been
     converted. Finally, in the migration function, we only query
     the database for objects that need migration, that is, have
     <code>NULL</code> gender.</p>

  <h2><a name="13.4">13.4 Soft Object Model Changes</a></h2>

  <p>Let us consider another common kind of object model change:
     we delete an old member, add a new one, and need to copy
     the data from the old to the new, perhaps applying some
     conversion. For example, we may realize that in our application
     it is a better idea to store a person's name as a single string
     rather than split it into three fields. So what we would like to do
     is add a new data member, let's call it <code>name_</code>, convert
     all the existing split names, and then delete the <code>first_</code>,
     <code>middle_</code>, and <code>last_</code> data members.</p>

  <p>While this sounds straightforward, there is a problem. If we
     delete (that is, physically remove from the source code) the
     old data members, then we won't be able to access the old
     data. The data will still be available in the database between
     the schema pre and post-migrations, it is just we will no longer
     be able to access it through our object model. And if we keep
     the old data members around, then the old data will remain
     stored in the database even after the schema post-migration.</p>

  <p>There is also a more subtle problem that has to do with existing
     migrations for the previous versions. Remember, in version <code>3</code>
     of our <code>person</code> example we added the <code>gender_</code>
     data member. We also have a data migration function which guesses
     the gender based on the first name. Deleting the <code>first_</code>
     data member from our class will obviously break this code. But
     even adding the new <code>name_</code> data member will cause
     problems because when we try to update the object in order to
     store the new gender, ODB will try to update <code>name_</code>
     as well. But there is no corresponding column in the database
     yet. When we run this migration function, we are still several
     versions away from the point where the <code>name</code> column
     will be added.</p>

  <p>This is a very subtle but also very important implication to
     understand. Unlike the main application logic, which only needs
     to deal with the current model version, data migration code works
     on databases that can be multiple versions behind the current
     version.</p>

  <p>How can we resolve this problem? It appears what we need is the
     ability to add or delete data members starting from a specific
     version. In ODB this mechanism is called soft member additions
     and deletions. A soft-added member is only treated as persistent
     starting from the addition version. A soft-deleted member is
     persistent until the deletion version (but including the migration
     stage). In its essence, soft model changes allow us to maintain
     multiple versions of our object model all with a single set of
     persistent classes. Let us now see how this functionality can
     help implement our changes:</p>

  <pre class="cxx">
#pragma db model version(1, 4)

#pragma db object
class person
{
  ...

  #pragma db id auto
  unsigned long id_;

  #pragma db deleted(4)
  std::string first_;

  #pragma db deleted(4)
  std::string middle_;

  #pragma db deleted(4)
  std::string last_;

  #pragma db added(4)
  std::string name_;

  gender gender_;
};
  </pre>

  <p>The migration function for this change could then look like
     this:</p>

  <pre class="cxx">
static void
migrate_name (odb::database&amp; db)
{
  for (person&amp; p: db.query&lt;person> ())
  {
    p.name (p.first () + " " +
            p.middle () + (p.middle ().empty () ? "" : " ") +
            p.last ());
    db.update (p);
  }
}

static const odb::data_migration_entry&lt;4, MYAPP_BASE_VERSION>
migrate_name_entry (&amp;migrate_name);
  </pre>

  <p>Note also that no changes are required to the gender migration
     function.</p>

  <p>As you may have noticed, in the code above we assumed that the
     <code>person</code> class still provides public accessors for
     the now deleted data members. This might not be ideal since now
     they should not be used by the application logic. The only code
     that may still need to access them is the migration functions. The
     recommended way to resolve this is to remove the accessors/modifiers
     corresponding to the deleted data member, make migration functions
     static functions of the class being migrated, and then access
     the deleted data members directly. For example:</p>

  <pre class="cxx">
#pragma db model version(1, 4)

#pragma db object
class person
{
  ...

private:
  friend class odb::access;

  #pragma db id auto
  unsigned long id_;

  #pragma db deleted(4)
  std::string first_;

  #pragma db deleted(4)
  std::string middle_;

  #pragma db deleted(4)
  std::string last_;

  #pragma db added(4)
  std::string name_;

  gender gender_;

private:
  static void
  migrate_gender (odb::database&amp;);

  static void
  migrate_name (odb::database&amp;);
};

void person::
migrate_gender (odb::database&amp; db)
{
  for (person&amp; p: db.query&lt;person> ())
  {
    p.gender_ = guess_gender (p.first_);
    db.update (p);
  }
}

static const odb::data_migration_entry&lt;3, MYAPP_BASE_VERSION>
migrate_name_entry (&amp;migrate_gender);

void person::
migrate_name (odb::database&amp; db)
{
  for (person&amp; p: db.query&lt;person> ())
  {
    p.name_ = p.first_ + " " +
              p.middle_ + (p.middle_.empty () ? "" : " ") +
              p.last_;
    db.update (p);
  }
}

static const odb::data_migration_entry&lt;4, MYAPP_BASE_VERSION>
migrate_name_entry (&amp;migrate_name);
  </pre>

  <p>Another potential issue with the soft-deletion is the requirement
     to keep the delete data members in the class. While they will not
     be initialized in the normal operation of the application (that
     is, not a migration), this can still be a problem if we need to
     minimize the memory footprint of our classes. For example, we may
     cache a large number of objects in memory and having three
     <code>std::string</code> data members can be a significant
     overhead.</p>

  <p>The recommended way to resolve this issue is to place all the
     deleted data members into a dynamically allocated composite
     value type. For example:</p>

  <pre class="cxx">
#pragma db model version(1, 4)

#pragma db object
class person
{
  ...

  #pragma db id auto
  unsigned long id_;

  #pragma db added(4)
  std::string name_;

  gender gender_;

  #pragma db value
  struct deleted_data
  {
    #pragma db deleted(4)
    std::string first_;

    #pragma db deleted(4)
    std::string middle_;

    #pragma db deleted(4)
    std::string last_;
  };

  #pragma db column("")
  std::unique_ptr&lt;deleted_data> dd_;

  ...
};
  </pre>

  <p>ODB will then automatically allocate the deleted value type if
     any of the deleted data members are being loaded. During the normal
     operation, however, the pointer will stay <code>NULL</code> and
     therefore reduce the common case overhead to a single pointer
     per class. Note that we make the composite value column prefix
     empty (the <code>db&nbsp;column("")</code> pragma) in order to
     keep the same column names for the deleted data members.</p>

  <p>Soft-added and deleted data members can be used in objects,
     composite values, views, and container value types. We can
     also soft-add and delete data members of simple, composite,
     pointer to object, and container types. Only special data
     members, such as the object id and the optimistic concurrency
     version, cannot be soft-added or deleted.</p>

  <p>It is also possible to soft-delete a persistent class. We
     can still work with the existing objects of such a class,
     however, no table is created in new databases for soft-deleted
     classes. To put it another way, a soft-delete class is like an
     abstract class (no table) but which can still be loaded, updated,
     etc. Soft-added persistent classes do not make much sense and
     are therefore not supported.</p>

  <p>As an example of a soft-deleted class, suppose we want to
     replace our <code>person</code> class with the new
     <code>employee</code> object and migrate the data. Here is
     how we could do this:</p>

  <pre class="cxx">
#pragma db model version(1, 5)

#pragma db object deleted(5)
class person
{
  ...
};

#pragma db object
class employee
{
  ...

  #pragma db id auto
  unsigned long id_;

  std::string name_;
  gender gender_;

  static void
  migrate_person (odb::database&amp;);
};

void employee::
migrate_person (odb::database&amp; db)
{
  for (person&amp; p: db.query&lt;person> ())
  {
    employee e (p.name (), p.gender ());
    db.persist (e);
  }
}

static const odb::data_migration_entry&lt;5, MYAPP_BASE_VERSION>
migrate_person_entry (&amp;migrate_person);
  </pre>

  <p>As we have seen above, hard member additions and deletions can
     (and most likely will) break existing data migration code. Why,
     then, not treat all the changes, or at least additions, as soft?
     ODB requires you to explicitly request this semantics because
     support for soft-added and deleted data members incurs runtime
     overhead. And there can be plenty of cases where there is no
     existing data migration and therefore hard additions and deletions
     are sufficient.</p>

  <p>In some cases a hard addition or deletion will result in a
     compile-time error. For example, one of the data migration
     functions may reference the data member we just deleted. In
     many cases, however, such errors can only be detected at
     runtime, and, worse yet, only when the migration function
     is executed. For example, we may hard-add a new data member
     that an existing migration function will try to indirectly
     store in the database as part of an object update. As a result,
     it is highly recommended that you always test your application
     with the database that starts at the base version so that every
     data migration function is called and therefore ensured to
     still work correctly.</p>

  <p>To help with this problem you can also instruct ODB to warn
     you about any hard additions or deletions with the
     <code>--warn-hard-add</code>, <code>--warn-hard-delete</code>,
     and <code>--warn-hard</code> command line options. ODB will
     only warn you about hard changes in the current version and
     only for as long as it is open, which makes this mechanism
     fairly usable.</p>

  <p>You may also be wondering why we have to specify the addition
     and deletion versions explicitly. It may seem like the ODB compiler
     should be able to figure this out automatically. While it is
     theoretically possible, to achieve this, ODB would have to also
     maintain a separate changelog of the C++ object model in
     addition to the database schema changelog it already maintains.
     While being a lot more complex, such an additional changelog
     would also complicate the workflow significantly. In this light,
     maintaining this change information as part of the original
     source files appears to be a cleaner and simpler approach.</p>

  <p>As we discussed before, when we move the base model version
     forward we essentially drop support for migrations from
     versions before the new base. As a result, it is no longer
     necessary to maintain the soft semantics of additions and
     deletions up to and including the new base version. ODB
     will issue diagnostics for all such members and classes.
     For soft deletions we can simply remove the data member or
     class entirely. For soft additions we only need to remove the
     <code>db&nbsp;added</code> pragma.</p>

  <h2><a name="13.4.1">13.4.1 Reuse Inheritance Changes</a></h2>

  <p>Besides adding and deleting data members, another way to alter
     the object's table is using reuse-style inheritance. If we add
     a new reuse base, then, from the database schema point of view,
     this is equivalent to adding all its columns to the derived
     object's table. Similarly, deleting reuse inheritance results in
     all the base's columns being deleted from the derived's table.</p>

  <p>In the future ODB may provide direct support for soft addition
     and deletion of inheritance. Currently, however, this semantics
     can be emulated with soft-added and deleted data members. The
     following table describes the most common scenarios depending
     on where columns are added or deleted, that is, base table,
     derived table, or both.</p>

  <!-- border="1" is necessary for html2ps -->
  <table class="scenarios" border="1">
    <tr>
      <th>DELETE</th>
      <th style="width: 40%">HARD</th>
      <th style="width: 40%">SOFT</th>
    </tr>

    <tr>
      <td>In both (delete inheritance and base)</td>
      <td>Delete inheritance and base. Move object id to derived.</td>
      <td>Soft-delete base. Mark all data members (except id) in
          base as soft-deleted.</td>
    </tr>

    <tr>
      <td>In base only (delete base)</td>
      <td>Option 1: mark base as abstract.<br/><br/>
          Option 2: move all the base member to derived, delete base.</td>
      <td>Soft-delete base.</td>
    </tr>

    <tr>
      <td>In derived only (delete inheritance)</td>
      <td>Delete inheritance, add object id to derived.</td>
      <td>Option 1: copy base to a new soft-deleted base, inherit
          from it instead. Mark all the data members (expect id) in
          this new base as soft-deleted. Note: we add the new base
          as soft-deleted to get notified when we can remove it.<br/><br/>
          Option 2: Copy all the data members from base to derived
          and mark them as soft-deleted in derived.</td>
    </tr>
  </table>


  <table class="scenarios" border="1">
    <tr>
      <th>ADD</th>
      <th style="width: 40%">HARD</th>
      <th style="width: 40%">SOFT</th>
    </tr>

    <tr>
      <td>In both (add new base and inheritance)</td>
      <td>Add new base and inheritance. Potentially move object id
          member from derived to base.</td>
      <td>Add new base and mark all its data members as soft-added.
          Add inheritance. Move object id from derived to base.</td>
    </tr>

    <tr>
      <td>In base only (refactor existing data to new base)</td>
      <td>Add new base and move data members from derived to base.
          Note: in most cases the new base will be made abstract
          which make this scenario non-schema changing.</td>
      <td>The same as HARD.</td>
    </tr>

    <tr>
      <td>In derived only (add inheritance to existing base)</td>
      <td>Add inheritance, delete object id in derived.</td>
      <td>Copy existing base to a new abstract base and inherit
          from it. Mark all the database members in the new base
          as soft-added (except object id). When notified by the
          ODB compiler that the soft addition of the data members
          is no longer necessary, delete the copy and inherit from
          the original base.</td>
    </tr>
  </table>

  <h2><a name="13.4.2">13.4.2 Polymorphism Inheritance Changes</a></h2>

  <p>Unlike reuse inheritance, adding or deleting a polymorphic base
     does not result in the base's data members being added or deleted
     from the derived object's table because each class in a polymorphic
     hierarchy is stored in a separate table. There are, however, other
     complications due to the presence of special columns (discriminator
     in the root table and object id links in derived tables) which makes
     altering the hierarchy structure difficult to handle automatically.
     Adding or deleting (including soft-deleting) of leaf classes (or
     leaf sub-hierarchies) in a polymorphic hierarchy is fully supported.
     Any more complex changes, such as adding or deleting the root or
     an intermediate base or getting an existing class into or out of
     a polymorphic hierarchy can be handled by creating a new leaf class
     (or leaf sub-hierarchy), soft-deleting the old class, and migrating
     the data.</p>

  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="14">14 ODB Pragma Language</a></h1>

  <p>As we have already seen in previous chapters, ODB uses a pragma-based
     language to capture database-specific information about C++ types.
     This chapter describes the ODB pragma language in more detail. It
     can be read together with other chapters in the manual to get a
     sense of what kind of configurations and mapping fine-tuning are
     possible. You can also use this chapter as a reference at a later
     stage.</p>

  <p>An ODB pragma has the following syntax:</p>

  <p><code>#pragma db <i>qualifier</i> [<i>specifier</i> <i>specifier</i> ...]</code></p>

  <p>The <em>qualifier</em> tells the ODB compiler what kind of C++ construct
     this pragma describes. Valid qualifiers are <code>object</code>,
     <code>view</code>, <code>value</code>, <code>member</code>,
     <code>namespace</code>, <code>model</code>, <code>index</code>, and
     <code>map</code>.
     A pragma with the <code>object</code> qualifier describes a persistent
     object type. It tells the ODB compiler that the C++ class it describes
     is a persistent class. Similarly, pragmas with the <code>view</code>
     qualifier describe view types, the <code>value</code> qualifier
     describes value types and the <code>member</code> qualifier is used
     to describe data members of persistent object, view, and value types.
     The <code>namespace</code> qualifier is used to describe common
     properties of objects, views, and value types that belong to
     a C++ namespace while the <code>model</code> qualifier describes
     the whole C++ object model. The <code>index</code> qualifier defines
     a database index. And, finally, the <code>map</code> qualifier
     describes a mapping between additional database types and types
     for which ODB provides built-in support.</p>

  <p>The <em>specifier</em> informs the ODB compiler about a particular
     database-related property of the C++ declaration. For example, the
     <code>id</code> member specifier tells the ODB compiler that this
     member contains this object's identifier. Below is the declaration
     of the <code>person</code> class that shows how we can use ODB
     pragmas:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
private:
  #pragma db member id
  unsigned long id_;
  ...
};
  </pre>

  <p>In the above example we don't explicitly specify which C++ class or
     data member the pragma belongs to. Rather, the pragma applies to
     a C++ declaration that immediately follows the pragma. Such pragmas
     are called <em>positioned pragmas</em>. In positioned pragmas that
     apply to data members, the <code>member</code> qualifier can be
     omitted for brevity, for example:</p>

  <pre class="cxx">
  #pragma db id
  unsigned long id_;
  </pre>

  <p>Note also that if the C++ declaration immediately following a
     position pragma is incompatible with the pragma qualifier, an
     error will be issued. For example:</p>

  <pre class="cxx">
  #pragma db object  // Error: expected class instead of data member.
  unsigned long id_;
  </pre>

  <p>While keeping the C++ declarations and database declarations close
     together eases maintenance and increases readability, we can also
     place them in different parts of the same header file or even
     factor them to a separate file. To achieve this we use the so called
     <em>named pragmas</em>. Unlike positioned pragmas, named pragmas
     explicitly specify the C++ declaration to which they apply by
     adding the declaration name after the pragma qualifier. For example:</p>

  <pre class="cxx">
class person
{
  ...
private:
  unsigned long id_;
  ...
};

#pragma db object(person)
#pragma db member(person::id_) id
  </pre>

  <p>Note that in the named pragmas for data members the <code>member</code>
     qualifier is no longer optional. The C++ declaration name in the
     named pragmas is resolved using the standard C++ name resolution
     rules, for example:</p>

  <pre class="cxx">
namespace db
{
  class person
  {
    ...
  private:
    unsigned long id_;
    ...
  };
}

namespace db
{
  #pragma db object(person)  // Resolves db::person.
}

#pragma db member(db::person::id_) id
  </pre>

  <p>As another example, the following code fragment shows how to use the
     named value type pragma to map a C++ type to a native database type:</p>

  <pre class="cxx">
#pragma db value(bool) type("INT")

#pragma db object
class person
{
  ...
private:
  bool married_; // Mapped to INT NOT NULL database type.
  ...
};
  </pre>

  <p>If we would like to factor the ODB pragmas into a separate file,
     we can include this file into the original header file (the one
     that defines the persistent types) using the <code>#include</code>
     directive, for example:</p>

  <pre class="cxx">
// person.hxx

class person
{
  ...
};

#ifdef ODB_COMPILER
#  include "person-pragmas.hxx"
#endif
  </pre>

  <p>Alternatively, instead of using the <code>#include</code> directive,
     we can use the <code>--odb-epilogue</code> option to make the pragmas
     known to the ODB compiler when compiling the original header file,
     for example:</p>

  <pre class="terminal">
--odb-epilogue  '#include "person-pragmas.hxx"'
  </pre>

  <p>The following sections cover the specifiers applicable to all the
     qualifiers mentioned above.</p>

  <p>The C++ header file that defines our persistent classes and
     normally contains one or more ODB pragmas is compiled by both
     the ODB compiler to generate the database support code and
     the C++ compiler to build the application. Some C++ compilers
     issue warnings about pragmas that they do not recognize. There
     are several ways to deal with this problem which are covered
     at the end of this chapter in <a href="#14.9">Section 14.9,
     "C++ Compiler Warnings"</a>.</p>

  <h2><a name="14.1">14.1 Object Type Pragmas</a></h2>

  <p>A pragma with the <code>object</code> qualifier declares a C++ class
     as a persistent object type. The qualifier can be optionally followed,
     in any order, by one or more specifiers summarized in the table below:</p>

  <!-- border="1" is necessary for html2ps -->
  <table class="specifiers" border="1">
    <tr>
      <th>Specifier</th>
      <th>Summary</th>
      <th>Section</th>
    </tr>

    <tr>
      <td><code>table</code></td>
      <td>table name for a persistent class</td>
      <td><a href="#14.1.1">14.1.1</a></td>
    </tr>

    <tr>
      <td><code>pointer</code></td>
      <td>pointer type for a persistent class</td>
      <td><a href="#14.1.2">14.1.2</a></td>
    </tr>

    <tr>
      <td><code>abstract</code></td>
      <td>persistent class is abstract</td>
      <td><a href="#14.1.3">14.1.3</a></td>
    </tr>

    <tr>
      <td><code>readonly</code></td>
      <td>persistent class is read-only</td>
      <td><a href="#14.1.4">14.1.4</a></td>
    </tr>

    <tr>
      <td><code>optimistic</code></td>
      <td>persistent class with the optimistic concurrency model</td>
      <td><a href="#14.1.5">14.1.5</a></td>
    </tr>

    <tr>
      <td><code>no_id</code></td>
      <td>persistent class has no object id</td>
      <td><a href="#14.1.6">14.1.6</a></td>
    </tr>

    <tr>
      <td><code>callback</code></td>
      <td>database operations callback</td>
      <td><a href="#14.1.7">14.1.7</a></td>
    </tr>

    <tr>
      <td><code>schema</code></td>
      <td>database schema for a persistent class</td>
      <td><a href="#14.1.8">14.1.8</a></td>
    </tr>

    <tr>
      <td><code>polymorphic</code></td>
      <td>persistent class is polymorphic</td>
      <td><a href="#14.1.9">14.1.9</a></td>
    </tr>

    <tr>
      <td><code>session</code></td>
      <td>enable/disable session support for a persistent class</td>
      <td><a href="#14.1.10">14.1.10</a></td>
    </tr>

    <tr>
      <td><code>definition</code></td>
      <td>definition location for a persistent class</td>
      <td><a href="#14.1.11">14.1.11</a></td>
    </tr>

    <tr>
      <td><code>transient</code></td>
      <td>all non-virtual data members in a persistent class are transient</td>
      <td><a href="#14.1.12">14.1.12</a></td>
    </tr>

    <tr>
      <td><code>sectionable</code></td>
      <td>support addition of new sections in derived classes</td>
      <td><a href="#14.1.13">14.1.13</a></td>
    </tr>

    <tr>
      <td><code>deleted</code></td>
      <td>persistent class is soft-deleted</td>
      <td><a href="#14.1.14">14.1.14</a></td>
    </tr>

    <tr>
      <td><code>bulk</code></td>
      <td>enable bulk operations for a persistent class</td>
      <td><a href="#14.1.15">14.1.15</a></td>
    </tr>

  </table>

  <h3><a name="14.1.1">14.1.1 <code>table</code></a></h3>

  <p>The <code>table</code> specifier specifies the table name that should
     be used to store objects of the persistent class in a relational
     database. For example:</p>

  <pre class="cxx">
#pragma db object table("people")
class person
{
  ...
};
  </pre>

  <p>If the table name is not specified, the class name is used as the
     table name. The table name can be qualified with a database
     schema, for example:</p>

  <pre class="cxx">
#pragma db object table("census.people")
class person
{
  ...
};
  </pre>

  <p>For more information on database schemas and the format of the
     qualified names, refer to <a href="#14.1.8">Section 14.1.8,
     "<code>schema</code>"</a>.</p>

  <h3><a name="14.1.2">14.1.2 <code>pointer</code></a></h3>

  <p>The <code>pointer</code> specifier specifies the object pointer type
     for the persistent class. The object pointer type is used to return,
     pass, and cache dynamically allocated instances of a persistent
     class. For example:</p>

  <pre class="cxx">
#pragma db object pointer(std::tr1::shared_ptr&lt;person>)
class person
{
  ...
};
  </pre>

  <p>There are several ways to specify an object pointer with the
     <code>pointer</code> specifier. We can use a complete pointer
     type as shown in the example above. Alternatively, we can
     specify only the template name of a smart pointer in which
     case the ODB compiler will automatically append the class
     name as a template argument. The following example is therefore
     equivalent to the one above:</p>

  <pre class="cxx">
#pragma db object pointer(std::tr1::shared_ptr)
class person
{
  ...
};
  </pre>

  <p>If you would like to use the raw pointer as an object pointer,
     you can use <code>*</code> as a shortcut:</p>

  <pre class="cxx">
#pragma db object pointer(*) // Same as pointer(person*)
class person
{
  ...
};
  </pre>

  <p>If a pointer type is not explicitly specified, the default pointer,
     specified at the namespace level (<a href="#14.5.1">Section 14.5.1,
     "<code>pointer</code>"</a>) or with the <code>--default-pointer</code>
     ODB compiler option, is used. If neither of these two mechanisms is
     used to specify the pointer, then the raw pointer is used by default.</p>

  <p>For a more detailed discussion of object pointers, refer to
     <a href="#3.3">Section 3.3, "Object and View Pointers"</a>.</p>

  <h3><a name="14.1.3">14.1.3 <code>abstract</code></a></h3>

  <p>The <code>abstract</code> specifier specifies that the persistent class
     is abstract. An instance of an abstract class cannot be stored in
     the database and is normally used as a base for other persistent
     classes. For example:</p>

  <pre class="cxx">
#pragma db object abstract
class person
{
  ...
};

#pragma db object
class employee: public person
{
  ...
};

#pragma db object
class contractor: public person
{
  ...
};
  </pre>

  <p>Persistent classes with pure virtual functions are automatically
     treated as abstract by the ODB compiler. For a more detailed
     discussion of persistent class inheritance, refer to
     <a href="#8">Chapter 8, "Inheritance"</a>.</p>

  <h3><a name="14.1.4">14.1.4 <code>readonly</code></a></h3>

  <p>The <code>readonly</code> specifier specifies that the persistent class
     is read-only. The database state of read-only objects cannot be
     updated. In particular, this means that you cannot call the
     <code>database::update()</code> function (<a href="#3.10">Section 3.10,
     "Updating Persistent Objects"</a>) for such objects. For example:</p>

  <pre class="cxx">
#pragma db object readonly
class person
{
  ...
};
  </pre>

  <p>Read-only and read-write objects can derive from each other without
     any restrictions. When a read-only object derives from a read-write
     object, the resulting whole object is read-only, including the part
     corresponding to the read-write base. On the other hand, when a
     read-write object derives from a read-only object, all the data
     members that correspond to the read-only base are treated as
     read-only while the rest is treated as read-write.</p>

  <p>Note that it is also possible to declare individual data members
    (<a href="#14.4.12">Section 14.4.12, "<code>readonly</code>"</a>)
     as well as composite value types (<a href="#14.3.6">Section 14.3.6,
     "<code>readonly</code>"</a>) as read-only.</p>

  <h3><a name="14.1.5">14.1.5 <code>optimistic</code></a></h3>

  <p>The <code>optimistic</code> specifier specifies that the persistent class
     has the optimistic concurrency model. A class with the optimistic
     concurrency model must also specify the data member that is used to
     store the object version using the <code>version</code> pragma
     (<a href="#14.4.16">Section 14.4.16, "<code>version</code>"</a>).
     For example:</p>

  <pre class="cxx">
#pragma db object optimistic
class person
{
  ...

  #pragma db version
  unsigned long version_;
};
  </pre>

  <p>If a base class has the optimistic concurrency model, then all its derived
     classes will automatically have the optimistic concurrency model. The
     current implementation also requires that in any given inheritance
     hierarchy the object id and the version data members reside in the
     same class.</p>

  <p>For a more detailed discussion of optimistic concurrency, refer to
     <a href="#12">Chapter 12, "Optimistic Concurrency"</a>.</p>

  <h3><a name="14.1.6">14.1.6 <code>no_id</code></a></h3>

  <p>The <code>no_id</code> specifier specifies that the persistent class
     has no object id. For example:</p>

  <pre class="cxx">
#pragma db object no_id
class person
{
  ...
};
  </pre>

  <p>A persistent class without an object id has limited functionality.
     Such a class cannot be loaded with the <code>database::load()</code>
     or <code>database::find()</code> functions (<a href="#3.9">Section 3.9,
     "Loading Persistent Objects"</a>), updated with the
     <code>database::update()</code> function (<a href="#3.10">Section 3.10,
     "Updating Persistent Objects"</a>), or deleted with the
     <code>database::erase()</code> function (<a href="#3.11">Section 3.11,
     "Deleting Persistent Objects"</a>). To load and delete
     objects without ids you can use the <code>database::query()</code>
     (<a href="#4">Chapter 4, "Querying the Database"</a>) and
     <code>database::erase_query()</code> (<a href="#3.11">Section 3.11,
     "Deleting Persistent Objects"</a>) functions, respectively.
     There is no way to update such objects except by using native SQL
     statements (<a href="#3.12">Section 3.12, "Executing Native SQL
     Statements"</a>).</p>

  <p>Furthermore, persistent classes without object ids cannot have container
     data members nor can they be used in object relationships. Such objects
     are not entered into the session object cache
     (<a href="#11.1">Section 11.1, "Object Cache"</a>) either.</p>

  <p>To declare a persistent class with an object id, use the data member
     <code>id</code> specifier (<a href="#14.4.1">Section 14.4.1,
     "<code>id</code>"</a>).</p>

  <h3><a name="14.1.7">14.1.7 <code>callback</code></a></h3>

  <p>The <code>callback</code> specifier specifies the persist class
     member function that should be called before and after a
     database operation is performed on an object of this class.
     For example:</p>

  <pre class="cxx">
#include &lt;odb/callback.hxx>

#pragma db object callback(init)
class person
{
  ...

  void
  init (odb::callback_event, odb::database&amp;);
};
 </pre>

  <p>The callback function has the following signature and can be
     overloaded for constant objects:</p>

  <pre class="cxx">
void
name (odb::callback_event, odb::database&amp;);

void
name (odb::callback_event, odb::database&amp;) const;
  </pre>

  <p>The first argument to the callback function is the event that
     triggered this call. The <code>odb::callback_event</code>
     enum-like type is defined in the <code>&lt;odb/callback.hxx></code>
     header file and has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  struct callback_event
  {
    enum value
    {
      pre_persist,
      post_persist,
      pre_load,
      post_load,
      pre_update,
      post_update,
      pre_erase,
      post_erase
    };

    callback_event (value v);
    operator value () const;
  };
}
  </pre>

  <p>The second argument to the callback function is the database
     on which the operation is about to be performed or has just
     been performed. A callback function can be inline or virtual.</p>

  <p>The callback function for the <code>*_persist</code>,
     <code>*_update</code>, and <code>*_erase</code> events is always
     called on the constant object reference while for the <code>*_load</code>
     events &mdash; always on the unrestricted reference.</p>

  <p>If only the non-<code>const</code> version of the callback function
     is provided, then only the <code>*_load</code> events will be delivered.
     If only the <code>const</code> version is provided, then all the
     events will be delivered to this function. Finally, if both versions
     are provided, then the <code>*_load</code> events will be delivered
     to the non-<code>const</code> version while all others &mdash; to the
     <code>const</code> version. If you need to modify the object in one
     of the "<code>const</code>" events, then you can safely cast away
     <code>const</code>-ness using the <code>const_cast</code> operator if
     you know that none of the objects will be created const. Alternatively,
     if you cannot make this assumption, then you can declare the data
     members you wish to modify as <code>mutable</code>.</p>

  <p>A database operations callback can be used to implement object-specific
     pre and post initializations, registrations, and cleanups. As an example,
     the following code fragment outlines an implementation of a
     <code>person</code> class that maintains the transient <code>age</code>
     data member in addition to the persistent date of birth. A callback
     is used to calculate the value of the former from the latter every
     time a <code>person</code> object is loaded from the database.</p>

  <pre class="cxx">
#include &lt;odb/core.hxx>
#include &lt;odb/callback.hxx>

#pragma db object callback(init)
class person
{
  ...

private:
  friend class odb::access;

  date born_;

  #pragma db transient
  unsigned short age_;

  void
  init (odb::callback_event e, odb::database&amp;)
  {
    switch (e)
    {
    case odb::callback_event::post_load:
    {
      // Calculate age from the date of birth.
      ...
      break;
    }
    default:
      break;
    }
  }
};
 </pre>

  <h3><a name="14.1.8">14.1.8 <code>schema</code></a></h3>

  <p>The <code>schema</code> specifier specifies a database schema
     that should be used for the persistent class.</p>

  <p>In relational databases the term schema can refer to two related
     but ultimately different concepts. Normally it means a collection
     of tables, indexes, sequences, etc., that are created in the
     database or the actual DDL statements that create these
     database objects. Some database implementations support what
     would be more accurately called a <em>database namespace</em>
     but is also called a schema. In this sense, a schema is a
     separate namespace in which tables, indexes, sequences, etc.,
     can be created. For example, two tables that have the same
     name can coexist in the same database if they belong to
     different schemas. In this section when we talk about a
     schema, we refer to the <em>database namespace</em> meaning
     of this term. </p>

  <p>When schemas are in use, a database object name is qualified
     with a schema. For example:</p>

  <pre class="sql">
CREATE TABLE accounting.employee (...)

SELECT ... FROM accounting.employee WHERE ...
  </pre>

  <p>In the above example <code>accounting</code> is the schema
     and the <code>employee</code> table belongs to this
     schema.</p>

  <p>Not all database implementations support schemas. Some
     implementation that don't support schemas (for example,
     MySQL, SQLite) allow the use of the above syntax to specify
     the database name. Yet others may support several levels
     of qualification. For example, Microsoft SQL Server has
     three levels starting with the linked database server,
     followed by the database, and then followed by
     the schema:
     <code>server1.company1.accounting.employee</code>.
     While the actual meaning of the qualifier in a qualified name
     vary from one database implementation to another, here we
     refer to all of them collectively as a schema.</p>

  <p>In ODB, a schema for a table of a persistent class can be
     specified at the class level, C++ namespace level, or the
     file level. To assign a schema to a specific persistent class
     we can use the <code>schema</code> specifier, for example:</p>

  <pre class="cxx">
#pragma db object schema("accounting")
class employee
{
  ...
};
  </pre>

  <p>If we are also assigning a table name, then we can use
     a shorter notation by specifying both the schema and
     the table name in the <code>table</code> specifier:</p>

  <pre class="cxx">
#pragma db object table("accounting.employee")
class employee
{
  ...
};
  </pre>

  <p>If we want to assign a schema to all the persistent classes
     in a C++ namespace, then, instead of specifying the schema
     for each class, we can specify it once at the C++ namespace level.
     For example:</p>

  <pre class="cxx">
#pragma db namespace schema("accounting")
namespace accounting
{
  #pragma db object
  class employee
  {
    ...
  };

  #pragma db object
  class employer
  {
    ...
  };
}
  </pre>

  <p>If we want to assign a schema to all the persistent classes in
     a file, then we can use the <code>--schema</code> ODB compiler
     option. For example:</p>

  <pre class="terminal">
odb ... --schema accounting ...
  </pre>

  <p>An alternative to this approach with the same effect is to
     assign a schema to the global namespace:</p>

  <pre class="cxx">
#pragma db namespace() schema("accounting")
  </pre>

  <p>By default schema qualifications are accumulated starting from
     the persistent class, continuing with the namespace hierarchy
     to which this class belongs, and finishing with the schema
     specified with the <code>--schema</code> option. For
     example:</p>

  <pre class="cxx">
#pragma db namespace schema("audit_db")
namespace audit
{
  #pragma db namespace schema("accounting")
  namespace accounting
  {
    #pragma db object
    class employee
    {
      ...
    };
  }
}
  </pre>

  <p>If we compile the above code fragment with the
     <code>--schema&nbsp;server1</code> option, then the
     <code>employee</code> table will have the
     <code>server1.audit_db.accounting.employee</code> qualified
     name.</p>

  <p>In some situations we may want to prevent such accumulation
     of the qualifications. To accomplish this we can use the
     so-called fully-qualified names, which have the empty leading
     name component. This is analogous to the C++ fully-qualified
     names in the <code>::accounting::employee</code> form. For
     example:</p>

  <pre class="cxx">
#pragma db namespace schema("accounting")
namespace accounting
{
  #pragma db object schema(".hr")
  class employee
  {
    ...
  };

  #pragma db object
  class employer
  {
    ...
  };
}
  </pre>

  <p>In the above code fragment, the <code>employee</code> table will
     have the <code>hr.employee</code> qualified name while the
     <code>employer</code> &mdash; <code>accounting.employer</code>.
     Note also that the empty leading name component is a special
     ODB syntax and is not propagated to the actual database names
     (using a name like <code>.hr.employee</code> to refer to a table
     will most likely result in an error).</p>

  <p>Auxiliary database objects for a persistent class, such as indexes,
     sequences, triggers, etc., are all created in the same schema
     as the class table. By default, this is also true for the
     container tables. However, if you need to store a container
     table in a different schema, then you can provide a qualified
     name using the <code>table</code> specifier, for example:</p>

  <pre class="cxx">
#pragma db object table("accounting.employee")
class employee
{
  ...

  #pragma db object table("operations.projects")
  std::vector&lt;std::string> projects_;
};
  </pre>

  <p>The standard syntax for qualified names used in the
     <code>schema</code> and <code>table</code> specifiers as well
     as the view <code>column</code> specifier (<a href="#14.4.10">Section
     14.4.10, "<code>column</code> (view)"</a>) has the
     <code>"</code><i>name</i><code>.</code><i>name</i>...<code>"</code>
     form where, as discussed above, the leading name component
     can be empty to denote a fully qualified name. This form, however,
     doesn't work if one of the name components contains periods. To
     support such cases the alternative form is available:
     <code>"</code><i>name</i><code>"."</code><i>name</i><code>"</code>...
     For example:</p>

  <pre class="cxx">
#pragma db object table("accounting_1.2"."employee")
class employee
{
  ...
};
  </pre>

  <p>Finally, to specify an unqualified name that contains periods
     we can use the following special syntax:</p>

  <pre class="cxx">
#pragma db object schema(."accounting_1.2") table("employee")
class employee
{
  ...
};
  </pre>

  <p>Table prefixes (<a href="#14.5.2">Section 14.5.2, "<code>table</code>"</a>)
     can be used as an alternative to database schemas if the target
     database system does not support schemas.</p>

  <h3><a name="14.1.9">14.1.9 <code>polymorphic</code></a></h3>

  <p>The <code>polymorphic</code> specifier specifies that the persistent
     class is polymorphic. For more information on polymorphism support,
     refer to <a href="#8">Chapter 8, "Inheritance"</a>.</p>

  <h3><a name="14.1.10">14.1.10 <code>session</code></a></h3>

  <p>The <code>session</code> specifier specifies whether to enable
     session support for the persistent class. For example:</p>

  <pre class="cxx">
#pragma db object session        // Enable.
class person
{
  ...
};

#pragma db object session(true)  // Enable.
class employee
{
  ...
};

#pragma db object session(false) // Disable.
class employer
{
  ...
};
  </pre>

  <p>Session support is disabled by default unless the
     <code>--generate-session</code> ODB compiler option is specified
     or session support is enabled at the namespace level
     (<a href="#14.5.4">Section 14.5.4, "<code>session</code>"</a>).
     For more information on sessions, refer to <a href="#11">Chapter
     11, "Session"</a>.</p>

  <h3><a name="14.1.11">14.1.11 <code>definition</code></a></h3>

  <p>The <code>definition</code> specifier specifies an alternative
     <em>definition location</em> for the persistent class. By
     default, the ODB compiler generates the database support code for
     a persistent class when we compile the header file that
     defines this class. However, if the  <code>definition</code>
     specifier is used, then the ODB compiler will instead generate
     the database support code when we compile the header file
     containing this pragma.</p>

  <p>For more information on this functionality, refer to
     <a href="#14.3.7">Section 14.3.7, "<code>definition</code>"</a>.</p>

  <h3><a name="14.1.12">14.1.12 <code>transient</code></a></h3>

  <p>The <code>transient</code> specifier instructs the ODB compiler to
     treat all non-virtual data members in the persistent class as transient
     (<a href="#14.4.1">Section 14.4.1, "<code>transient</code>"</a>).
     This specifier is primarily useful when declaring virtual data
     members, as discussed in <a href="#14.4.13">Section 14.4.13,
     "<code>virtual</code>"</a>.</p>

  <h3><a name="14.1.13">14.1.13 <code>sectionable</code></a></h3>

  <p>The <code>sectionable</code> specifier instructs the ODB compiler
     to generate support for the addition of new object sections in
     derived classes in a hierarchy with the optimistic concurrency
     model. For more information on this functionality, refer to
     <a href="#9.2">Section 9.2, "Sections and Optimistic
     Concurrency"</a>.</p>

  <h3><a name="14.1.14">14.1.14 <code>deleted</code></a></h3>

  <p>The <code>deleted</code> specifier marks the persistent class as
     soft-deleted. The single required argument to this specifier is
     the deletion version. For more information on this functionality,
     refer to <a href="#13.4">Section 13.4, "Soft Object Model
     Changes"</a>.</p>

  <h3><a name="14.1.15">14.1.15 <code>bulk</code></a></h3>

  <p>The <code>bulk</code> specifier enables bulk operation support for
     the persistent class. The single required argument to this specifier
     is the batch size. For more information on this functionality, refer
     to <a href="#15.3">Section 15.3, "Bulk Database Operations"</a>.</p>

  <h2><a name="14.2">14.2 View Type Pragmas</a></h2>

  <p>A pragma with the <code>view</code> qualifier declares a C++ class
     as a view type. The qualifier can be optionally followed,
     in any order, by one or more specifiers summarized in the
     table below:</p>

  <!-- border="1" is necessary for html2ps -->
  <table class="specifiers" border="1">
    <tr>
      <th>Specifier</th>
      <th>Summary</th>
      <th>Section</th>
    </tr>

    <tr>
      <td><code>object</code></td>
      <td>object associated with a view</td>
      <td><a href="#14.2.1">14.2.1</a></td>
    </tr>

    <tr>
      <td><code>table</code></td>
      <td>table associated with a view</td>
      <td><a href="#14.2.2">14.2.2</a></td>
    </tr>

    <tr>
      <td><code>query</code></td>
      <td>view query condition</td>
      <td><a href="#14.2.3">14.2.3</a></td>
    </tr>

    <tr>
      <td><code>pointer</code></td>
      <td>pointer type for a view</td>
      <td><a href="#14.2.4">14.2.4</a></td>
    </tr>

    <tr>
      <td><code>callback</code></td>
      <td>database operations callback</td>
      <td><a href="#14.2.5">14.2.5</a></td>
    </tr>

    <tr>
      <td><code>definition</code></td>
      <td>definition location for a view</td>
      <td><a href="#14.2.6">14.2.6</a></td>
    </tr>

    <tr>
      <td><code>transient</code></td>
      <td>all non-virtual data members in a view are transient</td>
      <td><a href="#14.2.7">14.2.7</a></td>
    </tr>

  </table>

  <p>For more information on view types refer to <a href="#10"> Chapter 10,
     "Views"</a>.</p>

  <h3><a name="14.2.1">14.2.1 <code>object</code></a></h3>

  <p>The <code>object</code> specifier specifies a persistent class
     that should be associated with the view. For more information
     on object associations refer to <a href="#10.1">Section 10.1, "Object
     Views"</a>.</p>

  <h3><a name="14.2.2">14.2.2 <code>table</code></a></h3>

  <p>The <code>table</code> specifier specifies a database table
     that should be associated with the view. For more information
     on table associations refer to <a href="#10.3">Section 10.3, "Table
     Views"</a>.</p>

  <h3><a name="14.2.3">14.2.3 <code>query</code></a></h3>

  <p>The <code>query</code> specifier specifies a query condition
     and, optionally, result modifiers for an object or table view
     or a native SQL query for a native view. An empty <code>query</code>
     specifier indicates that a native SQL query is provided at runtime.
     For more information on query conditions refer to
     <a href="#10.5">Section 10.5, "View Query Conditions"</a>. For
     more information on native SQL queries, refer to
     <a href="#10.6">Section 10.6, "Native Views"</a>.</p>

  <h3><a name="14.2.4">14.2.4 <code>pointer</code></a></h3>

  <p>The <code>pointer</code> specifier specifies the view pointer type
     for the view class. Similar to objects, the view pointer type is used
     to return dynamically allocated instances of a view class. The
     semantics of the <code>pointer</code> specifier for a view are the
     same as those of the <code>pointer</code> specifier for an object
     (<a href="#14.1.2">Section 14.1.2, "<code>pointer</code>"</a>).</p>

  <h3><a name="14.2.5">14.2.5 <code>callback</code></a></h3>

  <p>The <code>callback</code> specifier specifies the view class
     member function that should be called before and after an
     instance of this view class is created as part of the query
     result iteration. The semantics of the <code>callback</code>
     specifier for a view are similar to those of the
     <code>callback</code> specifier for an object
     (<a href="#14.1.7">Section 14.1.7, "<code>callback</code>"</a>)
     except that the only events that can trigger a callback
     call in the case of a view are <code>pre_load</code> and
     <code>post_load</code>.</p>

  <h3><a name="14.2.6">14.2.6 <code>definition</code></a></h3>

  <p>The <code>definition</code> specifier specifies an alternative
     <em>definition location</em> for the view class. By
     default, the ODB compiler generates the database support code for
     a view class when we compile the header file that
     defines this class. However, if the  <code>definition</code>
     specifier is used, then the ODB compiler will instead generate
     the database support code when we compile the header file
     containing this pragma.</p>

  <p>For more information on this functionality, refer to
     <a href="#14.3.7">Section 14.3.7, "<code>definition</code>"</a>.</p>

  <h3><a name="14.2.7">14.2.7 <code>transient</code></a></h3>

  <p>The <code>transient</code> specifier instructs the ODB compiler
     to treat all non-virtual data members in the view class as transient
     (<a href="#14.4.1">Section 14.4.1, "<code>transient</code>"</a>).
     This specifier is primarily useful when declaring virtual data
     members, as discussed in <a href="#14.4.13">Section 14.4.13,
     "<code>virtual</code>"</a>.</p>

  <h2><a name="14.3">14.3 Value Type Pragmas</a></h2>

  <p>A pragma with the <code>value</code> qualifier describes a value
     type. It can be optionally followed, in any order, by one or more
     specifiers summarized in the table below:</p>

  <!-- border="1" is necessary for html2ps -->
  <table class="specifiers" border="1">
    <tr>
      <th>Specifier</th>
      <th>Summary</th>
      <th>Section</th>
    </tr>

    <tr>
      <td><code>type</code></td>
      <td>database type for a value type</td>
      <td><a href="#14.3.1">14.3.1</a></td>
    </tr>

    <tr>
      <td><code>id_type</code></td>
      <td>database type for a value type when used as an object id</td>
      <td><a href="#14.3.2">14.3.2</a></td>
    </tr>

    <tr>
      <td><code>null</code>/<code>not_null</code></td>
      <td>type can/cannot be <code>NULL</code></td>
      <td><a href="#14.3.3">14.3.3</a></td>
    </tr>

    <tr>
      <td><code>default</code></td>
      <td>default value for a value type</td>
      <td><a href="#14.3.4">14.3.4</a></td>
    </tr>

    <tr>
      <td><code>options</code></td>
      <td>database options for a value type</td>
      <td><a href="#14.3.5">14.3.5</a></td>
    </tr>

    <tr>
      <td><code>readonly</code></td>
      <td>composite value type is read-only</td>
      <td><a href="#14.3.6">14.3.6</a></td>
    </tr>

    <tr>
      <td><code>definition</code></td>
      <td>definition location for a composite value type</td>
      <td><a href="#14.3.7">14.3.7</a></td>
    </tr>

    <tr>
      <td><code>transient</code></td>
      <td>all non-virtual data members in a composite value are transient</td>
      <td><a href="#14.3.8">14.3.8</a></td>
    </tr>

    <tr>
      <td><code>unordered</code></td>
      <td>ordered container should be stored unordered</td>
      <td><a href="#14.3.9">14.3.9</a></td>
    </tr>

    <tr>
      <td><code>index_type</code></td>
      <td>database type for a container's index type</td>
      <td><a href="#14.3.10">14.3.10</a></td>
    </tr>

    <tr>
      <td><code>key_type</code></td>
      <td>database type for a container's key type</td>
      <td><a href="#14.3.11">14.3.11</a></td>
    </tr>

    <tr>
      <td><code>value_type</code></td>
      <td>database type for a container's value type</td>
      <td><a href="#14.3.12">14.3.12</a></td>
    </tr>

    <tr>
      <td><code>value_null</code>/<code>value_not_null</code></td>
      <td>container's value can/cannot be <code>NULL</code></td>
      <td><a href="#14.3.13">14.3.13</a></td>
    </tr>

    <tr>
      <td><code>id_options</code></td>
      <td>database options for a container's id column</td>
      <td><a href="#14.3.14">14.3.14</a></td>
    </tr>

    <tr>
      <td><code>index_options</code></td>
      <td>database options for a container's index column</td>
      <td><a href="#14.3.15">14.3.15</a></td>
    </tr>

    <tr>
      <td><code>key_options</code></td>
      <td>database options for a container's key column</td>
      <td><a href="#14.3.16">14.3.16</a></td>
    </tr>

    <tr>
      <td><code>value_options</code></td>
      <td>database options for a container's value column</td>
      <td><a href="#14.3.17">14.3.17</a></td>
    </tr>

    <tr>
      <td><code>id_column</code></td>
      <td>column name for a container's object id</td>
      <td><a href="#14.3.18">14.3.18</a></td>
    </tr>

    <tr>
      <td><code>index_column</code></td>
      <td>column name for a container's index</td>
      <td><a href="#14.3.19">14.3.19</a></td>
    </tr>

    <tr>
      <td><code>key_column</code></td>
      <td>column name for a container's key</td>
      <td><a href="#14.3.20">14.3.20</a></td>
    </tr>

    <tr>
      <td><code>value_column</code></td>
      <td>column name for a container's value</td>
      <td><a href="#14.3.21">14.3.21</a></td>
    </tr>

  </table>

  <p>Many of the value type specifiers have corresponding member type
     specifiers with the same names (<a href="#14.4">Section 14.4,
     "Data Member Pragmas"</a>). The behavior of such specifiers
     for members is similar to that for value types. The only difference
     is the scope. A particular value type specifier applies to all the
     members of this value type that don't have a pre-member version
     of the specifier, while the member specifier always applies only
     to a single member. Also, with a few exceptions, member specifiers
     take precedence over and override parameters specified with value
     specifiers.</p>

  <h3><a name="14.3.1">14.3.1 <code>type</code></a></h3>

  <p>The <code>type</code> specifier specifies the native database type
     that should be used for data members of this type. For example:</p>

  <pre class="cxx">
#pragma db value(bool) type("INT")

#pragma db object
class person
{
  ...

  bool married_; // Mapped to INT NOT NULL database type.
};
  </pre>

  <p>The ODB compiler provides the default mapping between common C++
     types, such as <code>bool</code>, <code>int</code>, and
     <code>std::string</code> and the database types for each supported
     database system. For more information on the default mapping,
     refer to <a href="#II">Part II, "Database Systems"</a>. The
     <code>null</code> and <code>not_null</code> (<a href="#14.3.3">Section
     14.3.3, "<code>null</code>/<code>not_null</code>"</a>) specifiers
     can be used to control the <code>NULL</code> semantics of a type.</p>

  <p>In the above example we changed the mapping for the <code>bool</code>
     type which is now mapped to the <code>INT</code> database type. In
     this case, the <code>value</code> pragma is all that is necessary
     since the ODB compiler will be able to figure out how to store
     a boolean value as an integer in the database. However, there
     could be situations where the ODB compiler will not know how to
     handle the conversion between the C++ and database representations
     of a value. Consider, as an example, a situation where the
     boolean value is stored in the database as a string:</p>

  <pre class="cxx">
#pragma db value(bool) type("VARCHAR(5)")
  </pre>

  <p>The possible database values for the C++ <code>true</code> value could
     be <code>"true"</code>, or <code>"TRUE"</code>, or <code>"True"</code>.
     Or, maybe, all of the above could be valid. The ODB compiler has no way
     of knowing how your application wants to convert <code>bool</code>
     to a string and back. To support such custom value type mappings,
     ODB allows you to provide your own database conversion functions
     by specializing the <code>value_traits</code> class template. The
     <code>mapping</code> example in the <code>odb-examples</code>
     package shows how to do this for all the supported database systems.</p>

  <h3><a name="14.3.2">14.3.2 <code>id_type</code></a></h3>

  <p>The <code>id_type</code> specifier specifies the native database type
     that should be used for data members of this type that are designated as
     object identifiers (<a href="#14.4.1">Section 14.4.1,
     "<code>id</code>"</a>). In combination with the <code>type</code>
     specifier (<a href="#14.3.1">Section 14.3.1, "<code>type</code>"</a>)
     <code>id_type</code> allows you to map a C++ type differently depending
     on whether it is used in an ordinary member or an object id. For
     example:</p>

  <pre class="cxx">
#pragma db value(std::string) type("TEXT") id_type("VARCHAR(128)")

#pragma db object
class person
{
  ...

  #pragma db id
  std::string email_; // Mapped to VARCHAR(128) NOT NULL.

  std::string name_;  // Mapped to TEXT NOT NULL.
};
  </pre>

  <p>Note that there is no corresponding member type specifier for
     <code>id_type</code> since the desired result can be achieved
     with just the <code>type</code> specifier, for example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db id type("VARCHAR(128)")
  std::string email_;
};
  </pre>

  <h3><a name="14.3.3">14.3.3 <code>null</code>/<code>not_null</code></a></h3>

  <p>The <code>null</code> and <code>not_null</code> specifiers specify that
     a value type or object pointer can or cannot be <code>NULL</code>,
     respectively. By default, value types are assumed not to allow
     <code>NULL</code> values while object pointers are assumed to
     allow <code>NULL</code> values. Data members of types that allow
     <code>NULL</code> values are mapped in a relational database to
     columns that allow <code>NULL</code> values. For example:</p>

  <pre class="cxx">
using std::tr1::shared_ptr;

typedef shared_ptr&lt;std::string> string_ptr;
#pragma db value(string_ptr) type("TEXT") null

#pragma db object
class person
{
  ...

  string_ptr name_; // Mapped to TEXT NULL.
};

typedef shared_ptr&lt;person> person_ptr;
#pragma db value(person_ptr) not_null
  </pre>

  <p>The <code>NULL</code> semantics can also be specified on the
     per-member basis (<a href="#14.4.6">Section 14.4.6,
     "<code>null</code>/<code>not_null</code>"</a>). If both a type and
     a member have <code>null</code>/<code>not_null</code> specifiers,
     then the member specifier takes precedence. If a member specifier
     relaxes the <code>NULL</code> semantics (that is, if a member has
     the <code>null</code> specifier and the type has the explicit
     <code>not_null</code> specifier), then a warning is issued.</p>

  <p>It is also possible to override a previously specified
     <code>null</code>/<code>not_null</code> specifier. This is
     primarily useful if a third-party type, for example,
     one provided by a profile library (<a href="#III">Part III,
     "Profiles"</a>), allows <code>NULL</code> values but in your
     object model data members of this type should never be
     <code>NULL</code>. In this case you can use the <code>not_null</code>
     specifier to disable <code>NULL</code> values for this type for the
     entire translation unit. For example:</p>

  <pre class="cxx">
// By default, null_string allows NULL values.
//
#include &lt;null-string.hxx>

// Disable NULL values for all the null_string data members.
//
#pragma db value(null_string) not_null
  </pre>

  <p>For a more detailed discussion of the <code>NULL</code> semantics
     for values, refer to <a href="#7.3">Section 7.3, "Pointers and
     <code>NULL</code> Value Semantics"</a>. For a more detailed
     discussion of the <code>NULL</code> semantics for object pointers,
     refer to <a href="#6">Chapter 6, "Relationships"</a>.</p>

  <h3><a name="14.3.4">14.3.4 <code>default</code></a></h3>

  <p>The <code>default</code> specifier specifies the database default value
     that should be used for data members of this type. For example:</p>

  <pre class="cxx">
#pragma db value(std::string) default("")

#pragma db object
class person
{
  ...

  std::string name_; // Mapped to TEXT NOT NULL DEFAULT ''.
};
  </pre>

  <p>The semantics of the <code>default</code> specifier for a value type
     are similar to those of the <code>default</code> specifier for a
     data member (<a href="#14.4.7">Section 14.4.7,
     "<code>default</code>"</a>).</p>

  <h3><a name="14.3.5">14.3.5 <code>options</code></a></h3>

  <p>The <code>options</code> specifier specifies additional column
     definition options that should be used for data members of this
     type. For example:</p>

  <pre class="cxx">
#pragma db value(std::string) options("COLLATE binary")

#pragma db object
class person
{
  ...

  std::string name_; // Mapped to TEXT NOT NULL COLLATE binary.
};
  </pre>

  <p>The semantics of the <code>options</code> specifier for a value type
     are similar to those of the <code>options</code> specifier for a
     data member (<a href="#14.4.8">Section 14.4.8,
     "<code>options</code>"</a>).</p>

  <h3><a name="14.3.6">14.3.6 <code>readonly</code></a></h3>

  <p>The <code>readonly</code> specifier specifies that the composite
     value type is read-only. Changes to data members of a read-only
     composite value type are ignored when updating the database
     state of an object (<a href="#3.10">Section 3.10, "Updating Persistent
     Objects"</a>) containing such a value type. Note that this specifier
     is only valid for composite value types. For example:</p>

  <pre class="cxx">
#pragma db value readonly
class person_name
{
  ...
};
  </pre>

  <p>Read-only and read-write composite values can derive from each other
     without any restrictions. When a read-only value derives from a
     read-write value, the resulting whole value is read-only, including
     the part corresponding to the read-write base. On the other hand, when a
     read-write value derives from a read-only value, all the data
     members that correspond to the read-only base are treated as
     read-only while the rest is treated as read-write.</p>

  <p>Note that it is also possible to declare individual data members
     (<a href="#14.4.12">Section 14.4.12, "<code>readonly</code>"</a>)
     as well as whole objects (<a href="#14.1.4">Section 14.1.4,
     "<code>readonly</code>"</a>) as read-only.</p>

  <h3><a name="14.3.7">14.3.7 <code>definition</code></a></h3>

  <p>The <code>definition</code> specifier specifies an alternative
     <em>definition location</em> for the composite value type. By
     default, the ODB compiler generates the database support code for
     a composite value type when we compile the header file that
     defines this value type. However, if the  <code>definition</code>
     specifier is used, then the ODB compiler will instead generate
     the database support code when we compile the header file containing
     this pragma.</p>

  <p>This mechanism is primarily useful for converting third-party
     types to ODB composite value types. In such cases we normally
     cannot modify the header files to add the necessary pragmas.
     It is also often inconvenient to compile these header files
     with the ODB compiler. With the <code>definition</code>
     specifier we can create a <em>wrapper header</em> that contains
     the necessary pragmas and instructs the ODB compiler to generate
     the database support code for a third-party type when we compile
     the wrapper header. As an example, consider <code>struct timeval</code>
     that is defined in the <code>&lt;sys/time.h></code> system header.
     This type has the following (or similar) definition:</p>

  <pre class="cxx">
struct timeval
{
  long tv_sec;
  long tv_usec;
};
  </pre>

  <p>If we would like to make this type an ODB composite value type,
     then we can create a wrapper header, for example
     <code>time-mapping.hxx</code>, with the following content:</p>

  <pre class="cxx">
#ifndef TIME_MAPPING_HXX
#define TIME_MAPPING_HXX

#include &lt;sys/time.h>

#pragma db value(timeval) definition
#pragma db member(timeval::tv_sec) column("sec")
#pragma db member(timeval::tv_usec) column("usec")

#endif // TIME_MAPPING_HXX
  </pre>

  <p>If we now compile this header with the ODB compiler, the
     resulting <code>time-mapping-odb.?xx</code> files will
     contain the database support code for <code>struct timeval</code>.
     To use <code>timeval</code> in our persistent classes, we simply
     include the <code>time-mapping.hxx</code> header:</p>

  <pre class="cxx">
#include &lt;sys/time.h>
#include "time-mapping.hxx"

#pragma db object
class object
{
  timeval timestamp;
};
  </pre>

  <h3><a name="14.3.8">14.3.8 <code>transient</code></a></h3>

  <p>The <code>transient</code> specifier instructs the ODB compiler
     to treat all non-virtual data members in the composite value type
     as transient (<a href="#14.4.1">Section 14.4.1,
     "<code>transient</code>"</a>). This specifier is primarily useful
     when declaring virtual data members, as discussed in
     <a href="#14.4.13">Section 14.4.13, "<code>virtual</code>"</a>.</p>

  <h3><a name="14.3.9">14.3.9 <code>unordered</code></a></h3>

  <p>The <code>unordered</code> specifier specifies that the ordered
     container should be stored unordered in the database. The database
     table for such a container will not contain the index column
     and the order in which elements are retrieved from the database may
     not be the same as the order in which they were stored. For example:</p>

  <pre class="cxx">
typedef std::vector&lt;std::string> names;
#pragma db value(names) unordered
  </pre>

  <p>For a more detailed discussion of ordered containers and their
     storage in the database, refer to <a href="#5.1">Section 5.1,
     "Ordered Containers"</a>.</p>

  <h3><a name="14.3.10">14.3.10 <code>index_type</code></a></h3>

  <p>The <code>index_type</code> specifier specifies the native
     database type that should be used for the ordered container's
     index column. The semantics of <code>index_type</code>
     are similar to those of the <code>type</code> specifier
     (<a href="#14.3.1">Section 14.3.1, "<code>type</code>"</a>). The native
     database type is expected to be an integer type. For example:</p>

  <pre class="cxx">
typedef std::vector&lt;std::string> names;
#pragma db value(names) index_type("SMALLINT UNSIGNED")
  </pre>

  <h3><a name="14.3.11">14.3.11 <code>key_type</code></a></h3>

  <p>The <code>key_type</code> specifier specifies the native
     database type that should be used for the map container's
     key column. The semantics of <code>key_type</code>
     are similar to those of the <code>type</code> specifier
     (<a href="#14.3.1">Section 14.3.1, "<code>type</code>"</a>). For
     example:</p>

  <pre class="cxx">
typedef std::map&lt;unsigned short, float> age_weight_map;
#pragma db value(age_weight_map) key_type("INT UNSIGNED")
  </pre>

  <h3><a name="14.3.12">14.3.12 <code>value_type</code></a></h3>

  <p>The <code>value_type</code> specifier specifies the native
     database type that should be used for the container's
     value column. The semantics of <code>value_type</code>
     are similar to those of the <code>type</code> specifier
     (<a href="#14.3.1">Section 14.3.1, "<code>type</code>"</a>). For
     example:</p>

  <pre class="cxx">
typedef std::vector&lt;std::string> names;
#pragma db value(names) value_type("VARCHAR(255)")
  </pre>

  <p>The <code>value_null</code> and <code>value_not_null</code>
     (<a href="#14.3.13">Section 14.3.13,
     "<code>value_null</code>/<code>value_not_null</code>"</a>) specifiers
     can be used to control the <code>NULL</code> semantics of a value
     column.</p>

  <h3><a name="14.3.13">14.3.13 <code>value_null</code>/<code>value_not_null</code></a></h3>

  <p>The <code>value_null</code> and <code>value_not_null</code> specifiers
     specify that the container type's element value can or cannot be
     <code>NULL</code>, respectively. The semantics of <code>value_null</code>
     and <code>value_not_null</code> are similar to those of the
     <code>null</code> and <code>not_null</code> specifiers
     (<a href="#14.3.3">Section 14.3.3, "<code>null</code>/<code>not_null</code>"</a>).
     For example:</p>

  <pre class="cxx">
using std::tr1::shared_ptr;

#pragma db object
class account
{
  ...
};

typedef std::vector&lt;shared_ptr&lt;account> > accounts;
#pragma db value(accounts) value_not_null
  </pre>

  <p>For set and multiset containers (<a href="#5.2">Section 5.2, "Set and
     Multiset Containers"</a>) the element value is automatically treated
     as not allowing a <code>NULL</code> value.</p>


  <h3><a name="14.3.14">14.3.14 <code>id_options</code></a></h3>

  <p>The <code>id_options</code> specifier specifies additional
     column definition options that should be used for the container's
     id column. For example:</p>

  <pre class="cxx">
typedef std::vector&lt;std::string> nicknames;
#pragma db value(nicknames) id_options("COLLATE binary")
  </pre>

  <p>The semantics of the <code>id_options</code> specifier for a container
     type are similar to those of the <code>id_options</code> specifier for
     a container data member (<a href="#14.4.29">Section 14.4.29,
     "<code>id_options</code>"</a>).</p>


  <h3><a name="14.3.15">14.3.15 <code>index_options</code></a></h3>

  <p>The <code>index_options</code> specifier specifies additional
     column definition options that should be used for the container's
     index column. For example:</p>

  <pre class="cxx">
typedef std::vector&lt;std::string> nicknames;
#pragma db value(nicknames) index_options("ZEROFILL")
  </pre>

  <p>The semantics of the <code>index_options</code> specifier for a container
     type are similar to those of the <code>index_options</code> specifier for
     a container data member (<a href="#14.4.30">Section 14.4.30,
     "<code>index_options</code>"</a>).</p>


  <h3><a name="14.3.16">14.3.16 <code>key_options</code></a></h3>

  <p>The <code>key_options</code> specifier specifies additional
     column definition options that should be used for the container's
     key column. For example:</p>

  <pre class="cxx">
typedef std::map&lt;std::string, std::string> properties;
#pragma db value(properties) key_options("COLLATE binary")
  </pre>

  <p>The semantics of the <code>key_options</code> specifier for a container
     type are similar to those of the <code>key_options</code> specifier for
     a container data member (<a href="#14.4.31">Section 14.4.31,
     "<code>key_options</code>"</a>).</p>


  <h3><a name="14.3.17">14.3.17 <code>value_options</code></a></h3>

  <p>The <code>value_options</code> specifier specifies additional
     column definition options that should be used for the container's
     value column. For example:</p>

  <pre class="cxx">
typedef std::set&lt;std::string> nicknames;
#pragma db value(nicknames) value_options("COLLATE binary")
  </pre>

  <p>The semantics of the <code>value_options</code> specifier for a container
     type are similar to those of the <code>value_options</code> specifier for
     a container data member (<a href="#14.4.32">Section 14.4.32,
     "<code>value_options</code>"</a>).</p>


  <h3><a name="14.3.18">14.3.18 <code>id_column</code></a></h3>

  <p>The <code>id_column</code> specifier specifies the column
     name that should be used to store the object id in the
     container's table. For example:</p>

  <pre class="cxx">
typedef std::vector&lt;std::string> names;
#pragma db value(names) id_column("id")
  </pre>

  <p>If the column name is not specified, then <code>object_id</code>
     is used by default.</p>

  <h3><a name="14.3.19">14.3.19 <code>index_column</code></a></h3>

  <p>The <code>index_column</code> specifier specifies the column
     name that should be used to store the element index in the
     ordered container's table. For example:</p>

  <pre class="cxx">
typedef std::vector&lt;std::string> names;
#pragma db value(names) index_column("name_number")
  </pre>

  <p>If the column name is not specified, then <code>index</code>
     is used by default.</p>

  <h3><a name="14.3.20">14.3.20 <code>key_column</code></a></h3>

  <p>The <code>key_column</code> specifier specifies the column
     name that should be used to store the key in the map
     container's table. For example:</p>

  <pre class="cxx">
typedef std::map&lt;unsigned short, float> age_weight_map;
#pragma db value(age_weight_map) key_column("age")
  </pre>

  <p>If the column name is not specified, then <code>key</code>
     is used by default.</p>

  <h3><a name="14.3.21">14.3.21 <code>value_column</code></a></h3>

  <p>The <code>value_column</code> specifier specifies the column
     name that should be used to store the element value in the
     container's table. For example:</p>

  <pre class="cxx">
typedef std::map&lt;unsigned short, float> age_weight_map;
#pragma db value(age_weight_map) value_column("weight")
  </pre>

  <p>If the column name is not specified, then <code>value</code>
     is used by default.</p>

  <!-- Data Member Pragmas -->


  <h2><a name="14.4">14.4 Data Member Pragmas</a></h2>

  <p>A pragma with the <code>member</code> qualifier or a positioned
     pragma without a qualifier describes a data member. It can
     be optionally followed, in any order, by one or more specifiers
     summarized in the table below:</p>

  <!-- border="1" is necessary for html2ps -->
  <table class="specifiers" border="1">
    <tr>
      <th>Specifier</th>
      <th>Summary</th>
      <th>Section</th>
    </tr>

    <tr>
      <td><code>id</code></td>
      <td>member is an object id</td>
      <td><a href="#14.4.1">14.4.1</a></td>
    </tr>

    <tr>
      <td><code>auto</code></td>
      <td>id is assigned by the database</td>
      <td><a href="#14.4.2">14.4.2</a></td>
    </tr>

    <tr>
      <td><code>type</code></td>
      <td>database type for a member</td>
      <td><a href="#14.4.3">14.4.3</a></td>
    </tr>

    <tr>
      <td><code>id_type</code></td>
      <td>database type for a member when used as an object id</td>
      <td><a href="#14.4.4">14.4.4</a></td>
    </tr>

    <tr>
      <td><code>get</code>/<code>set</code>/<code>access</code></td>
      <td>member accessor/modifier expressions</td>
      <td><a href="#14.4.5">14.4.5</a></td>
    </tr>

    <tr>
      <td><code>null</code>/<code>not_null</code></td>
      <td>member can/cannot be <code>NULL</code></td>
      <td><a href="#14.4.6">14.4.6</a></td>
    </tr>

    <tr>
      <td><code>default</code></td>
      <td>default value for a member</td>
      <td><a href="#14.4.7">14.4.7</a></td>
    </tr>

    <tr>
      <td><code>options</code></td>
      <td>database options for a member</td>
      <td><a href="#14.4.8">14.4.8</a></td>
    </tr>

    <tr>
      <td><code>column</code></td>
      <td>column name for a member of an object or composite value</td>
      <td><a href="#14.4.9">14.4.9</a></td>
    </tr>

    <tr>
      <td><code>column</code></td>
      <td>column name for a member of a view</td>
      <td><a href="#14.4.10">14.4.10</a></td>
    </tr>

    <tr>
      <td><code>transient</code></td>
      <td>member is not stored in the database</td>
      <td><a href="#14.4.11">14.4.11</a></td>
    </tr>

    <tr>
      <td><code>readonly</code></td>
      <td>member is read-only</td>
      <td><a href="#14.4.12">14.4.12</a></td>
    </tr>

    <tr>
      <td><code>virtual</code></td>
      <td>declare a virtual data member</td>
      <td><a href="#14.4.13">14.4.13</a></td>
    </tr>

    <tr>
      <td><code>inverse</code></td>
      <td>member is an inverse side of a bidirectional relationship</td>
      <td><a href="#14.4.14">14.4.14</a></td>
    </tr>

    <tr>
      <td><code>on_delete</code></td>
      <td><code>ON DELETE</code> clause for object pointer member</td>
      <td><a href="#14.4.15">14.4.15</a></td>
    </tr>

    <tr>
      <td><code>version</code></td>
      <td>member stores object version</td>
      <td><a href="#14.4.16">14.4.16</a></td>
    </tr>

    <tr>
      <td><code>index</code></td>
      <td>define database index for a member</td>
      <td><a href="#14.4.17">14.4.17</a></td>
    </tr>

    <tr>
      <td><code>unique</code></td>
      <td>define unique database index for a member</td>
      <td><a href="#14.4.18">14.4.18</a></td>
    </tr>

    <tr>
      <td><code>unordered</code></td>
      <td>ordered container should be stored unordered</td>
      <td><a href="#14.4.19">14.4.19</a></td>
    </tr>

    <tr>
      <td><code>table</code></td>
      <td>table name for a container</td>
      <td><a href="#14.4.20">14.4.20</a></td>
    </tr>

    <tr>
      <td><code>load</code>/<code>update</code></td>
      <td>loading/updating behavior for a section</td>
      <td><a href="#14.4.21">14.4.21</a></td>
    </tr>

    <tr>
      <td><code>section</code></td>
      <td>member belongs to a section</td>
      <td><a href="#14.4.22">14.4.22</a></td>
    </tr>

    <tr>
      <td><code>added</code></td>
      <td>member is soft-added</td>
      <td><a href="#14.4.23">14.4.23</a></td>
    </tr>

    <tr>
      <td><code>deleted</code></td>
      <td>member is soft-deleted</td>
      <td><a href="#14.4.24">14.4.24</a></td>
    </tr>

    <tr>
      <td><code>index_type</code></td>
      <td>database type for a container's index type</td>
      <td><a href="#14.4.25">14.4.25</a></td>
    </tr>

    <tr>
      <td><code>key_type</code></td>
      <td>database type for a container's key type</td>
      <td><a href="#14.4.26">14.4.26</a></td>
    </tr>

    <tr>
      <td><code>value_type</code></td>
      <td>database type for a container's value type</td>
      <td><a href="#14.4.27">14.4.27</a></td>
    </tr>

    <tr>
      <td><code>value_null</code>/<code>value_not_null</code></td>
      <td>container's value can/cannot be <code>NULL</code></td>
      <td><a href="#14.4.28">14.4.28</a></td>
    </tr>

    <tr>
      <td><code>id_options</code></td>
      <td>database options for a container's id column</td>
      <td><a href="#14.4.29">14.4.29</a></td>
    </tr>

    <tr>
      <td><code>index_options</code></td>
      <td>database options for a container's index column</td>
      <td><a href="#14.4.30">14.4.30</a></td>
    </tr>

    <tr>
      <td><code>key_options</code></td>
      <td>database options for a container's key column</td>
      <td><a href="#14.4.31">14.4.31</a></td>
    </tr>

    <tr>
      <td><code>value_options</code></td>
      <td>database options for a container's value column</td>
      <td><a href="#14.4.32">14.4.32</a></td>
    </tr>

    <tr>
      <td><code>id_column</code></td>
      <td>column name for a container's object id</td>
      <td><a href="#14.4.33">14.4.33</a></td>
    </tr>

    <tr>
      <td><code>index_column</code></td>
      <td>column name for a container's index</td>
      <td><a href="#14.4.34">14.4.34</a></td>
    </tr>

    <tr>
      <td><code>key_column</code></td>
      <td>column name for a container's key</td>
      <td><a href="#14.4.35">14.4.35</a></td>
    </tr>

    <tr>
      <td><code>value_column</code></td>
      <td>column name for a container's value</td>
      <td><a href="#14.4.36">14.4.36</a></td>
    </tr>

  </table>

  <p>Many of the member specifiers have corresponding value type
     specifiers with the same names (<a href="#14.3">Section 14.3,
     "Value Type Pragmas"</a>). The behavior of such specifiers
     for members is similar to that for value types. The only difference
     is the scope. A particular value type specifier applies to all the
     members of this value type that don't have a pre-member version
     of the specifier, while the member specifier always applies only
     to a single member. Also, with a few exceptions, member specifiers
     take precedence over and override parameters specified with value
     specifiers.</p>

  <h3><a name="14.4.1">14.4.1 <code>id</code></a></h3>

  <p>The <code>id</code> specifier specifies that the data member contains
     the object id. In a relational database, an identifier member is
     mapped to a primary key. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db id
  std::string email_;
};
  </pre>

  <p>Normally, every persistent class has a data member designated as an
     object's identifier. However, it is possible to declare a
     persistent class without an id using the object <code>no_id</code>
     specifier (<a href="#14.1.6">Section 14.1.6, "<code>no_id</code>"</a>).</p>

  <p>Note also that the <code>id</code> specifier cannot be used for data
     members of composite value types or views.</p>

  <h3><a name="14.4.2">14.4.2 <code>auto</code></a></h3>

  <p>The <code>auto</code> specifier specifies that the object's identifier
     is automatically assigned by the database. Only a member that was
     designated as an object id can have this specifier. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db id auto
  unsigned long id_;
};
  </pre>

  <p>Note that automatically-assigned object ids are not reused.
     If you have a high object turnover (that is, objects are routinely
     made persistent and then erased), then care must be taken not to
     run out of object ids. In such situations, using
     <code>unsigned&nbsp;long&nbsp;long</code> as the identifier type
     is a safe choice.</p>

  <p>For additional information on the automatic identifier assignment,
     refer to <a href="#3.8">Section 3.8, "Making Objects Persistent"</a>.</p>

  <p>Note also that the <code>auto</code> specifier cannot be specified
     for data members of composite value types or views.</p>

  <h3><a name="14.4.3">14.4.3 <code>type</code></a></h3>

  <p>The <code>type</code> specifier specifies the native database type
     that should be used for the data member. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db type("INT")
  bool married_;
};
  </pre>

  <p>The <code>null</code> and <code>not_null</code> (<a href="#14.4.6">Section
     14.4.6, "<code>null</code>/<code>not_null</code>"</a>) specifiers
     can be used to control the <code>NULL</code> semantics of a data member.
     It is also possible to specify the database type on the per-type instead
     of the per-member basis using the value <code>type</code>
     specifier (<a href="#14.3.1">Section 14.3.1, "<code>type</code>"</a>).</p>

  <h3><a name="14.4.4">14.4.4 <code>id_type</code></a></h3>

  <p>The <code>id_type</code> specifier specifies the native database type
     that should be used for the data member when it is part of an
     object identifier. This specifier only makes sense when applied to
     a member of a composite value type that is used for both id and
     non-id members. For example:</p>

  <pre class="cxx">
#pragma db value
class name
{
  ...

  #pragma db type("VARCHAR(256)") id_type("VARCHAR(64)")
  std::string first_;

  #pragma db type("VARCHAR(256)") id_type("VARCHAR(64)")
  std::string last_;
};

#pragma db object
class person
{
  ...

  #pragma db id
  name name_;  // name_.first_, name_.last_ mapped to VARCHAR(64)

  name alias_; // alias_.first_, alias_.last_ mapped to VARCHAR(256)
};
  </pre>

  <h3><a name="14.4.5">14.4.5 <code>get</code>/<code>set</code>/<code>access</code></a></h3>

  <p>The <code>get</code> and <code>set</code> specifiers specify the
     data member accessor and modifier expressions, respectively. If
     provided, the generated database support code will use these
     expressions to access and modify the data member when performing
     database operations. The <code>access</code> specifier can be used
     as a shortcut to specify both the accessor and modifier if they
     happen to be the same.</p>

  <p>In its simplest form the accessor or modifier expression can be
     just a name. Such a name should resolve either to another data
     member of the same type or to a suitable accessor or modifier
     member function. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

public:
  const std::string&amp; name () const;
  void name (const std::string&amp;);
private:
  #pragma db access(name)
  std::string name_;
};
  </pre>

  <p>A suitable accessor function is a <code>const</code> member function
     that takes no arguments and whose return value can be implicitly
     converted to the <code>const</code> reference to the member type
     (<code>const&nbsp;std::string&amp;</code> in the example above).
     An accessor function that returns a <code>const</code> reference
     to the data member is called <em>by-reference accessor</em>.
     Otherwise, it is called <em>by-value accessor</em>.</p>

  <p>A suitable modifier function can be of two forms. It can be the
     so called <em>by-reference modifier</em> which is a member function
     that takes no arguments and returns a non-<code>const</code> reference
     to the data member (<code>std::string&amp;</code> in the example above).
     Alternatively, it can be the so called <em>by-value modifier</em> which
     is a member function taking a single argument &mdash; the new value
     &mdash; that can be implicitly initialized from a variable of the member
     type (<code>std::string</code> in the example above). The return value
     of a by-value modifier, if any, is ignored. If both by-reference and
     by-value modifiers are available, then ODB prefers the by-reference
     version since it is more efficient. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

public:
  std::string get_name () const;      // By-value accessor.
  std::string&amp; set_name ();           // By-reference modifier.
  void set_name (std::string const&amp;); // By-value modifier.
private:
  #pragma db get(get_name) \ // Uses by-value accessor.
             set(set_name)   // Uses by-reference modifier.
  std::string name_;
};
  </pre>

  <p>Note that in many cases it is not necessary to specify accessor and
     modifier functions explicitly since the ODB compiler will try to
     discover them automatically in case the data member will be inaccessible
     to the generated code. In particular, in both of the above examples
     the ODB compiler would have successfully discovered the necessary
     functions. For more information on this functionality, refer to
     <a href="#3.2">Section 3.2, "Declaring Persistent Objects and
     Values"</a>.</p>

  <p>Note also that by-value accessors and by-value modifiers cannot be
     used for certain data members in certain situations. These limitations
     are discussed in more detail later in this section.</p>

  <p>Accessor and modifier expressions can be more elaborate than simple
     names. An accessor expression is any C++ expression that can be
     used to initialize a <code>const</code> reference to the member
     type. Similar to accessor functions, which are just a special case
     of accessor expressions, an accessor expression that evaluates to a
     <code>const</code> reference to the data member is called
     <em>by-reference accessor expression</em>. Otherwise, it is
     called <em>by-value accessor expression</em>.</p>

  <p>Modifier expressions can also be of two forms: <em>by-reference
     modifier expression</em> and <em>by-value modifier expression</em>
     (again, modifier functions are just a special case of modifier
     expressions). A by-reference modifier expression is any C++
     expression that evaluates to the non-<code>const</code> reference
     to the member type. A by-value modifier expression can be a
     single or multiple (separated by semicolon) C++ statements
     with the effect of setting the new member value.</p>

  <p>There are two special placeholders that are recognized by the
     ODB compiler in accessor and modifier expressions. The first
     is the <code>this</code> keyword which denotes a reference
     (note: not a pointer) to the persistent object. In accessor
     expressions this reference is <code>const</code> while in
     modifier expressions it is non-<code>const</code>. If an
     expression does not contain the <code>this</code> placeholder,
     then the ODB compiler automatically prefixes it with <code>this.</code>
     sequence.</p>

  <p>The second placeholder, the <code>(?)</code> sequence, is used
     to denote the new value in by-value modifier expressions. The
     ODB compiler replaces the question mark with the variable name,
     keeping the surrounding parenthesis. The following example shows
     a few more interesting accessor and modifier expressions:</p>

  <pre class="cxx">
#pragma db value
struct point
{
  point (int, int);

  int x;
  int y;
};

#pragma db object
class person
{
  ...

  public:
    const char* name () const;
    void name (const char*);
  private:
    #pragma db get(std::string (this.name ())) \
               set(name ((?).c_str ())) // The same as this.name (...).
    std::string name_;

  public:
    const std::unique_ptr&lt;account>&amp; acc () const;
    void acc (std::unique_ptr&lt;account>);
  private:
    #pragma db set(acc (std::move (?)))
    std::unique_ptr&lt;account> acc_;

  public:
    int loc_x () const
    int loc_y () const
    void loc_x (int);
    void loc_y (int);
  private:
    #pragma db get(point (this.loc_x (), this.loc_y ()))    \
               set(this.loc_x ((?).x); this.loc_y ((?).y))
    point loc_;
};
  </pre>

  <p>When the data member is of an array type, then the terms "reference"
     and "member type" in the above discussion should be replaced with
     "pointer" and "array element type", respectively. That is, the accessor
     expression for an array member is any C++ expression that can be
     used to initialize a <code>const</code> pointer to the array
     element type, and so on. The following example shows common
     accessor and modifier signatures for array members:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  public:
    const char* id () const; // By-reference accessor.
    void id (const char*);   // By-value modifier.
  private:
    char id_[16];

  public:
    const char* pub_key () const; // By-reference accessor.
    char* pub_key ();             // By-reference modifier.
  private:
    char pub_key_[2048];
};
  </pre>

  <p>Accessor and modifier expressions can be used with data members
     of simple value, composite value, container, and object pointer
     types. They can be used for data members in persistent classes,
     composite value types, and views. There is also a mechanism
     related to accessors and modifiers called virtual data members
     and which is discussed in <a href="#14.4.13">Section 14.4.13,
     "<code>virtual</code>"</a>.</p>

  <p>There are, however, certain limitations when it comes to using
     by-value accessor and modifier expressions. First of all, if a
     by-value modifier is used, then the data member type should be
     default-constructible. Furthermore, a composite value type that
     has a container member cannot be modified with a by-value modifier.
     Only a by-reference modifier expression can be used. The ODB
     compiler will detect such cases and issue diagnostics. For
     example:</p>

  <pre class="cxx">
#pragma db value
struct name
{
  std::string first_;
  std::string last_;
  std::vector&lt;std::string> aliases_;
};

#pragma db object
class person
{
  ...

public:
  const name&amp; name () const;
  void name (const name&amp;);
private:
  #pragma db access(name) // Error: by-value modifier.
  name name_;
};
  </pre>

  <p>In certain database systems it is also not possible to use by-value
     accessor and modifier expression with certain database types.
     The ODB compiler is only able to detect such cases and issue diagnostics
     if you specified accessor/modifier function names as opposed to custom
     expressions. For more information on these database and type-specific
     limitations, refer to the "Limitations" sections in <a href="#II">Part
     II, "Database Systems"</a>.</p>

  <h3><a name="14.4.6">14.4.6 <code>null</code>/<code>not_null</code></a></h3>

  <p>The <code>null</code> and <code>not_null</code> specifiers specify that
     the data member can or cannot be <code>NULL</code>, respectively.
     By default, data members of basic value types for which database
     mapping is provided by the ODB compiler do not allow <code>NULL</code>
     values while data members of object pointers allow <code>NULL</code>
     values. Other value types, such as those provided by the profile
     libraries (<a href="#III">Part III, "Profiles"</a>), may or may
     not allow <code>NULL</code> values, depending on the semantics
     of each value type. Consult the relevant documentation to find
     out more about the <code>NULL</code> semantics for such value
     types. A data member containing the object id (<a href="#14.4.1">Section
     14.4.1, "<code>id</code>"</a>) is automatically treated as not
     allowing a <code>NULL</code> value. Data members that
     allow <code>NULL</code> values are mapped in a relational database
     to columns that allow <code>NULL</code> values. For example:</p>

  <pre class="cxx">
using std::tr1::shared_ptr;

#pragma db object
class person
{
  ...

  #pragma db null
  std::string name_;
};

#pragma db object
class account
{
  ...

  #pragma db not_null
  shared_ptr&lt;person> holder_;
};
  </pre>

  <p>The <code>NULL</code> semantics can also be specified on the
     per-type basis (<a href="#14.3.3">Section 14.3.3,
     "<code>null</code>/<code>not_null</code>"</a>). If both a type and
     a member have <code>null</code>/<code>not_null</code> specifiers,
     then the member specifier takes precedence. If a member specifier
     relaxes the <code>NULL</code> semantics (that is, if a member has
     the <code>null</code> specifier and the type has the explicit
     <code>not_null</code> specifier), then a warning is issued.</p>

  <p>For a more detailed discussion of the <code>NULL</code> semantics
     for values, refer to <a href="#7.3">Section 7.3, "Pointers and
     <code>NULL</code> Value Semantics"</a>. For a more detailed
     discussion of the <code>NULL</code> semantics for object pointers,
     refer to <a href="#6">Chapter 6, "Relationships"</a>.</p>

  <h3><a name="14.4.7">14.4.7 <code>default</code></a></h3>

  <p>The <code>default</code> specifier specifies the database default value
     that should be used for the data member. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db default(-1)
  int age_;              // Mapped to INT NOT NULL DEFAULT -1.
};
  </pre>

  <p>A default value can be the special <code>null</code> keyword,
     a <code>bool</code> literal (<code>true</code> or <code>false</code>),
     an integer literal, a floating point literal, a string literal, or
     an enumerator name. If you need to specify a default value that is
     an expression, for example an SQL function call, then you can use
     the <code>options</code> specifier (<a href="#14.4.8">Section
     14.4.8, "<code>options</code>"</a>) instead. For example:</p>

  <pre class="cxx">
enum gender {male, female, undisclosed};

#pragma db object
class person
{
  ...

  #pragma db default(null)
  odb::nullable&lt;std::string> middle_; // DEFAULT NULL

  #pragma db default(false)
  bool married_;                      // DEFAULT 0/FALSE

  #pragma db default(0.0)
  float weight_;                      // DEFAULT 0.0

  #pragma db default("Mr")
  string title_;                      // DEFAULT 'Mr'

  #pragma db default(undisclosed)
  gender gender_;                     // DEFAULT 2/'undisclosed'

  #pragma db options("DEFAULT CURRENT_TIMESTAMP()")
  date timestamp_;                    // DEFAULT CURRENT_TIMESTAMP()
};
  </pre>

  <p>Default values specified as enumerators are only supported for
     members that are mapped to an <code>ENUM</code> or an integer
     type in the database, which is the case for the automatic
     mapping of C++ enums and enum classes to suitable database
     types as performed by the ODB compiler. If you have mapped
     a C++ enum or enum class to another database type, then you
     should use a literal corresponding to that type to specify
     the default value. For example:</p>

  <pre class="cxx">
enum gender {male, female, undisclosed};
#pragma db value(gender) type("VARCHAR(11)")

#pragma db object
class person
{
  ...

  #pragma db default("undisclosed")
  gender gender_;                   // DEFAULT 'undisclosed'
};
  </pre>

  <p>A default value can also be specified on the per-type basis
     (<a href="#14.3.4">Section 14.3.4, "<code>default</code>"</a>).
     An empty <code>default</code> specifier can be used to reset
     a default value that was previously specified on the per-type
     basis. For example:</p>

  <pre class="cxx">
#pragma db value(std::string) default("")

#pragma db object
class person
{
  ...

  #pragma db default()
  std::string name_;   // No default value.
};
  </pre>

  <p>A data member containing the object id (<a href="#14.4.1">Section
     14.4.1, "<code>id</code>"</a> ) is automatically treated as not
     having a default value even if its type specifies a default value.</p>

  <p>Note also that default values do not affect the generated C++ code
     in any way. In particular, no automatic initialization of data members
     with their default values is performed at any point. If you need such
     an initialization, you will need to implement it yourself, for example,
     in your persistent class constructors. The default values only
     affect the generated database schemas and, in the context of ODB,
     are primarily useful for schema evolution.</p>

  <p>Additionally, the <code>default</code> specifier cannot be specified
     for view data members.</p>

  <h3><a name="14.4.8">14.4.8 <code>options</code></a></h3>

  <p>The <code>options</code> specifier specifies additional column
     definition options that should be used for the data member. For
     example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db options("CHECK(email != '')")
  std::string email_; // Mapped to TEXT NOT NULL CHECK(email != '').
};
  </pre>

  <p>Options can also be specified on the per-type basis
     (<a href="#14.3.5">Section 14.3.5, "<code>options</code>"</a>).
     By default, options are accumulating. That is, the ODB compiler
     first adds all the options specified for a value type followed
     by all the options specified for a data member. To clear the
     accumulated options at any point in this sequence you can use
     an empty <code>options</code> specifier. For example:</p>

  <pre class="cxx">
#pragma db value(std::string) options("COLLATE binary")

#pragma db object
class person
{
  ...

  std::string first_; // TEXT NOT NULL COLLATE binary

  #pragma db options("CHECK(email != '')")
  std::string last_;  // TEXT NOT NULL COLLATE binary CHECK(email != '')

  #pragma db options()
  std::string title_; // TEXT NOT NULL

  #pragma db options() options("CHECK(email != '')")
  std::string email_; // TEXT NOT NULL CHECK(email != '')
};
  </pre>

  <p>ODB provides dedicated specifiers for specifying column types
     (<a href="#14.4.3">Section 14.4.3, "<code>type</code>"</a>),
     <code>NULL</code> constraints (<a href="#14.4.6">Section 14.4.6,
     "<code>null</code>/<code>not_null</code>"</a>), and default
     values (<a href="#14.4.7">Section 14.4.7, "<code>default</code>"</a>).
     For ODB to function correctly these specifiers should always be
     used instead of the opaque <code>options</code> specifier for
     these components of a column definition.</p>

  <p>Note also that the <code>options</code> specifier cannot be specified
     for view data members.</p>

  <h3><a name="14.4.9">14.4.9 <code>column</code> (object, composite value)</a></h3>

  <p>The <code>column</code> specifier specifies the column name
     that should be used to store the data member of a persistent class
     or composite value type in a relational database. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db id column("person_id")
  unsigned long id_;
};
  </pre>

  <p>For a member of a composite value type, the <code>column</code> specifier
     specifies the column name prefix. Refer to <a href="#7.2.2">Section 7.2.2,
     "Composite Value Column and Table Names"</a> for details.</p>

  <p>If the column name is not specified, it is derived from the member's
     so-called public name. A public member name is obtained by removing
     the common data member name decorations, such as leading and trailing
     underscores, the <code>m_</code> prefix, etc.</p>

  <h3><a name="14.4.10">14.4.10 <code>column</code> (view)</a></h3>

  <p>The <code>column</code> specifier can be used to specify the associated
     object data member, the potentially qualified column name, or the column
     expression for the data member of a view class. For more information,
     refer to <a href="#10.1">Section 10.1, "Object Views"</a> and
     <a href="#10.3">Section 10.3, "Table Views"</a>.</p>

  <h3><a name="14.4.11">14.4.11 <code>transient</code></a></h3>

  <p>The <code>transient</code> specifier instructs the ODB compiler
     not to store the data member in the database. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  date born_;

  #pragma db transient
  unsigned short age_; // Computed from born_.
};
  </pre>

  <p>This pragma is usually used on computed members, pointers and
     references that are only meaningful in the application's
     memory, as well as utility members such as mutexes, etc.</p>

  <h3><a name="14.4.12">14.4.12 <code>readonly</code></a></h3>

  <p>The <code>readonly</code> specifier specifies that the data member of
     an object or composite value type is read-only. Changes to a read-only
     data member are ignored when updating the database state of an object
     (<a href="#3.10">Section 3.10, "Updating Persistent Objects"</a>)
     containing such a member. Since views are read-only, it is not
     necessary to use this specifier for view data members. Object id
     (<a href="#14.4.1">Section 14.4.1, "<code>id</code>"</a>)
     and inverse (<a href="#14.4.14">Section 14.4.14,
     "<code>inverse</code>"</a>) data members are automatically treated
     as read-only and must not be explicitly declared as such. For
     example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db readonly
  date born_;
};
  </pre>

  <p>Besides simple value members, object pointer, container, and composite
     value members can also be declared read-only. A change of a pointed-to
     object is ignored when updating the state of a read-only object
     pointer. Similarly, any changes to the number or order of
     elements or to the element values themselves are ignored when
     updating the state of a read-only container. Finally, any changes
     to the members of a read-only composite value type are also ignored
     when updating the state of such a composite value.</p>

  <p>ODB automatically treats <code>const</code> data members as read-only.
     For example, the following <code>person</code> object is equivalent
     to the above declaration for the database persistence purposes:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  const date born_; // Automatically read-only.
};
  </pre>

  <p>When declaring an object pointer <code>const</code>, make sure to
     declare the pointer as <code>const</code> rather than (or in addition
     to) the object itself. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  const person* father_; // Read-write pointer to a read-only object.
  person* const mother_; // Read-only pointer to a read-write object.
};
  </pre>

  <p>Note that in case of a wrapper type (<a href="#7.3">Section 7.3,
     "Pointers and <code>NULL</code> Value Semantics"</a>), both the
     wrapper and the wrapped type must be <code>const</code> in
     order for the ODB compiler to automatically treat the data
     member as read-only. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  const std::auto_ptr&lt;const date> born_;
};
  </pre>

  <p>Read-only members are useful when dealing with
     asynchronous changes to the state of a data member in the
     database which should not be overwritten. In other cases,
     where the state of a data member never changes, declaring such a member
     read-only allows ODB to perform more efficient object updates.
     In such cases, however, it is conceptually more correct to
     declare such a data member as <code>const</code> rather than
     as read-only.</p>

  <p>Note that it is also possible to declare composite value types
     (<a href="#14.3.6">Section 14.3.6, "<code>readonly</code>"</a>)
     as well as whole objects (<a href="#14.1.4">Section 14.1.4,
     "<code>readonly</code>"</a>) as read-only.</p>

  <h3><a name="14.4.13">14.4.13 <code>virtual</code></a></h3>

  <p>The <code>virtual</code> specifier is used to declare a virtual
     data member in an object, view, or composite value type. A virtual
     data member is an <em>imaginary</em> data member that is only
     used for the purpose of database persistence. A virtual data
     member does not actually exist (that is, occupy space) in the
     C++ class. Note also that virtual data members have nothing to
     do with C++ virtual functions or virtual inheritance. Specifically,
     no virtual function call overhead is incurred when using virtual
     data members.</p>

  <p>To declare a virtual data member we must specify the data
     member name using the <code>member</code> specifier. We must
     also specify the data member type with the <code>virtual</code>
     specifier. Finally, the virtual data member declaration must
     also specify the accessor and modifier expressions, unless
     suitable accessor and modifier functions can automatically be
     found by the ODB compiler (<a href="#14.4.5">Section 14.4.5,
     "<code>get</code>/<code>set</code>/<code>access</code>"</a>).
     For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  // Transient real data member that actually stores the data.
  //
  #pragma db transient
  std::string name_;

  // Virtual data member.
  //
  #pragma db member(name) virtual(std::string) access(name_)
};
  </pre>

  <p>From the pragma language point of view, a virtual data member
     behaves exactly like a normal data member. Specifically, we
     can reference the virtual data member after it has been
     declared and use positioned pragmas before its declaration.
     For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db transient
  std::string name_;

  #pragma db access(name_)
  #pragma db member(name) virtual(std::string)
};

#pragma db member(person::name) column("person_name")
#pragma db index member(person::name)
  </pre>

  <p>We can also declare a virtual data member outside the class
     scope:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  std::string name_;
};

#pragma db member(person::name_) transient
#pragma db member(person::name) virtual(std::string) access(name_)
  </pre>

  <p>While in the above examples using virtual data members doesn't
     seem to yield any benefits, this mechanism can be useful in a
     number of situations. As one example, consider the need to
     aggregate or dis-aggregate a data member:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db transient
  std::pair&lt;std::string, std::string> name_;

  #pragma db member(first) virtual(std::string) access(name_.first)
  #pragma db member(last) virtual(std::string) access(name_.second)
};
  </pre>

  <p>We can also use virtual data members to implement composite
     object ids that are spread over multiple data members:</p>

  <pre class="cxx">
#pragma db value
struct name
{
  name () {}
  name (std::string const&amp; f, std::string const&amp; l)
    : first (f), last(l) {}

  std::string first;
  std::string last;
};

#pragma db object
class person
{
  ...

  #pragma db transient
  std::string first_;

  #pragma db transient
  std::string last_;

  #pragma db member(name) virtual(name) id                       \
             get(::name (this.first_, this.last_))               \
             set(this.first_ = (?).first; this.last_ = (?).last)
};
  </pre>

  <p>Another common situation that calls for virtual data members is
     a class that uses the pimpl idiom. While the following code
     fragment outlines the idea, for details refer to the
     <code>pimpl</code> example in the <code>odb-examples</code>
     package.</p>

  <pre class="cxx">
#pragma db object
class person
{
public:
  std::string const&amp; name () const;
  void name (std::string const&amp;);

  unsigned short age () const;
  void age (unsigned short);

  ...

private:
  class impl;

  #pragma db transient
  impl* pimpl_;

  #pragma db member(name) virtual(std::string)   // Uses name().
  #pragma db member(age) virtual(unsigned short) // Uses age().
};
  </pre>

  <p>The above example also shows that names used for virtual data
     members (<code>name</code> and <code>age</code> in our case) can
     be the same as the names of accessor/modifier functions. The only
     names that virtual data members cannot clash with are those of
     other data members, virtual or real.</p>

  <p>A common pattern in the above examples is the need to
     declare the real data member that actually stores the
     data as transient. If all the real data members in a
     class are treated as transient, then we can use the
     class-level <code>transient</code> specifier
     (<a href="#14.1.12">Section 14.1.12, "<code>transient</code>
     (object)"</a>,
     <a href="#14.3.8">Section 14.3.8, "<code>transient</code>
     (composite value)"</a>,
     <a href="#14.2.7">Section 14.2.7, "<code>transient</code>
     (view)"</a>)
     instead of doing it for each individual member. For example: </p>

  <pre class="cxx">
#pragma db object transient
class person
{
  ...

  std::string first_; // Transient.
  std::string last_;  // Transient.

  #pragma db member(name) virtual(name) ...
};
  </pre>

  <p>The ability to treat all the real data members as transient
     becomes more important if we don't know the names of these
     data members. This is often the case when we are working
     with third-party types that document the accessor and
     modifier functions but not the names of their private data
     members. As an example, consider the <code>point</code> class
     defined in a third-party <code>&lt;point></code> header file:</p>

  <pre class="cxx">
class point
{
public:
  point ();
  point (int x, int y);

  int x () const;
  int y () const;

  void x (int);
  void y (int);

private:
  ...
};
  </pre>

 <p>To convert this class to an ODB composite value type we could
    create the <code>point-mapping.hxx</code> file with the following
    content:</p>

  <pre class="cxx">
#include &lt;point>

#pragma db value(point) transient definition
#pragma db member(point::x) virtual(int)
#pragma db member(point::y) virtual(int)
  </pre>

  <p>Virtual data members can be of simple value, composite value,
     container, or object pointer types. They can be used in persistent
     classes, composite value types, and views.</p>

  <h3><a name="14.4.14">14.4.14 <code>inverse</code></a></h3>

  <p>The <code>inverse</code> specifier specifies that the data member of
     an object pointer or a container of object pointers type is an
     inverse side of a bidirectional object relationship. The single
     required argument to this specifier is the corresponding data
     member name in the referenced object. For example:</p>

  <pre class="cxx">
using std::tr1::shared_ptr;
using std::tr1::weak_ptr;

class person;

#pragma db object pointer(shared_ptr)
class employer
{
  ...

  std::vector&lt;shared_ptr&lt;person> > employees_;
};

#pragma db object pointer(shared_ptr)
class person
{
  ...

  #pragma db inverse(employee_)
  weak_ptr&lt;employer> employer_;
};
  </pre>

  <p>An inverse member does not have a corresponding column or, in case
     of a container, table in the resulting database schema. Instead, the
     column or table from the referenced object is used to retrieve the
     relationship information. Only ordered and set containers can be used
     for inverse members. If an inverse member is of an ordered container
     type, it is automatically marked as unordered
     (<a href="#14.4.19">Section 14.4.19, "<code>unordered</code>"</a>).</p>

  <p>For a more detailed discussion of inverse members, refer to
     <a href="#6.2">Section 6.2, "Bidirectional Relationships"</a>.</p>

  <h3><a name="14.4.15">14.4.15 <code>on_delete</code></a></h3>

  <p>The <code>on_delete</code> specifier specifies the on-delete semantics
     for a data member of an object pointer or a container of object
     pointers type. The single required argument to this specifier must
     be either <code>cascade</code> or <code>set_null</code>.</p>

  <p>The <code>on_delete</code> specifier is translated directly to the
     corresponding <code>ON DELETE</code> SQL clause. That is, if
     <code>cascade</code> is specified, then when a pointed-to object
     is erased from the database, the database state of the pointing
     object is automatically erased as well. If <code>set_null</code> is
     specified, then when a pointed-to object is erased from the database,
     the database state of the pointing object is automatically updated
     to set the pointer column to <code>NULL</code>. For example:</p>

  <pre class="cxx">
#pragma db object
class employer
{
  ...

  #pragma db id auto
  unsigned long id_;
};

#pragma db object
class person
{
  ...

  #pragma db on_delete(cascade)
  employer* employer_;
};

unsigned long id;

{
  employer e;
  person p;
  p.employer_ = &amp;e;

  transaction t (db.begin ());

  id = db.persist (e);
  db.persist (p);

  t.commit ();
}

{
  transaction t (db.begin ());

  // Database state of the person object is erased as well.
  //
  db.erase&lt;employer> (id);

  t.commit ();
}
  </pre>


  <p>Note that this is a database-level functionality and care must be
     taken in order not to end up with inconsistent object states in the
     application's memory and database. The following example illustrates
     the kind of problems one may encounter:</p>

  <pre class="cxx">
#pragma db object
class employer
{
  ...
};

#pragma db object
class person
{
  ...

  #pragma db on_delete(set_null)
  employer* employer_;
};

employer e;
person p;
p.employer_ = &amp;e;

{
  transaction t (db.begin ());
  db.persist (e);
  db.persist (p);
  t.commit ();
}

{
  transaction t (db.begin ());

  // The employer column is set to NULL in the database but
  // not the p.employer_ data member in the application.
  //
  db.erase (e);
  t.commit ();
}

{
  transaction t (db.begin ());

  // Override the employer column with an invalid pointer.
  //
  db.update (p);

  t.commit ();
}
  </pre>

  <p>Note that even optimistic concurrency will not resolve such
     issues unless you are using database-level support for optimistic
     concurrency as well (for example, <code>ROWVERSION</code> in SQL
     Server).</p>

  <p>The <code>on_delete</code> specifier is only valid for non-inverse
     object pointer data members. If the <code>set_null</code> semantics
     is used, then the pointer must allow the <code>NULL</code> value.</p>

  <h3><a name="14.4.16">14.4.16 <code>version</code></a></h3>

  <p>The <code>version</code> specifier specifies that the data member stores
     the object version used to support optimistic concurrency.  If a class
     has a version data member, then it must also be declared as having the
     optimistic concurrency model using the <code>optimistic</code> pragma
     (<a href="#14.1.5">Section 14.1.5, "<code>optimistic</code>"</a>). For
     example:</p>

  <pre class="cxx">
#pragma db object optimistic
class person
{
  ...

  #pragma db version
  unsigned long version_;
};
  </pre>

  <p>A version member must be of an integral C++ type and must map to
     an integer or similar database type. Note also that object versions
     are not reused. If you have a high update frequency, then care must
     be taken not to run out of versions. In such situations, using
     <code>unsigned&nbsp;long&nbsp;long</code> as the version type is a safe
     choice.</p>

  <p>For a more detailed discussion of optimistic concurrency, refer to
     <a href="#12">Chapter 12, "Optimistic Concurrency"</a>.</p>

  <h3><a name="14.4.17">14.4.17 <code>index</code></a></h3>

  <p>The <code>index</code> specifier instructs the ODB compiler to define
     a database index for the data member. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db index
  std::string name_;
};
  </pre>

  <p>For more information on defining database indexes, refer to
     <a href="#14.7">Section 14.7, "Index Definition Pragmas"</a>.</p>

  <h3><a name="14.4.18">14.4.18 <code>unique</code></a></h3>

  <p>The <code>index</code> specifier instructs the ODB compiler to define
     a unique database index for the data member. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db unique
  std::string name_;
};
  </pre>

  <p>For more information on defining database indexes, refer to
     <a href="#14.7">Section 14.7, "Index Definition Pragmas"</a>.</p>

  <h3><a name="14.4.19">14.4.19 <code>unordered</code></a></h3>

  <p>The <code>unordered</code> specifier specifies that the member of
     an ordered container type should be stored unordered in the database.
     The database table for such a member will not contain the index column
     and the order in which elements are retrieved from the database may
     not be the same as the order in which they were stored. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db unordered
  std::vector&lt;std::string> nicknames_;
};
  </pre>

  <p>For a more detailed discussion of ordered containers and their
     storage in the database, refer to <a href="#5.1">Section 5.1,
     "Ordered Containers"</a>.</p>

  <h3><a name="14.4.20">14.4.20 <code>table</code></a></h3>

  <p>The <code>table</code> specifier specifies the table name that should
     be used to store the contents of the container member. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db table("nicknames")
  std::vector&lt;std::string> nicknames_;
};
  </pre>

  <p>If the table name is not specified, then the container table name
     is constructed by concatenating the object's table name, underscore,
     and the public member name. The public member name is obtained
     by removing the common member name decorations, such as leading and
     trailing underscores, the <code>m_</code> prefix, etc. In the example
     above, without the <code>table</code> specifier, the container's
     table name would have been <code>person_nicknames</code>.</p>

  <p>The <code>table</code> specifier can also be used for members of
     composite value types. In this case it specifies the table name
     prefix for container members inside the composite value type. Refer
     to <a href="#7.2.2">Section 7.2.2, "Composite Value Column and Table
     Names"</a> for details.</p>

  <p>The container table name can be qualified with a database
     schema, for example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db table("extras.nicknames")
  std::vector&lt;std::string> nicknames_;
};
  </pre>

  <p>For more information on database schemas and the format of the
     qualified names, refer to <a href="#14.1.8">Section 14.1.8,
     "<code>schema</code>"</a>.</p>

  <h3><a name="14.4.21">14.4.21 <code>load</code>/<code>update</code></a></h3>

  <p>The <code>load</code> and <code>update</code> specifiers specify the
     loading and updating behavior for an object section, respectively.
     Valid values for the <code>load</code> specifier are
     <code>eager</code> (default) and <code>lazy</code>. Valid values for
     the <code>update</code> specifier are <code>always</code> (default),
     <code>change</code>, and <code>manual</code>. For more information
     on object sections, refer to <a href="#9">Chapter 9, "Sections"</a>.</p>

  <h3><a name="14.4.22">14.4.22 <code>section</code></a></h3>

  <p>The <code>section</code> specifier indicates that a data member
     of a persistent class belongs to an object section. The single
     required argument to this specifier is the name of the section
     data member. This specifier can only be used on direct data
     members of a persistent class. For more information on object
     sections, refer to <a href="#9">Chapter 9, "Sections"</a>.</p>

  <h3><a name="14.4.23">14.4.23 <code>added</code></a></h3>

  <p>The <code>added</code> specifier marks the data member as
     soft-added. The single required argument to this specifier is
     the addition version. For more information on this functionality,
     refer to <a href="#13.4">Section 13.4, "Soft Object Model
     Changes"</a>.</p>

  <h3><a name="14.4.24">14.4.24 <code>deleted</code></a></h3>

  <p>The <code>deleted</code> specifier marks the data member as
     soft-deleted. The single required argument to this specifier is
     the deletion version. For more information on this functionality,
     refer to <a href="#13.4">Section 13.4, "Soft Object Model
     Changes"</a>.</p>

  <h3><a name="14.4.25">14.4.25 <code>index_type</code></a></h3>

  <p>The <code>index_type</code> specifier specifies the native
     database type that should be used for an ordered container's
     index column of the data member. The semantics of <code>index_type</code>
     are similar to those of the <code>type</code> specifier
     (<a href="#14.4.3">Section 14.4.3, "<code>type</code>"</a>). The native
     database type is expected to be an integer type. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db index_type("SMALLINT UNSIGNED")
  std::vector&lt;std::string> nicknames_;
};
  </pre>

  <h3><a name="14.4.26">14.4.26 <code>key_type</code></a></h3>

  <p>The <code>key_type</code> specifier specifies the native
     database type that should be used for a map container's
     key column of the data member. The semantics of <code>key_type</code>
     are similar to those of the <code>type</code> specifier
     (<a href="#14.4.3">Section 14.4.3, "<code>type</code>"</a>). For
     example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db key_type("INT UNSIGNED")
  std::map&lt;unsigned short, float> age_weight_map_;
};
  </pre>

  <h3><a name="14.4.27">14.4.27 <code>value_type</code></a></h3>

  <p>The <code>value_type</code> specifier specifies the native
     database type that should be used for a container's
     value column of the data member. The semantics of <code>value_type</code>
     are similar to those of the <code>type</code> specifier
     (<a href="#14.4.3">Section 14.4.3, "<code>type</code>"</a>). For
     example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db value_type("VARCHAR(255)")
  std::vector&lt;std::string> nicknames_;
};
  </pre>

  <p>The <code>value_null</code> and <code>value_not_null</code>
     (<a href="#14.4.28">Section 14.4.28,
     "<code>value_null</code>/<code>value_not_null</code>"</a>) specifiers
     can be used to control the <code>NULL</code> semantics of a value
     column.</p>

  <h3><a name="14.4.28">14.4.28 <code>value_null</code>/<code>value_not_null</code></a></h3>

  <p>The <code>value_null</code> and <code>value_not_null</code> specifiers
     specify that a container's element value for the data member can or
     cannot be <code>NULL</code>, respectively. The semantics of
     <code>value_null</code> and <code>value_not_null</code> are similar
     to those of the <code>null</code> and <code>not_null</code> specifiers
     (<a href="#14.4.6">Section 14.4.6, "<code>null</code>/<code>not_null</code>"</a>).
     For example:</p>

  <pre class="cxx">
using std::tr1::shared_ptr;

#pragma db object
class person
{
  ...
};

#pragma db object
class account
{
  ...

  #pragma db value_not_null
  std::vector&lt;shared_ptr&lt;person> > holders_;
};
  </pre>

  <p>For set and multiset containers (<a href="#5.2">Section 5.2, "Set and
     Multiset Containers"</a>) the element value is automatically treated
     as not allowing a <code>NULL</code> value.</p>

  <h3><a name="14.4.29">14.4.29 <code>id_options</code></a></h3>

  <p>The <code>id_options</code> specifier specifies additional
     column definition options that should be used for a container's
     id column of the data member. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db id options("COLLATE binary")
  std::string name_;

  #pragma db id_options("COLLATE binary")
  std::vector&lt;std::string> nicknames_;
};
  </pre>

  <p>The semantics of <code>id_options</code> are similar to those
     of the <code>options</code> specifier (<a href="#14.4.8">Section
     14.4.8, "<code>options</code>"</a>).</p>

  <h3><a name="14.4.30">14.4.30 <code>index_options</code></a></h3>

  <p>The <code>index_options</code> specifier specifies additional
     column definition options that should be used for a container's
     index column of the data member. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db index_options("ZEROFILL")
  std::vector&lt;std::string> nicknames_;
};
  </pre>

  <p>The semantics of <code>index_options</code> are similar to those
     of the <code>options</code> specifier (<a href="#14.4.8">Section
     14.4.8, "<code>options</code>"</a>).</p>

  <h3><a name="14.4.31">14.4.31 <code>key_options</code></a></h3>

  <p>The <code>key_options</code> specifier specifies additional
     column definition options that should be used for a container's
     key column of the data member. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db key_options("COLLATE binary")
  std::map&lt;std::string, std::string> properties_;
};
  </pre>

  <p>The semantics of <code>key_options</code> are similar to those
     of the <code>options</code> specifier (<a href="#14.4.8">Section
     14.4.8, "<code>options</code>"</a>).</p>

  <h3><a name="14.4.32">14.4.32 <code>value_options</code></a></h3>

  <p>The <code>value_options</code> specifier specifies additional
     column definition options that should be used for a container's
     value column of the data member. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db value_options("COLLATE binary")
  std::set&lt;std::string> nicknames_;
};
  </pre>

  <p>The semantics of <code>value_options</code> are similar to those
     of the <code>options</code> specifier (<a href="#14.4.8">Section
     14.4.8, "<code>options</code>"</a>).</p>

  <h3><a name="14.4.33">14.4.33 <code>id_column</code></a></h3>

  <p>The <code>id_column</code> specifier specifies the column
     name that should be used to store the object id in a
     container's table for the data member. The semantics of
     <code>id_column</code> are similar to those of the
     <code>column</code> specifier
     (<a href="#14.4.9">Section 14.4.9, "<code>column</code>"</a>).
     For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db id_column("person_id")
  std::vector&lt;std::string> nicknames_;
};
  </pre>

  <p>If the column name is not specified, then <code>object_id</code>
     is used by default.</p>

  <h3><a name="14.4.34">14.4.34 <code>index_column</code></a></h3>

  <p>The <code>index_column</code> specifier specifies the column
     name that should be used to store the element index in an
     ordered container's table for the data member. The semantics of
     <code>index_column</code> are similar to those of the
     <code>column</code> specifier
     (<a href="#14.4.9">Section 14.4.9, "<code>column</code>"</a>).
     For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db index_column("nickname_number")
  std::vector&lt;std::string> nicknames_;
};
  </pre>

  <p>If the column name is not specified, then <code>index</code>
     is used by default.</p>

  <h3><a name="14.4.35">14.4.35 <code>key_column</code></a></h3>

  <p>The <code>key_column</code> specifier specifies the column
     name that should be used to store the key in a map
     container's table for the data member. The semantics of
     <code>key_column</code> are similar to those of the
     <code>column</code> specifier
     (<a href="#14.4.9">Section 14.4.9, "<code>column</code>"</a>).
     For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db key_column("age")
  std::map&lt;unsigned short, float> age_weight_map_;
};
  </pre>

  <p>If the column name is not specified, then <code>key</code>
     is used by default.</p>

  <h3><a name="14.4.36">14.4.36 <code>value_column</code></a></h3>

  <p>The <code>value_column</code> specifier specifies the column
     name that should be used to store the element value in a
     container's table for the data member. The semantics of
     <code>value_column</code> are similar to those of the
     <code>column</code> specifier
     (<a href="#14.4.9">Section 14.4.9, "<code>column</code>"</a>).
     For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db value_column("weight")
  std::map&lt;unsigned short, float> age_weight_map_;
};
  </pre>

  <p>If the column name is not specified, then <code>value</code>
     is used by default.</p>

  <h2><a name="14.5">14.5 Namespace Pragmas</a></h2>

  <p>A pragma with the <code>namespace</code> qualifier describes a
     C++ namespace. Similar to other qualifiers, <code>namespace</code>
     can also refer to a named C++ namespace, for example:</p>

  <pre class="cxx">
namespace test
{
  ...
}

#pragma db namespace(test) ...
  </pre>

  <p>To refer to the global namespace in the <code>namespace</code>
     qualifier the following special syntax is used:</p>

  <pre class="cxx">
#pragma db namespace() ....
  </pre>

  <p>The <code>namespace</code> qualifier can be optionally followed,
     in any order, by one or more specifiers summarized in the
     table below:</p>

  <!-- border="1" is necessary for html2ps -->
  <table class="specifiers" border="1">
    <tr>
      <th>Specifier</th>
      <th>Summary</th>
      <th>Section</th>
    </tr>

    <tr>
      <td><code>pointer</code></td>
      <td>pointer type for persistent classes and views inside a namespace</td>
      <td><a href="#14.5.1">14.5.1</a></td>
    </tr>

    <tr>
      <td><code>table</code></td>
      <td>table name prefix for persistent classes inside a namespace</td>
      <td><a href="#14.5.2">14.5.2</a></td>
    </tr>

    <tr>
      <td><code>schema</code></td>
      <td>database schema for persistent classes inside a namespace</td>
      <td><a href="#14.5.3">14.5.3</a></td>
    </tr>

    <tr>
      <td><code>session</code></td>
      <td>enable/disable session support for persistent classes inside a namespace</td>
      <td><a href="#14.5.4">14.5.4</a></td>
    </tr>

  </table>

  <h3><a name="14.5.1">14.5.1 <code>pointer</code></a></h3>

  <p>The <code>pointer</code> specifier specifies the default pointer
     type for persistent classes and views inside the namespace. For
     example:</p>

  <pre class="cxx">
#pragma db namespace pointer(std::tr1::shared_ptr)
namespace accounting
{
  #pragma db object
  class employee
  {
    ...
  };

  #pragma db object
  class employer
  {
    ...
  };
}
  </pre>

  <p>There are only two valid ways to specify a pointer with the
     <code>pointer</code> specifier at the namespace level. We can
     specify the template name of a smart pointer in which
     case the ODB compiler will automatically append the class
     name as a template argument. Or we can use <code>*</code>
     to denote a raw pointer.</p>

  <p>Note also that we can always override the default pointer
     specified at the namespace level for any persistent class
     or view inside this namespace. For example:</p>

  <pre class="cxx">
#pragma db namespace pointer(std::unique_ptr)
namespace accounting
{
  #pragma db object pointer(std::shared_ptr)
  class employee
  {
    ...
  };

  #pragma db object
  class employer
  {
    ...
  };
}
  </pre>

  <p>For a more detailed discussion of object and view pointers, refer
     to <a href="#3.3">Section 3.3, "Object and View Pointers"</a>.</p>

  <h3><a name="14.5.2">14.5.2 <code>table</code></a></h3>

  <p>The <code>table</code> specifier specifies a table prefix
     that should be added to table names of persistent classes inside
     the namespace. For example:</p>

  <pre class="cxx">
#pragma db namespace table("acc_")
namespace accounting
{
  #pragma db object table("employees")
  class employee
  {
    ...
  };

  #pragma db object table("employers")
  class employer
  {
    ...
  };
}
  </pre>

  <p>In the above example the resulting table names will be
     <code>acc_employees</code> and <code>acc_employers</code>.</p>

  <p>The table name prefix can also be specified with the
     <code>--table-prefix</code> ODB compiler option. Note
     that table prefixes specified at the namespace level as well
     as with the command line option are accumulated. For example:</p>

  <pre class="cxx">
#pragma db namespace() table("audit_")

#pragma db namespace table("hr_")
namespace hr
{
  #pragma db object table("employees")
  class employee
  {
    ...
  };
}

#pragma db object table("employers")
class employer
{
  ...
};
  </pre>

  <p>If we compile the above example with the
     <code>--table-prefix&nbsp;test_</code> option, then the
     <code>employee</code> class table will be called
     <code>test_audit_hr_employees</code> and <code>employer</code> &mdash;
     <code>test_audit_employers</code>.</p>

  <p>Table prefixes can be used as an alternative to database schemas
     (<a href="#14.1.8">Section 14.1.8, "<code>schema</code>"</a>) if
     the target database system does not support schemas.</p>

  <h3><a name="14.5.3">14.5.3 <code>schema</code></a></h3>

  <p>The <code>schema</code> specifier specifies a database schema
     that should be used for persistent classes inside the namespace.
     For more information on specifying a database schema refer to
     <a href="#14.1.8">Section 14.1.8, "<code>schema</code>"</a>.</p>

  <h3><a name="14.5.4">14.5.4 <code>session</code></a></h3>

  <p>The <code>session</code> specifier specifies whether to enable
     session support for persistent classes inside the namespace. For
     example:</p>

  <pre class="cxx">
#pragma db namespace session
namespace hr
{
  #pragma db object                // Enabled.
  class employee
  {
    ...
  };

  #pragma db object session(false) // Disabled.
  class employer
  {
    ...
  };
}
  </pre>

  <p>Session support is disabled by default unless the
     <code>--generate-session</code> ODB compiler option is specified.
     Session support specified at the namespace level can be overridden
     on the per object basis (<a href="#14.1.10">Section 14.1.10,
     "<code>session</code>"</a>). For more information on sessions,
     refer to <a href="#11">Chapter 11, "Session"</a>.</p>

<h2><a name="14.6">14.6 Object Model Pragmas</a></h2>

  <p>A pragma with the <code>model</code> qualifier describes the
     whole C++ object model. For example:</p>

  <pre class="cxx">
#pragma db model ...
  </pre>

  <p>The <code>model</code> qualifier can be followed, in any order,
     by one or more specifiers summarized in the table below:</p>

  <!-- border="1" is necessary for html2ps -->
  <table class="specifiers" border="1">
    <tr>
      <th>Specifier</th>
      <th>Summary</th>
      <th>Section</th>
    </tr>

    <tr>
      <td><code>version</code></td>
      <td>object model version</td>
      <td><a href="#14.6.1">14.6.1</a></td>
    </tr>

  </table>

  <h3><a name="14.6.1">14.6.1 <code>version</code></a></h3>

  <p>The <code>version</code> specifier specifies the object model
     version when schema evolution support is used. The first two
     required arguments to this specifier are the base and current
     model versions, respectively. The third optional argument
     specifies whether the current version is open for changes.
     Valid values for this argument are <code>open</code> (the
     default) and <code>closed</code>. For more information on
     this functionality, refer to <a href="#13">Chapter 13,
     "Database Schema Evolution"</a>.</p>


  <h2><a name="14.7">14.7 Index Definition Pragmas</a></h2>

  <p>While it is possible to manually add indexes to the generated
     database schema, it is more convenient to do this as part of
     the persistent class definitions. A pragma with the <code>index</code>
     qualifier describes a database index. It has the following
     general format:</p>

<pre class="cxx">
#pragma db index[("&lt;name>")]                       \
           [unique|type("&lt;type>")]                 \
           [method("&lt;method>")]                    \
           [options("&lt;index-options>")]            \
           member(&lt;name>[, "&lt;column-options>"])... \
           members(&lt;name>[,&lt;name>...])...
</pre>

  <p>The <code>index</code> qualifier can optionally specify the
     index name. If the index name is not specified, then one is
     automatically derived by appending the <code>_i</code> suffix
     to the column name of the index member. If the name is not
     specified and the index contains multiple members, then the
     index definition is invalid.</p>

  <p>The optional <code>type</code>, <code>method</code>, and
     <code>options</code> clauses specify the index type, for
     example <code>UNIQUE</code>, index method, for example
     <code>BTREE</code>, and index options, respectively. The
     <code>unique</code> clause is a shortcut for
     <code>type("UNIQUE")</code>. Note that not all database
     systems support specifying an index method or options.
     For more information on the database system-specific index
     types, methods, and options, refer to <a href="#II">Part II,
     "Database Systems"</a>.</p>

  <p>To specify index members we can use the <code>member</code>
     or <code>members</code> clauses, or a mix of the two. The
     <code>member</code> clause allows us to specify a single
     index member with optional column options, for example,
     <code>"ASC"</code>. If we need to create a composite
     index that contains multiple members, then we can repeat
     the <code>member</code> clause several times or, if the
     members don't have any column options, we can use a single
     <code>members</code> clause instead. Similar to the index
     type, method, and options, the format of column options is
     database system-specific. For more details, refer to
     <a href="#II">Part II, "Database Systems"</a>.</p>

  <p>The following code fragment shows some typical examples
     of index definitions:</p>

<pre class="cxx">
#pragma db object
class object
{
  ...

  int x;
  int y;
  int z1;
  int z2;

  // An index for member x with automatically-assigned name x_i.
  //
  #pragma db index member(x)

  // A unique index named y_index for member y which is sorted in
  // the descending order. The index is using the BTREE method.
  //
  #pragma db index("y_index") unique method("BTREE") member(y, "DESC")

  // A composite BITMAP index named z_i for members z1 and z2.
  //
  #pragma db index("z_i") type("BITMAP") members(z1, z2)
};
</pre>

  <p>ODB also offers a shortcut for defining an index with the default
     method and options for a single data member. Such an index can
     be defined using the <code>index</code> (<a href="#14.4.17">Section
     14.4.17, "<code>index</code>"</a>) or <code>unique</code>
     (<a href="#14.4.18">Section 14.4.18, "<code>unique</code>"</a>)
     member specifier. For example:</p>

<pre class="cxx">
#pragma db object
class object
{
  ...

  #pragma db index
  int x;

  #pragma db type("INT") unique
  int y;
};
</pre>

  <p>The above example is semantically equivalent to the following
     more verbose version:</p>

<pre class="cxx">
#pragma db object
class object
{
  ...

  int x;

  #pragma db type("INT")
  int y;

  #pragma db index member(x)
  #pragma db index unique member(y)
};
</pre>

  <p>While it is convenient to define an index inside a persistent
     class, it is also possible to do that out of the class body. In this
     case, the index name, if specified, must be prefixed with the
     potentially-qualified class name. For example:</p>

<pre class="cxx">
namespace n
{
  #pragma db object
  class object
  {
    ...

    int x;
    int y;
  };

  // An index for member x in persistent class object with automatically-
  // assigned name x_i.
  //
  #pragma db index(object) member(x)
}

// An index named y_index for member y in persistent class n::object.
//
#pragma db index(n::object::"y_index") member(y)
</pre>

  <p>It is possible to define an index on a member that is of a
     composite value type or on some of its nested members. For
     example:</p>

<pre class="cxx">
#pragma db value
struct point
{
  int x;
  int y;
  int z;
};

#pragma db object
class object
{
  // An index that includes all of the p1's nested members.
  //
  #pragma db index
  point p1;

  point p2;

  // An index that includes only p2.x and p2.y.
  //
  #pragma db index("p2_xy_i") members(p2.x, p2.y)
};
</pre>

  <p>When generating a schema for a container member (<a href="#5">Chapter 5,
     "Containers"</a>), ODB automatically defines two indexes on the container
     table. One is for the object id that references the object table and the
     other is for the index column in case the container is ordered
     (<a href="#5.1">Section 5.1, "Ordered Containers"</a>). By default these
     indexes use the default index name, type, method, and options. The
     <code>index</code> pragma allows us to customize these two indexes by
     recognizing the special <code>id</code> and <code>index</code> nested
     member names when specified after a container member. For example:</p>

<pre class="cxx">
#pragma db object
class object
{
  std::vector&lt;int> v;

  // Change the container id index name.
  //
  #pragma db index("id_index") member(v.id)

  // Change the container index index method.
  //
  #pragma db index method("BTREE") member(v.index)
};
</pre>

  <h2><a name="14.8">14.8 Database Type Mapping Pragmas</a></h2>

  <p>A pragma with the <code>map</code> qualifier describes a
     mapping between two database types. For each database system
     ODB provides built-in support for a core set of database types,
     such as integers, strings, binary, etc. However, many database
     systems provide extended types such as geospatial types,
     user-defined types, and collections (arrays, table types,
     key-value stores, etc). In order to support such extended types,
     ODB allows us to map them to one of the built-in types, normally
     a string or a binary. Given the text or binary representation
     of the data we can then extract it into our chosen C++ data type
     and thus establish a mapping between an extended database type and
     its C++ equivalent.</p>

  <p>The <code>map</code> pragma has the following format:</p>

<pre class="cxx">
#pragma db map type("regex") as("subst") [to("subst")] [from("subst")]
</pre>

  <p>The <code>type</code> clause specifies the name of the database type
     that we are mapping. We will refer to it as the <em>mapped type</em>
     from now on. The name of the mapped type is a Perl-like regular
     expression pattern that is matched in the case-insensitive mode.</p>

  <p>The <code>as</code> clause specifies the name of the database type
     that we are mapping the mapped type to. We will refer to it as
     the <em>interface type</em> from now on. The name of the interface
     type is a regular expression substitution and should expand to a
     name of a database type for which ODB provides built-in support.</p>

  <p>The optional <code>to</code> and <code>from</code> clauses specify the
     database conversion expressions between the mapped type and the
     interface type. The <code>to</code> expression converts from the
     interface type to the mapped type and <code>from</code> converts
     in the other direction. If no explicit conversion is required for
     either direction, then the corresponding clause can be omitted.
     The conversion expressions are regular expression substitutions.
     They must contain the special <code>(?)</code> placeholder which will
     be replaced with the actual value to be converted. Turning on SQL
     statement tracing (<a href="#3.13">Section 3.13, "Tracing SQL
     Statement Execution"</a>) can be useful for debugging conversion
     expressions. This allows you to see the substituted expressions
     as used in the actual statements.</p>

  <p>As an example, the following <code>map</code> pragma maps the
     PostgreSQL array of <code>INTEGER</code>'s to <code>TEXT</code>:</p>

<pre class="cxx">
#pragma db map type("INTEGER *\\[(\\d*)\\]") \
               as("TEXT")                    \
               to("(?)::INTEGER[$1]")        \
               from("(?)::TEXT")
</pre>

  <p>With the above mapping we can now have a persistent class that
     has a member of the PostgreSQL array type:</p>

<pre class="cxx">
#pragma db object
class object
{
  ...

  #pragma db type("INTEGER[]")
  std::string array_;
};
</pre>

  <p>In PostgreSQL the array literal has the <code>{n1,n2,...}</code> form.
     As a result, we need to make sure that we pass the correct text
     representation in the <code>array_</code> member, for example:</p>

<pre class="cxx">
object o;
o.array_ = "{1,2,3}";
db.persist (o);
</pre>

  <p>Of course, <code>std::string</code> is not the most natural
     representation of an array of integers in C++. Instead,
     <code>std::vector&lt;int></code> would have been much more
     appropriate. To add support for mapping
     <code>std::vector&lt;int></code> to PostgreSQL <code>INTEGER[]</code>
     we need to provide a <code>value_traits</code> specialization
     that implements conversion between the PostgreSQL text representation
     of an array and <code>std::vector&lt;int></code>. Below is a sample
     implementation:</p>

<pre class="cxx">
namespace odb
{
  namespace pgsql
  {
    template &lt;>
    class value_traits&lt;std::vector&lt;int>, id_string>
    {
    public:
      typedef std::vector&lt;int> value_type;
      typedef value_type query_type;
      typedef details::buffer image_type;

      static void
      set_value (value_type&amp; v,
                 const details::buffer&amp; b,
                 std::size_t n,
                 bool is_null)
      {
        v.clear ();

        if (!is_null)
        {
          char c;
          std::istringstream is (std::string (b.data (), n));

          is >> c; // '{'

          for (c = static_cast&lt;char> (is.peek ()); c != '}'; is >> c)
          {
            v.push_back (int ());
            is >> v.back ();
          }
        }
      }

      static void
      set_image (details::buffer&amp; b,
                 std::size_t&amp; n,
                 bool&amp; is_null,
                 const value_type&amp; v)
      {
        is_null = false;
        std::ostringstream os;

        os &lt;&lt; '{';

        for (value_type::const_iterator i (v.begin ()), e (v.end ());
             i != e;)
        {
          os &lt;&lt; *i;

          if (++i != e)
            os &lt;&lt; ',';
        }

        os &lt;&lt; '}';

        const std::string&amp; s (os.str ());
        n = s.size ();

        if (n > b.capacity ())
          b.capacity (n);

        std::memcpy (b.data (), s.c_str (), n);
      }
    };
  }
}
</pre>

  <p>Once this specialization is included in the generated code (see
     the <code>mapping</code> example in the <code>odb-examples</code>
     package for details), we can use <code>std::vector&lt;int></code>
     instead of <code>std::string</code> in our persistent class:</p>

<pre class="cxx">
#pragma db object
class object
{
  ...

  #pragma db type("INTEGER[]")
  std::vector&lt;int> array_;
};
</pre>

  <p>If we wanted to always map <code>std::vector&lt;int></code>
     to PostgreSQL <code>INTEGER[]</code>, then we could instead
     write:</p>

<pre class="cxx">
typedef std::vector&lt;int> int_vector;
#pragma db value(int_vector) type("INTEGER[]")

#pragma db object
class object
{
  ...

  std::vector&lt;int> array_; // Mapped to INTEGER[].
};
</pre>

  <p>While the above example only shows how to handle PostgreSQL arrays,
     other types in PostgreSQL and in other databases can be supported
     in a similar way. The <code>odb-tests</code> package contains a
     set of tests in the <code>&lt;database>/custom</code> directories that,
     for each database, shows how to provide custom mapping for some of
     the extended types.</p>

  <h2><a name="14.9">14.9 C++ Compiler Warnings</a></h2>

  <p>When a C++ header file defining persistent classes and containing
     ODB pragmas is used to build the application, the C++ compiler may
     issue warnings about pragmas that it doesn't recognize. There
     are several ways to deal with this problem. The easiest is to
     disable such warnings using one of the compiler-specific command
     line options or warning control pragmas. This method is described
     in the following sub-section for popular C++ compilers.</p>

  <p>There are also several C++ compiler-independent methods that we
     can employ. The first is to use the <code>PRAGMA_DB</code> macro,
     defined in <code>&lt;odb/core.hxx></code>, instead of using
     <code>#pragma&nbsp;db</code> directly. This macro expands to the
     ODB pragma when compiled with the ODB compiler and to an empty
     declaration when compiled with other compilers. The following example
     shows how we can use this macro:</p>

  <pre class="cxx">
#include &lt;odb/core.hxx>

PRAGMA_DB(object)
class person
{
  ...

  PRAGMA_DB(id)
  unsigned long id_;
};
  </pre>

  <p>An alternative to using the <code>PRAGMA_DB</code> macro is to
     group the <code>#pragma&nbsp;db</code> directives in blocks that are
     conditionally included into compilation only when compiled with the
     ODB compiler. For example:</p>

  <pre class="cxx">
class person
{
  ...

  unsigned long id_;
};

#ifdef ODB_COMPILER
#  pragma db object(person)
#  pragma db member(person::id_) id
#endif
  </pre>

  <p>The disadvantage of this approach is that it can quickly become
     overly verbose when positioned pragmas are used.</p>

  <h3><a name="14.9.1">14.9.1 GNU C++</a></h3>

  <p>GNU g++ does not issue warnings about unknown pragmas
     unless requested with the <code>-Wall</code> command line option.
     To disable only the unknown pragma warning, we can add the
     <code>-Wno-unknown-pragmas</code> option after <code>-Wall</code>,
     for example:</p>

  <pre class="terminal">
g++ -Wall -Wno-unknown-pragmas ...
  </pre>

  <h3><a name="14.9.2">14.9.2 Visual C++</a></h3>

  <p>Microsoft Visual C++ issues an unknown pragma warning (C4068) at
     warning level 1 or higher. This means that unless we have disabled
     the warnings altogether (level 0), we will see this warning.</p>

  <p>To disable this warning via the compiler command line, we can add
     the <code>/wd4068</code> C++ compiler option in Visual Studio 2008
     and earlier. In Visual Studio 2010 and later there is now a special
     GUI field where we can enter warning numbers that should be disabled.
     Simply enter 4068 into this field.</p>

  <p>We can also disable this warning for only a specific header or
     a fragment of a header using the warning control pragma. For
     example:</p>

  <pre class="cxx">
#include &lt;odb/core.hxx>

#pragma warning (push)
#pragma warning (disable:4068)

#pragma db object
class person
{
  ...

  #pragma db id
  unsigned long id_;
};

#pragma warning (pop)
  </pre>

  <h3><a name="14.9.3">14.9.3 Sun C++</a></h3>

  <p>The Sun C++ compiler does not issue warnings about unknown pragmas
     unless the <code>+w</code> or <code>+w2</code> option is specified.
     To disable only the unknown pragma warning we can add the
     <code>-erroff=unknownpragma</code> option anywhere on the
     command line, for example:</p>

  <pre class="terminal">
CC +w -erroff=unknownpragma ...
  </pre>

  <h3><a name="14.9.4">14.9.4 IBM XL C++</a></h3>

  <p>IBM XL C++ issues an unknown pragma warning (1540-1401) by default.
     To disable this warning we can add the <code>-qsuppress=1540-1401</code>
     command line option, for example:</p>

  <pre class="terminal">
xlC -qsuppress=1540-1401 ...
  </pre>

  <h3><a name="14.9.5">14.9.5 HP aC++</a></h3>

  <p>HP aC++ (aCC) issues an unknown pragma warning (2161) by default.
     To disable this warning we can add the <code>+W2161</code>
     command line option, for example:</p>

  <pre class="terminal">
aCC +W2161 ...
  </pre>

  <h3><a name="14.9.6">14.9.6 Clang</a></h3>

  <p>Clang does not issue warnings about unknown pragmas
     unless requested with the <code>-Wall</code> command line option.
     To disable only the unknown pragma warning, we can add the
     <code>-Wno-unknown-pragmas</code> option after <code>-Wall</code>,
     for example:</p>

  <pre class="terminal">
clang++ -Wall -Wno-unknown-pragmas ...
  </pre>

  <p>We can also disable this warning for only a specific header or
     a fragment of a header using the warning control pragma. For
     example:</p>

  <pre class="cxx">
#include &lt;odb/core.hxx>

#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunknown-pragmas"

#pragma db object
class person
{
  ...

  #pragma db id
  unsigned long id_;
};

#pragma clang diagnostic pop
  </pre>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="15">15 Advanced Techniques and Mechanisms</a></h1>

  <p>This chapter covers more advanced techniques and mechanisms
     provided by ODB that may be useful in certain situations.</p>

  <h2><a name="15.1">15.1 Transaction Callbacks</a></h2>

  <p>The ODB transaction class (<code>odb::transaction</code>) allows
     an application to register a callback that will be called after
     the transaction is finalized, that is, committed or rolled back.
     This mechanism can be used, for example, to restore values that
     were updated during the transaction execution to their original
     states if the transaction is rolled back.</p>

  <p>The callback management interface of the <code>transaction</code>
     class is shown below.</p>

  <pre class="cxx">
namespace odb
{
  class transaction
  {
    ...

  public:
    static const unsigned short event_commit = 0x01;
    static const unsigned short event_rollback = 0x02;
    static const unsigned short event_all = event_commit | event_rollback;

    typedef void (*callback_type) (
      unsigned short event, void* key, unsigned long long data);

    void
    callback_register (callback_type callback,
                       void* key,
                       unsigned short event = event_all,
                       unsigned long long data = 0,
                       transaction** state = 0);


    void
    callback_unregister (void* key);

    void
    callback_update (void* key,
                     unsigned short event,
                     unsigned long long data = 0,
                     transaction** state = 0);
  }
}
  </pre>

  <p>The <code>callback_register()</code> function registers a
     post-commit/rollback callback. The <code>callback</code>
     argument is the function that should be called. The
     <code>key</code> argument is used by the transaction
     to identify this callback. It is also normally used
     to pass an address of the data object on which the
     callback function will work. The <code>event</code>
     argument is the bitwise-or of the events that should
     trigger the callback.</p>

  <p>The optional data argument can be used to store any POD
     user data that doesn't exceed 8 bytes in size and doesn't require
     alignment greater than <code>unsigned long long</code>. For
     example, we could store an old value of a flag or a counter
     that needs to be restored in case of a roll back.</p>

  <p>The optional <code>state</code> argument can be used to
     indicate that the callback has been unregistered because
     the transaction was finalized. In this case the transaction
     automatically resets the passed pointer to 0. This is
     primarily useful if we are interested in only one of
     the events (commit or rollback).</p>

  <p>The <code>callback_unregister()</code> function unregisters a previously
     registered callback. If the number of registered callbacks is
     large, then this can be a slow operation. Generally, the callback
     mechanism is optimized for cases where the callbacks stay
     registered until the transaction is finalized.</p>

  <p>Note also that you don't need to unregister a callback that has
     been called or auto-reset using the <code>state</code> argument
     passed to <code>callback_register()</code>. This function does nothing
     if the key is not found.</p>

  <p>The <code>callback_update()</code> function can be used to update
     the <code>event</code>, <code>data</code>, and <code>state</code>
     values of a previously registered callback. Similar to
     <code>callback_unregister()</code>, this is a potentially slow
     operation.</p>

  <p>When the callback is called, it is passed the event that
     triggered it, as well as the <code>key</code> and
     <code>data</code> values that were passed to the
     <code>callback_register()</code> function. Note also that the order
     in which the callbacks are called is unspecified. The rollback
     event can be triggered by an exception. In this case, if the
     callback throws, the program will be terminated.</p>

  <p>The following example shows how we can use transaction
     callbacks together with database operation callbacks
     (<a href="#14.1.7">Section 14.1.7, "<code>callback</code>"</a>)
     to manage the object's "dirty" flag.</p>

  <pre class="cxx">
#include &lt;odb/callback.hxx>
#include &lt;odb/transaction.hxx>

#pragma db object callback(update)
class object
{
  ...

  #pragma db transient
  mutable bool dirty_;

  // Non-NULL value indicates that we are registered
  // with this transaction.
  //
  #pragma db transient
  mutable odb::transaction* tran_;

  void
  update (odb::callback_event e, odb::database&amp;) const
  {
    using namespace odb::core;

    if (e == callback_event::post_update)
      return;

    // Mark the object as clean again but register a
    // transaction callback in case the update is rolled
    // back.
    //
    tran_ = &amp;transaction::current ();
    tran_->callback_register (&amp;rollback,
                              const_cast&lt;object*> (this),
                              transaction::event_rollback,
                              0,
                              &amp;tran_);
    dirty_ = false;
  }

  static void
  rollback (unsigned short, void* key, unsigned long long)
  {
    // Restore the dirty flag since the changes have been
    // rolled back.
    //
    object&amp; o (*static_cast&lt;object*> (key));
    o.dirty_ = true;
  }

  ~object ()
  {
    // Unregister the callback if we are going away before
    // the transaction.
    //
    if (tran_ != 0)
      tran_->callback_unregister (this);
  }
};
  </pre>

  <h2><a name="15.2">15.2 Persistent Class Template Instantiations</a></h2>

  <p>Similar to composite value types (<a href="#7.2">Section 7.2, "Composite
     Value Types"</a>), a persistent object can be defined as an instantiation
     of a C++ class template, for example:</p>

  <pre class="cxx">
template &lt;typename T>
class person
{
  ...

  T first_;
  T last_;
};

typedef person&lt;std::string> std_person;

#pragma db object(std_person)
#pragma db member(std_person::last_) id
  </pre>

  <p>Note that the database support code for such a persistent object
     is generated when compiling the header containing the
     <code>db&nbsp;object</code> pragma and not the header containing
     the template definition or the <code>typedef</code> name. This
     allows us to use templates defined in other files, for example:</p>

  <pre class="cxx">
#include &lt;utility> // std::pair

typedef std::pair&lt;unsigned int, std::string> person;
#pragma db object(person)
#pragma db member(person::first) id auto column("id")
#pragma db member(person::second) column("name")
  </pre>

  <p>You may also have to explicitly specify the object type in
     calls to certain <code>database</code> class functions due
     to the inability do distinguish, at the API level, between
     smart pointers and persistent objects defined as class
     template instantiations. For example:</p>

  <pre class="cxx">
person p;

db.update (p); // Error.
db.reload (p); // Error.
db.erase (p);  // Error.

db.update&lt;person> (p); // Ok.
db.reload&lt;person> (p); // Ok.
db.erase&lt;person> (p);  // Ok.
  </pre>

  <p>It also makes sense to factor persistent data members that do not
     depend on template arguments into a common, non-template base class.
     The following more realistic example illustrates this approach:</p>

  <pre class="cxx">
#pragma db object abstract
class base_common
{
  ...

  #pragma db id auto
  unsigned long id;
};

template &lt;typename T>
class base: public base_common
{
  ...

  T value;
};

typedef base&lt;std::string> string_base;
#pragma db object(string_base) abstract

#pragma db object
class derived: public string_base
{
  ...
};
  </pre>

  <h2><a name="15.3">15.3 Bulk Database Operations</a></h2>

  <p>Some database systems supported by ODB provide a mechanism, often
     called bulk or batch statement execution, that allows us to execute
     the same SQL statement on multiple sets of data at once and with a
     single database API call. This often results in significantly
     better performance if we need to execute the same statement for a
     large number of data sets (thousands to millions).</p>

  <p>ODB translates this mechanism to bulk operations which allow
     us to persist, update, or erase a range of objects in the database.
     Currently, from all the database systems supported by ODB, only
     Oracle and Microsoft SQL Server are capable of bulk operations.
     There is also currently no emulation of the bulk API for other
     databases nor dynamic multi-database support. As a result, if
     you are using dynamic multi-database support, you will need to
     "drop down" to static support in order to access the bulk API.
     Refer to <a href="#16">Chapter 16, "Multi-Database Support"</a>
     for details.</p>

  <p>As we will discuss later in this section, bulk operations have
     complex failure semantics that is dictated by the underlying
     database API. As a result, support for bulk persist, update,
     and erase is limited to persistent classes for which these
     operations can be performed with a single database statement
     execution. In particular, bulk operations are not available
     for polymorphic objects (<a href="#8.2">Section 8.2,
     "Polymorphism Inheritance"</a>) or objects that have
     containers (inverse containers of object pointers are an
     exception). Furthermore, for objects that have sections
     (<a href="#9">Chapter 9, "Sections"</a>) the bulk update operation
     will only be available if all the sections are manually-updated.
     On the other hand, bulk operations are supported for objects
     that use optimistic concurrency (<a href="#12">Chapter 12,
     "Optimistic Concurrency"</a>) or have no object id
     (<a href="#14.1.6">Section 14.1.6, "<code>no_id</code>"</a>).</p>

  <p>To enable the generation of bulk operation support for a persistent
     class we use the <code>bulk</code> pragma. For example:</p>

  <pre class="cxx">
#pragma db object bulk(5000)
class person
{
  ...

  #pragma db id auto
  unsigned long id;
};
  </pre>

  <p>The single argument to the <code>bulk</code> pragma is the batch
     size. The batch size specifies the maximum number of data sets
     that should be handled with a single underlying statement execution.
     If the range that we want to perform the bulk operation on contains
     more objects than the batch size, then ODB will split this operation
     into multiple underlying statement executions (batches). To illustrate
     this point with an example, suppose we want to persist 53,000 objects
     and the batch size is 5,000. ODB will then execute the statement
     11 times, the first 10 times with 5,000 data sets each, and the
     last time with the remaining 3,000 data sets.</p>

  <p>The commonly used batch sizes are in the 2,000-5,000 range, though
     smaller or larger batches could provide better performance,
     depending on the situation. As a result, it is recommended to
     experiment with different batch sizes to determine the optimum
     number for a particular object and its use-cases. Note also that
     you may achieve better performance by also splitting a large bulk
     operation into multiple transactions (<a href="#3.5">Section 3.5,
     "Transactions"</a>).</p>

  <p>For database systems that do not support bulk operations the
     <code>bulk</code> pragma is ignored. It is also possible to
     specify different batch sizes for different database systems
     by using the database prefix, for example:</p>

  <pre class="cxx">
#pragma db object mssql:bulk(3000) oracle:bulk(4000)
class person
{
  ...
};
  </pre>

  <p>Note that while specifying the batch size at compile time might
     seem inflexible, this approach allows ODB to place internal
     arrays of the fixed batch size on the stack rather than
     allocating them in the dynamic memory. However, specifying the
     batch size at runtime may be supported in the future.</p>

  <p>Once the bulk support is enabled for a particular object, we can
     use the following <code>database</code> functions to perform bulk
     operations:</p>

  <pre class="cxx">
template &lt;typename I>
void
persist (I begin, I end, bool continue_failed = true);

template &lt;typename I>
void
update (I begin, I end, bool continue_failed = true);

template &lt;typename I>
void
erase (I obj_begin, I obj_end, bool continue_failed = true);

template &lt;typename T, typename I>
void
erase (I id_begin, I id_end, bool continue_failed = true);
  </pre>

  <p>Every bulk API function expects a range of elements, passed in
     the canonical C++ form as a pair of input iterators. In case of
     <code>persist()</code>, <code>update()</code>, and the first
     <code>erase()</code> overload, we pass a range of objects,
     either as references or as pointers, raw or smart. The following
     example illustrates the most common scenarios using the
     <code>persist()</code> call:</p>

  <pre class="cxx">
// C array of objects.
//
person a[2] {{"John", "Doe"}, {"Jane", "Doe"}};

db.persist (a, a + sizeof(a) / sizeof(a[0]));


// Vector of objects.
//
std::vector&lt;person> v {{"John", "Doe"}, {"Jane", "Doe"}};

db.persist (v.begin (), v.end ());


// C array of raw pointers to objects.
//
person p1 ("John", "Doe");
person p2 ("Jane", "Doe");
person* pa[2] {&amp;p1, &amp;p2};

db.persist (pa, pa + sizeof(pa) / sizeof(pa[0]));


// Vector of raw pointers to objects.
//
std::vector&lt;person*> pv {&amp;p1, &amp;p2};

db.persist (pv.begin (), pv.end ());


// Vector of smart (shared) pointers to objects.
//
std::vector&lt;std::shared_ptr&lt;person>> sv {
  std::make_shared&lt;person> ("John", "Doe"),
  std::make_shared&lt;person> ("Jane", "Doe")};

db.persist (sv.begin (), sv.end ());
  </pre>

  <p>The ability to perform a bulk operation on a range of raw pointers
     to objects can be especially useful when the application stores
     objects in a way that does not easily conform to the pair of
     iterators interface. In such cases we can create a temporary
     container of shallow pointers to objects and use that to perform
     the bulk operation, for example:</p>

  <pre class="cxx">
struct person_entry
{
  person obj;

  // Some additional data.
  ...
};

typedef std::vector&lt;person_entry> people;

void
persist (odb::database&amp; db, people&amp; p)
{
  std::vector&lt;person*> tmp;
  tmp.reserve (p.size ());
  std::for_each (p.begin (),
                 p.end (),
                 [&amp;tmp] (person_entry&amp; pe)
                 {
                   tmp.push_back (&amp;pe.obj);
                 });


  db.persist (tmp.begin (), tmp.end ());
}
  </pre>

  <p>The second overload of the bulk <code>erase()</code> function
     allows us to pass a range of object ids rather than objects
     themselves. As with the corresponding non-bulk version, we
     have to specify the object type explicitly, for example:</p>

  <pre class="cxx">
std::vector&lt;unsigned long> ids {1, 2};

db.erase&lt;person> (ids.begin (), ids.end ());
  </pre>

  <p>Conceptually, a bulk operation is equivalent to performing the
     corresponding non-bulk version in a loop, except when it comes to the
     failure semantics. Both databases that currently are capable of
     bulk operations (Oracle and SQL Server) do not stop when a data
     set in a batch fails (for example, because of a unique constraint
     violation). Instead, they continue executing subsequent data
     sets until every element in the batch has been attempted. The
     <code>continue_failed</code> argument in the bulk functions listed
     above specifies whether ODB should extend this behavior and continue
     with subsequent batches if the one it has tried to execute has failed
     elements. The default behavior is to continue.</p>

  <p>The consequence of this failure semantics is that we may have
     multiple elements in the range failed for different reasons.
     For example, if we tried to persist a number of objects, some
     of them might have failed because they are already persistent
     while others &mdash; because of a unique constraint violation.
     As a result, ODB uses the special <code>odb::multiple_exceptions</code>
     class to report failures in the bulk API functions. This
     exception is thrown if one or more elements in the range have
     failed and it contains the error information in the form of other
     ODB exception for each failed position. The
     <code>multiple_exceptions</code> class has the following interface:</p>

  <pre class="cxx">
struct multiple_exceptions: odb::exception
{
  // Element type.
  //
  struct value_type
  {
    std::size_t
    position () const;

    const odb::exception&amp;
    exception () const;

    bool
    maybe () const;
  };

  // Iteration.
  //
  typedef std::set&lt;value_type> set_type;

  typedef set_type::const_iterator iterator;
  typedef set_type::const_iterator const_iterator;

  iterator
  begin () const;

  iterator
  end () const;

  // Lookup.
  //
  const value_type*
  operator[] (std::size_t) const;

  // Severity, failed and attempted counts.
  //
  std::size_t
  attempted () const;

  std::size_t
  failed () const;

  bool
  fatal () const;

  void
  fatal (bool);

  // Direct data access.
  //
  const set_type&amp;
  set () const;

  // odb::exception interface.
  //
  virtual const char*
  what () const throw ();
};
  </pre>

  <p>The <code>multiple_exceptions</code> class has a map-like interface
     with the key being the position in the range and the value being
     the exception plus the <code>maybe</code> flag (discussed below).
     As a result, we can either iterate over the failed positions or
     we can check whether a specific position in the range has failed.
     The following example shows what a <code>catch</code>-handler for
     this exception might look like:</p>

  <pre class="cxx">
std::vector&lt;person> objs {{"John", "Doe"}, {"Jane", "Doe"}};

try
{
  db.persist (objs.begin (), objs.end ());
}
catch (const odb::multiple_exceptions&amp; me)
{
  for (const auto&amp; v: me)
  {
    size_t p (v.position ());

    try
    {
      throw v.exception ();
    }
    catch (const odb::object_already_persistent&amp;)
    {
      cerr &lt;&lt; p &lt;&lt; ": duplicate id: " &lt;&lt; objs[p].id () &lt;&lt; endl;
    }
    catch (const odb::exception&amp; e)
    {
      cerr &lt;&lt; p &lt;&lt; ": " &lt;&lt; e.what () &lt;&lt; endl;
    }
  }
}
  </pre>

  <p>If, however, all we want is to show the diagnostics to the user,
     then the string returned by the <code>what()</code> function
     will contain the error information for each failed position.
     Here is what it might look like (using Oracle as an example):</p>

  <pre class="terminal">
multiple exceptions, 4 elements attempted, 2 failed:
[0] object already persistent
[3] 1: ORA-00001: unique constraint (ODB_TEST.person_last_i) violated
  </pre>

  <p>Both databases that currently are capable of bulk operations return
     a total count of affected rows rather than individual counts for
     each data set. This limitation prevents ODB from being able to
     always determine which elements in the batch haven't affected
     any rows and, for the update and erase operations, translate
     this to the <code>object_not_persistent</code> exceptions. As
     a result, if some elements in the batch haven't affected any
     rows and ODB is unable to determine exactly which ones, it will mark
     all the elements in this batch as "maybe not persistent". That
     is, it will insert the <code>object_not_persistent</code> exception
     and set the <code>maybe</code> flag for every position in the
     batch. The diagnostics string returned by <code>what()</code>
     will also reflect this situation, for example (assuming batch
     size of 3):</p>

  <pre class="terminal">
multiple exceptions, 4 elements attempted, 4 failed:
[0-2] (some) object not persistent
[3] object not persistent
  </pre>

  <p>The way to handle and recover from such "maybe failures" will have
     to be application-specific. For example, for some applications the
     fact that some objects no longer exist in the database when
     performing bulk erase might be an ignorable error. If, however,
     the application needs to determine exactly which elements in the batch
     have failed, then a <code>load()</code> call will be required for each
     element in the batch (or a query using a view to avoid loading all
     the data members; <a href="#10">Chapter 10, "Views"</a>). This is also
     something to keep in mind when selecting the batch size since for
     larger sizes it will be more expensive (more loads to perform) to
     handle such "maybe failures". If the failures are not uncommon, as
     is the case, for example, when using optimistic concurrency, then
     it may make sense to use a smaller batch.</p>

  <p>The lookup operator (<code>operator[]</code>) returns <code>NULL</code>
     if the element at this position has no exception. Note also that the
     returned value is <code>value_type*</code> and not
     <code>odb::exception*</code> in order to provide access to the
     <code>maybe</code> flag discussed above.</p>

  <p>The <code>multiple_exceptions</code> class also provides access
     to the number of positions attempted (the <code>attempted()</code>
     accessor) and failed (the <code>failed()</code> accessor). Note
     that the failed count includes the "maybe failed" positions.</p>

  <p>The <code>multiple_exceptions</code> exception can also be fatal.
     If the <code>fatal()</code> accessor returns <code>true</code>, then
     (some of) the exceptions were fatal. In this case, even for positions
     that did not fail, no attempts were made to complete the operation
     and the transaction must be aborted.</p>

  <p>If <code>fatal()</code> returns false, then the operation on the
     elements that don't have an exception has succeeded. The application
     can ignore the errors or try to correct the errors and re-attempt
     the operation on the elements that did fail. In either case, the
     transaction can be committed.</p>

  <p>An example of a fatal exception would be the situation where the
     execution of the underlying statement failed summarily, without
     attempting any data sets, for instance, because of an error in
     the statement itself.</p>

  <p>The <code>fatal()</code> modifier allows you to "upgrade" an
     exception to fatal, for example, for specific database error
     codes.</p>


  <!-- PART -->


  <hr class="page-break"/>
  <h1><a name="II">PART II&nbsp;&nbsp;
      <span style="font-weight: normal;">DATABASE SYSTEMS</span></a></h1>

  <p>Part II covers topics specific to the database system
     implementations and their support in ODB. The first chapter in
     Part II discusses how to use multiple database systems in the
     same application. The subsequent chapters describe the system-specific
     <code>database</code> classes as well as the default mapping
     between basic C++ value types and native database types. Part
     II consists of the following chapters.</p>

  <table class="toc">
    <tr><th>16</th><td><a href="#16">Multi-Database Support</a></td></tr>
    <tr><th>17</th><td><a href="#17">MySQL Database</a></td></tr>
    <tr><th>18</th><td><a href="#18">SQLite Database</a></td></tr>
    <tr><th>19</th><td><a href="#19">PostgreSQL Database</a></td></tr>
    <tr><th>20</th><td><a href="#20">Oracle Database</a></td></tr>
    <tr><th>21</th><td><a href="#21">Microsoft SQL Server Database</a></td></tr>
  </table>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="16">16 Multi-Database Support</a></h1>

  <p>Some applications may need to access multiple database systems, either
     simultaneously or one at a time. For example, an application may
     utilize an embedded database such as SQLite as a local cache and use
     a client-server database such as PostgreSQL for more permanent
     but slower to access remote storage. Or an application may need
     to be able to store its data in any database selected at runtime
     by the user. Yet another scenario is the data migration from one
     database system to another. In this case, multi-database support
     is only required for a short period. It is also plausible that an
     application implements all three of these scenarios, that is, it
     uses SQLite as a local cache, allows the user to select the remote
     database system, and supports data migration from one remote database
     system to another.</p>

  <p>ODB provides two types of multi-database support: <em>static</em>
     and <em>dynamic</em>. With static support we use the
     database system-specific interfaces to perform database
     operations. That is, instead of using <code>odb::database</code>,
     <code>odb::transaction</code>, or <code>odb::query</code>, we
     would use, for example, <code>odb::sqlite::database</code>,
     <code>odb::sqlite::transaction</code>, or
     <code>odb::sqlite::query</code> to access an SQLite database.</p>

  <p>In contrast, with <em>dynamic</em> multi-database support we can
     use the common interface to access any database without having to
     know which one it is. At runtime, ODB will automatically dispatch
     a call on the common interface to the specific database implementation
     based on the actual <code>database</code> instance being
     used. In fact, this mechanism is very similar to C++ virtual
     functions.</p>

  <p>Both static and dynamic multi-database support have a different set
     of advantages and disadvantages which makes them more or less suitable
     for different use cases. Static support has zero overhead compared
     to single-database support and allows us to use database
     system-specific features, extensions, etc. At the same time, the
     code that we write will be tied to the specific database system.
     As a result, this type of multi-database support is more
     suitable for situations where different parts of an application
     access different but specific database systems. For example,
     using SQLite as a local cache most likely falls into this
     category since we are using a specific database system (SQLite)
     and the code that will check the cache will most likely (but
     not necessarily) be separate from the code that interact with
     the remote database. Another example where static multi-database
     support might be more suitable is a once-off data migration from
     one database system to another. In this case both the source and
     target are specific database systems. In contrast, if data migration
     from one database system to another is a general feature in an
     application, then dynamic multi-database support might be more
     suitable.</p>

  <p>The main advantage of dynamic multi-database support is the
     database system-independence of the code that we write. The same
     application code will work with any database system supported by
     ODB and the generated database support code can be packaged into
     separate libraries and loaded dynamically by the application. The
     disadvantages of dynamic support are slight overhead and certain
     limitations in functionality compared to static support (see
     <a href="#16.2">Section 16.2, "Dynamic Multi-Database Support"</a>
     for details). As a result, dynamic multi-database support is most
     suitable to situations where we need the same code to
     work with a range of database systems. For example, if your
     application must be able to store its data in any database
     selected by the user, then dynamic support is probably the
     best option.</p>

  <p>Note also that it is possible to mix and match static and dynamic
     support in the same application. In fact, dynamic support is built
     on top of static support so it is possible to use the same database
     system both "statically" and "dynamically". In particular, the ability
     to "drop down" from dynamic to static support can be used to overcome
     the functionality limitations mentioned above. Finally,
     single-database support is just a special case of static
     multi-database support with a single database system.</p>

  <p>By default ODB assumes single-database support. To enable
     multi-database support we use the <code>--multi-database</code>
     (or <code>-m</code>) ODB compiler option. This option is also used to
     specify the support type: <code>static</code> or <code>dynamic</code>.
     For example:</p>

  <pre class="terminal">
odb -m static ... person.hxx
  </pre>

  <p>With multi-database support enabled, we can now generate the database
     support code for several database systems. This can be accomplished
     either with a single ODB compiler invocation by specifying multiple
     <code>--database</code> (or <code>-d</code>) options or with multiple
     ODB compiler invocations. Both approaches produce the same result,
     for example:</p>

  <pre class="terminal">
odb -m static -d common -d sqlite -d pgsql person.hxx
  </pre>

  <p>Is equivalent to:</p>

  <pre class="terminal">
odb -m static -d common person.hxx
odb -m static -d sqlite person.hxx
odb -m static -d pgsql person.hxx
  </pre>

  <p>Notice that the first <code>-d</code> option has <code>common</code>
     as its value. This is not a real database system. Rather, it instructs
     the ODB compiler to generate code that is common to all the database
     systems and, in case of dynamic support, is also the common
     interfaces.</p>

  <p>If you look at the result of the above commands, you will also notice
     changes in the output file names. In the single-database mode the ODB
     compiler produces a single set of the <code>person-odb.?xx</code> files
     which contain both the common as well as the database specific
     generated code (since there is only one database system in use,
     there is no reason to split the two). In contrast, in the
     multi-database mode, the <code>person-odb.?xx</code> set of files
     contains the common code while the database system-specific code is
     written to files in the form <code>person-odb-&lt;db>.?xx</code>.
     That is, <code>person-odb-sqlite.?xx</code> for SQLite,
     <code>person-odb-pgsql.?xx</code> for PostgreSQL, etc.</p>

  <p>If we need dynamic support for some databases and static for
     others, then the <code>common</code> code must be generated
     in the dynamic mode. For example, if we need static support
     for SQLite and dynamic support for PostgreSQL and Oracle, then
     the ODB compiler invocations could look like this:</p>

  <pre class="terminal">
odb -m dynamic -d common person.hxx
odb -m static -d sqlite person.hxx
odb -m dynamic -d pgsql person.hxx
odb -m dynamic -d oracle person.hxx
  </pre>

  <p>With multi-database support enabled, it is possible to restrict ODB
     pragmas to apply only to a specific database system (unrestricted
     pragmas apply to all the databases). For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db pgsql:type("VARCHAR(128)") sqlite:type("TEXT")
  std::string name_;

  unsigned short age_;

  #pragma db pgsql index member(age_)
};
  </pre>

  <p>Above, the pragma for the <code>name_</code> data member shows the
     use of a database prefix (for example, <code>pgsql:</code>) that
     only applies to the specifier that follows. The pragma that defines
     an index on the <code>age_</code> data member shows the use of a
     database prefix that applies to the whole pragma. In this case the
     database name must immediately follow the <code>db</code> keyword.</p>


  <p>Similar to pragmas, ODB compiler options that determine the kind
     (for example, <code>--schema-format</code>), names (for example,
     <code>--odb-file-suffix</code>), or content (for example, prologue
     and epilogue options) of the output files can be prefixed with the
     database name. For example:</p>

  <pre class="terminal">
odb --odb-file-suffix common:-odb-common ...
  </pre>

  <p>Dynamic multi-database support requires consistent mapping across
     all the databases. That is, the same classes and data members
     should be mapped to objects, simple/composite values, etc., for
     all the databases. In contrast, static multi-database support
     does not have this restriction. Specifically, with static support,
     some data members can be transient for some database systems.
     Similarly, the same class (for example, <code>point</code>) can
     be mapped to a simple value in one database (for example, to the
     <code>POINT</code> PostgreSQL type) and to a composite value
     in another (for example, in SQLite, which does not have a
     built-in point type).</p>

  <p>The following sections discuss static and dynamic multi-database
     support in more detail.</p>


  <h2><a name="16.1">16.1 Static Multi-Database Support</a></h2>

  <p>With static multi-database support, instead of including
     <code>person-odb.hxx</code>, application source code has
     to include <code>person-odb-&lt;db>.hxx</code> header files
     corresponding to the database systems that will be used.</p>

  <p>The application code has to also use database system-specific
     interfaces when performing database operations. As an example,
     consider the following transaction in a single-database
     application. It uses the common interfaces, that is, classes
     from the <code>odb</code> namespace.</p>

  <pre class="cxx">
#include "person-odb.hxx"

odb::database&amp; db = ...

typedef odb::query&lt;person> query;
typedef odb::result&lt;person> result;

odb::transaction t (db.begin ());
result r (db.query&lt;person> (query::age &lt; 30));
...
t.commit ();
  </pre>

  <p>In an application that employs static multi-database support
     the same transaction for SQLite would be rewritten like this:</p>

  <pre class="cxx">
#include "person-odb-sqlite.hxx"

odb::sqlite::database&amp; db = ...

typedef odb::sqlite::query&lt;person> query;
typedef odb::result&lt;person> result;      // odb:: not odb::sqlite::

odb::sqlite::transaction t (db.begin ());
result r (db.query&lt;person> (query::age &lt; 30));
...
t.commit ();
  </pre>

  <p>That is, the <code>database</code>, <code>transaction</code>, and
     <code>query</code> classes now come from the <code>odb::sqlite</code>
     namespace instead of <code>odb</code>. Other classes that have
     database system-specific interfaces are <code>connection</code>,
     <code>statement</code>, and <code>tracer</code>. Note that
     all of them derive from the corresponding common versions. It
     is also possible to use common <code>transaction</code>,
     <code>connection</code>, and <code>statement</code> classes
     with static support, if desired.</p>

  <p>Notice that we didn't use the <code>odb::sqlite</code> namespace
     for the <code>result</code> class template. This is because
     <code>result</code> is database system-independent. All other
     classes defined in namespace <code>odb</code>, except those
     specifically mentioned above, are database system-independent.
     In particular, <code>result</code>, <code>prepared_query</code>,
     <code>session</code>, <code>schema_catalog</code>, and all the
     exceptions are database system-independent.</p>

  <p>Writing <code>odb::sqlite::</code> before every name can quickly
     become burdensome. As we have seen before, in single-database
     applications that use the common interface we can add the
     <code>using namespace</code> directive to avoid qualifying
     each name. For example:</p>

  <pre class="cxx">
#include "person-odb.hxx"

odb::database&amp; db = ...

{
  using namespace odb::core;

  typedef query&lt;person> person_query;
  typedef result&lt;person> person_result;

  transaction t (db.begin ());
  person_result r (db.query&lt;person> (person_query::age &lt; 30));
  ...
  t.commit ();
}
  </pre>

  <p>A similar mechanism is available in multi-database support. Each
     database runtime defines the <code>odb::&lt;db>::core</code>
     namespace that contains all the database system-independent
     names as well as the database system-specific ones for this
     database. Here is how we can rewire the above transaction
     using this approach:</p>

  <pre class="cxx">
#include "person-odb-sqlite.hxx"

odb::sqlite::database&amp; db = ...

{
  using namespace odb::sqlite::core;

  typedef query&lt;person> person_query;
  typedef result&lt;person> person_result;

  transaction t (db.begin ());
  person_result r (db.query&lt;person> (person_query::age &lt; 30));
  ...
  t.commit ();
}
  </pre>

  <p>If the <code>using namespace</code> directive cannot be used, for
     example, because the same code fragment accesses several databases,
     then we can still make the namespace qualifications more concise
     by assigning shorter aliases to database namespaces. For example:</p>

  <pre class="cxx">
#include "person-odb-pgsql.hxx"
#include "person-odb-sqlite.hxx"

namespace pg = odb::pgsql;
namespace sl = odb::sqlite;

pg::database&amp; pg_db = ...
sl::database&amp; sl_db = ...

typedef pg::query&lt;person> pg_query;
typedef sl::query&lt;person> sl_query;
typedef odb::result&lt;person> result;

// First check the local cache.
//
odb::transaction t (sl_db.begin ()); // Note: using common transaction.
result r (sl_db.query&lt;person> (sl_query::age &lt; 30));

// If no hits, try the remote database.
//
if (r.empty ())
{
  t.commit ();              // End the SQLite transaction.
  t.reset (pg_db.begin ()); // Start the PostgreSQL transaction.

  r = pg_db.query&lt;person> (pg_query::age &lt; 30);
}

// Handle the result.
//
...

t.commit ();
  </pre>

  <p>With static multi-database support we can make one of the databases
     the default database with the <code>--default-database</code> option.
     The default database can be accessed via the common interface, just
     like with single-database support. For example:</p>

  <pre class="terminal">
odb -m static -d common -d pgsql -d sqlite --default-database pgsql ...
  </pre>

  <p>The default database mechanism can be useful when one of the
     databases is primary or when retrofitting multi-database support
     into an existing single-database application. For example, if
     we are adding SQLite as a local cache into an existing
     application that uses PostgreSQL as its only database, then
     by making PostgreSQL the default database we avoid having to
     change all the existing code. Note that if dynamic multi-database
     support is enabled, then the common (dynamic) interface is always
     made the default database.</p>

  <h2><a name="16.2">16.2 Dynamic Multi-Database Support</a></h2>

  <p>With dynamic multi-database support, application source code only
     needs to include the <code>person-odb.hxx</code> header file, just
     like with single-database support. In particular, we don't need
     to include any of the <code>person-odb-&lt;db>.hxx</code> files
     unless we would also like to use certain database systems in the
     static multi-database mode.</p>

  <p>When performing database operations, the application code
     uses the common interfaces from the <code>odb</code> namespace,
     just like with single-database support. As an example, consider
     a function that can be used to load an object either from a local
     SQLite cache or a remote PostgreSQL database (in reality, this
     function can be used with any database system support by ODB
     provided we generated the database support code for this database
     and linked it into our application):</p>

  <pre class="cxx">
#include "person-odb.hxx"

std::unique_ptr&lt;person>
load (odb::database&amp; db, const std::string&amp; name)
{
  odb::transaction t (db.begin ());
  std::unique_ptr&lt;person> p (db.find (name));
  t.commit ();
  return p;
}

odb::pgsql::database&amp; pg_db = ...
odb::sqlite::database&amp; sl_db = ...

// First try the local cache.
//
std::unique_ptr&lt;person> p (load (sl_db, "John Doe"));

// If not found, try the remote database.
//
if (p == 0)
  p = load (pg_db, "John Doe");

...
  </pre>

  <p>As you can see, we can use dynamic multi-database support just like
     single-database support except that now our code can work with
     different database systems. Note, however, one difference: with
     single-database support we could perform database operations using
     either the common <code>odb::database</code> or a database system-specific
     (for example, <code>odb::sqlite::database</code>) interface
     with the same effect. In contrast, with dynamic multi-database support,
     the use of the database system-specific interface results in the
     switch to the static mode (for which, as was mentioned earlier, we would
     need to include the corresponding <code>person-odb-&lt;db>.hxx</code>
     header file). As we will discuss shortly, switching from dynamic to
     static mode can be used to overcome limitations imposed by dynamic
     multi-database support.</p>

  <p>Dynamic multi-database support has certain overheads and limitations
     compared to static support. For database operations, the generated code
     maintains function tables that are used to dispatch calls to the database
     system-specific implementations. In single-database and static
     multi-database support, the <code>query</code> type implements a thin
     wrapper around the underlying database system's <code>SELECT</code>
     statement. With dynamic multi-database support, because the
     underlying database system is only known at query execution
     (or preparation) time, the <code>query</code> type stores a
     database system-independent representation of the query that
     is then translated to the database system-specific form. Because
     of this database system-independent representation, dynamic
     support queries have a number of limitations. Specifically, dynamic
     queries do not support parameter binding in native query fragments.
     They also make copies of by-value parameterd (by-reference parameters
     can be used to remove this overhead). Finally, parameters of array
     types (for example, <code>char[256]</code>) can only be bound
     by-reference.</p>

  <p>As we mentioned earlier, switching from dynamic to static mode
     can be an effective way to overcome these limitations. As an
     example, consider a function that prints the list of people of
     a certain age. The caller also specified the limit on the number
     of entries to print. Some database systems, for example, PostgreSQL,
     allow us to propagate this limit to the database server with the
     <code>LIMIT</code> clause. To add this clause we would need to
     construct a native query fragment and, as we discussed above, we
     won't be able to bind a parameter (the limit) while in the dynamic
     mode. The following implementation shows how we can overcome this
     by switching to the static mode and using the PostgreSQL-specific
     interface:</p>

  <pre class="cxx">
#include "person-odb.hxx"
#include "person-odb-pgsql.hxx" // Needed for static mode.

void
print (odb::database&amp; db, unsigned short age, unsigned long limit)
{
  typedef odb::query&lt;person> query;
  typedef odb::result&lt;person> result;

  odb::transaction t (db.begin ());

  query q (query::age == age);
  result r;

  if (db.id () == odb::id_pgsql)
  {
    // We are using PostgreSQL. Drop down to the static mode and
    // add the LIMIT clause to the query.
    //
    namespace pg = odb::pgsql;
    typedef pg::query&lt;person> pg_query;

    pg::database&amp; pg_db (static_cast&lt;pg::database&amp;> (db));
    pg_query pg_q (pg_query (q) + "LIMIT" + pg_query::_val (limit));
    r = pg_db.query&lt;person> (pg_q);
  }
  else
    r = db.query&lt;person> (q);

  // Handle the result up to the limit elements.
  //
  ...

  t.commit ();
}

odb::pgsql::database&amp; pg_db = ...
odb::sqlite::database&amp; sl_db = ...

print (sl_db, 30, 100);
print (sl_db, 30, 100);
  </pre>

  <p>A few things to note about this example. First, we use the
     <code>database::id()</code> function to determine the actual database
     system we use. This function has the following signature:</p>

  <pre class="cxx">
namespace odb
{
  enum database_id
  {
    id_mysql,
    id_sqlite,
    id_pgsql,
    id_oracle,
    id_mssql,
    id_common
  };

  class database
  {
  public:
    ...

    database_id
    id () const;
  }
}
  </pre>

  <p>Note that <code>database::id()</code> can never return the
     <code>id_common</code> value.</p>

  <p>The other thing to note is how we translate the dynamic query
     to the database system-specific one (the <code>pg_query (q)</code>
     expression). Every <code>odb::&lt;db>::query</code> class provides
     such a translation constructor.</p>

  <h3><a name="16.2.2">16.2.2 Dynamic Loading of Database Support Code</a></h3>

  <p>With dynamic multi-database support, the generated database support
     code automatically registers itself with the function tables that
     we mentioned earlier. This makes it possible to package the generated
     code for each database into a separate dynamic-link library (Windows
     DLL) or dynamic shared object (Unix DSO; collectively referred to as
     DLLs from now on) and load/unload them from the application
     dynamically using APIs such as Win32 <code>LoadLibrary()</code> or
     POSIX <code>dlopen()</code>. This allows the application address
     space to contain code only for database systems that are actually
     needed in any particular moment. Another advantage of this approach
     is the ability to distribute individual database system support
     separately.</p>

  <p>This section provides an overview of how to package the generated
     database support code into DLLs for both Windows and Unix using
     GNU/Linux as an example. Note also that if static multi-database
     support is used for a particular database system, then the dynamic
     loading cannot be used for this database. It is, however, still
     possible to package the generated code into a DLL but this DLL
     will have to be linked to the executable at link-time rather
     than at runtime. If dynamic loading is desirable in this situation,
     then another alternative would be to package the functionality
     that requires static support together with the database support
     code into the DLL and import this functionality dynamically
     using the <code>GetProcAddress()</code> (Win32) or <code>dlsym()</code>
     (Unix) function.</p>

  <p>The first step in packaging the generated code into DLLs is to
     set up the symbol exporting. This step is required for
     Windows DLLs but is optional for Unix DSOs. Most modern Unix
     systems (such as GNU/Linux) provide control over symbol
     visibility, which is a mechanism similar to Windows symbol
     exporting. Notable advantages of using this mechanism to
     explicitly specify which symbols are visible include
     smaller Unix DSOs and faster load times. If, however, you are
     not planning to control symbol visibility on Unix, then you can
     skip directly to the second step below.</p>

  <p>An important point to understand is that we only need to export
     the common interface, that is, the classes defined in the
     <code>person-odb.hxx</code> header. In particular, we don't need
     to export the database system-specific classes defined in
     the <code>person-odb-&lt;db>.hxx</code>, unless we are also using
     this database in the static mode (in which case, the procedure
     described below will need to be repeated for that database as
     well).</p>

  <p>The ODB compiler provides two command line options,
     <code>--export-symbol</code> and <code>--extern-symbol</code>,
     which can be used to insert the export and extern
     macros in all the necessary places in the generated header file.
     You are probably familiar with the concept of export macro which
     expands to an export directive if we are building the DLL and to
     an import directive if we are building client code. The
     extern macro is a supplementary mechanism which is necessary to
     export explicit template instantiations used by the generated
     code when query support is enabled. As we will see shortly, the
     extern macro must expand into the <code>extern</code> C++ keyword
     in certain situations and must be left undefined in others. To
     manage all these macro definitions, it is customary to create the
     so called export header. Based on a single macro that is normally
     defined in the project file or on the command line and which
     indicates whether we are building the DLL or client code, the
     export header file sets the export and extern macros to their
     appropriate values. Continuing with our person example, on Windows
     the export header, which we will call <code>person-export.hxx</code>,
     could look like this:</p>

  <pre class="cxx">
// person-export.hxx
//
// Define PERSON_BUILD_DLL if we are building the DLL. Leave it
// undefined in client code.
//
#ifndef PERSON_EXPORT_HXX
#define PERSON_EXPORT_HXX

#ifdef PERSON_BUILD_DLL
#  define PERSON_EXPORT __declspec(dllexport)
#else
#  define PERSON_EXPORT __declspec(dllimport)
#  define PERSON_EXTERN extern
#endif

#endif // PERSON_EXPORT_HXX
  </pre>

  <p>The equivalent export header for GCC on GNU/Linux is shown below.
     Note also that on GNU/Linux, by default, all symbols are visible
     and we need to add the GCC <code>-fvisibility=hidden</code> option to
     make them hidden by default.</p>

  <pre class="cxx">
// person-export.hxx
//
#ifndef PERSON_EXPORT_HXX
#define PERSON_EXPORT_HXX

#define PERSON_EXPORT __attribute__ ((visibility ("default")))
#define PERSON_EXTERN extern

#endif // PERSON_EXPORT_HXX
  </pre>

  <p>Next we need to export the <code>person</code> persistent class
     using the export macro and re-compile our <code>person.hxx</code> file
     with the <code>--export-symbol</code> and <code>--extern-symbol</code>
     options. We will also need to include <code>person-export.hxx</code>
     into the generated <code>person-odb.hxx</code> file. For that we use
     the <code>--hxx-prologue</code> option. Here is how we can do
     this with multiple invocations of the ODB compiler:</p>

  <pre class="terminal">
odb -m dynamic -d common --hxx-prologue "#include \"person-export.hxx\"" \
--export-symbol PERSON_EXPORT --extern-symbol PERSON_EXTERN person.hxx

odb -m dynamic -d sqlite person.hxx
odb -m dynamic -d pgsql person.hxx
  </pre>

  <p>It is also possible to achieve the same with a single invocation.
     Here we need to restrict some option values to apply only to the
     <code>common</code> database:</p>

  <pre class="terminal">
odb -m dynamic -d common -d sqlite -d pgsql \
--hxx-prologue "common:#include \"person-export.hxx\"" \
--export-symbol common:PERSON_EXPORT --extern-symbol common:PERSON_EXTERN \
person.hxx
  </pre>

  <p>The second step in packaging the generated code into DLLs is to
     decide where to place the generated common interface code. One
     option is to place it into a DLL of its own so that we will end
     up with (replace <code>*.dll</code> with <code>lib*.so</code> for
     Unix): <code>person.dll</code> plus <code>person-sqlite.dll</code> and
     <code>person-pgsql.dll</code>, which both link to <code>person.dll</code>,
     as well as <code>person.exe</code>, which links to <code>person.dll</code>
     and dynamically loads <code>person-sqlite.dll</code>
     and/or <code>person-pgsql.dll</code>. If this is the organization
     that you prefer, then the next step is to build all the DLLs as you
     normally would any other DLL, placing <code>person-odb.cxx</code>
     and <code>person.cxx</code> into <code>person.dll</code>,
     <code>person-odb-sqlite.cxx</code> into <code>person-sqlite.dll</code>,
     etc. Note that in the pure dynamic multi-database support,
     <code>person-sqlite.dll</code> and <code>person-pgsql.dll</code>
     do not export any symbols.</p>

  <p>We can improve on the above organization by getting rid of
     <code>person.dll</code>, which is not really necessary unless
     we have multiple executables sharing the same database support.
     To achieve this, we will place <code>person-odb.cxx</code> into
     <code>person.exe</code> and export its symbols from the executable
     instead of a DLL. Exporting symbols from an executable is a seldom
     used functionality, especially on Windows, however, it is well
     supported on both Windows and most Unix platforms. Note also that
     this approach won't work if we also use one of the databases in the
     static mode.</p>

  <p>On Windows all we have to do is place <code>person-odb.cxx</code>
     into the executable and compile it as we would in a DLL (that is,
     with the <code>PERSON_BUILD_DLL</code> macro defined). If Windows
     linker detects that an executable exports any symbols, then it
     will automatically create the corresponding import library
     (<code>person.lib</code> in our case). We then use this import
     library to build <code>person-sqlite.dll</code> and
     <code>person-pgsql.dll</code> as before.</p>

  <p>To export symbols from an executable on GNU/Linux all we need to
     do is add the <code>-rdynamic</code> option when linking our
     executable.</p>

  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="17">17 MySQL Database</a></h1>

  <p>To generate support code for the MySQL database you will need
     to pass the "<code>--database&nbsp;mysql</code>"
     (or "<code>-d&nbsp;mysql</code>") option to the ODB compiler.
     Your application will also need to link to the MySQL ODB runtime
     library (<code>libodb-mysql</code>). All MySQL-specific ODB
     classes are defined in the <code>odb::mysql</code> namespace.</p>

  <h2><a name="17.1">17.1 MySQL Type Mapping</a></h2>

  <p>The following table summarizes the default mapping between basic
     C++ value types and MySQL database types. This mapping can be
     customized on the per-type and per-member basis using the ODB
     Pragma Language (<a href="#14">Chapter 14, "ODB Pragma
     Language"</a>).</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>C++ Type</th>
      <th>MySQL Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>bool</code></td>
      <td><code>TINYINT(1)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>char</code></td>
      <td><code>CHAR(1)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>signed char</code></td>
      <td><code>TINYINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned char</code></td>
      <td><code>TINYINT UNSIGNED</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>short</code></td>
      <td><code>SMALLINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned short</code></td>
      <td><code>SMALLINT UNSIGNED</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>int</code></td>
      <td><code>INT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned int</code></td>
      <td><code>INT UNSIGNED</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>long</code></td>
      <td><code>BIGINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned long</code></td>
      <td><code>BIGINT UNSIGNED</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>long long</code></td>
      <td><code>BIGINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned long long</code></td>
      <td><code>BIGINT UNSIGNED</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>float</code></td>
      <td><code>FLOAT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>double</code></td>
      <td><code>DOUBLE</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>std::string</code></td>
      <td><code>TEXT/VARCHAR(255)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>char[N]</code></td>
      <td><code>VARCHAR(N-1)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>
  </table>

  <p>It is possible to map the <code>char</code> C++ type to an integer
     database type (for example, <code>TINYINT</code>) using the
     <code>db&nbsp;type</code> pragma (<a href="#14.4.3">Section 14.4.3,
     "<code>type</code>"</a>).</p>

  <p>Note that the <code>std::string</code> type is mapped
     differently depending on whether a member of this type
     is an object id or not. If the member is an object id,
     then for this member <code>std::string</code> is mapped
     to the <code>VARCHAR(255)</code> MySQL type. Otherwise,
     it is mapped to <code>TEXT</code>.</p>

  <p>Additionally, by default, C++ enums and C++11 enum classes are
     automatically mapped to suitable MySQL types. Contiguous
     enumerations with the zero first enumerator are mapped to
     the MySQL <code>ENUM</code> type. All other enumerations
     are mapped to the MySQL types corresponding to their
     underlying integral types (see table above). In both
     cases the default <code>NULL</code> semantics is
     <code>NOT NULL</code>. For example:</p>

  <pre class="cxx">
enum color {red, green, blue};
enum class taste: unsigned char
{
  bitter = 1, // Non-zero first enumerator.
  sweet,
  sour = 4,   // Non-contiguous.
  salty
};

#pragma db object
class object
{
  ...

  color color_; // Mapped to ENUM ('red', 'green', 'blue') NOT NULL.
  taste taste_; // Mapped to TINYNT UNSIGNED NOT NULL.
};
  </pre>

  <p>It is also possible to add support for additional MySQL types,
     such as geospatial types. For more information, refer to
     <a href="#14.8">Section 14.8, "Database Type Mapping
     Pragmas"</a>.</p>

  <h3><a name="17.1.1">17.1.1 String Type Mapping</a></h3>

  <p>The MySQL ODB runtime library provides support for mapping the
     <code>std::string</code>, <code>char[N]</code>, and
     <code>std::array&lt;char, N></code> types to the MySQL <code>CHAR</code>,
     <code>VARCHAR</code>, <code>TEXT</code>, <code>NCHAR</code>, and
     <code>NVARCHAR</code> types. However, these mappings are not enabled
     by default (in particular, by default, <code>std::array</code> will
     be treated as a container). To enable the alternative mappings for
     these types we need to specify the database type explicitly using
     the <code>db&nbsp;type</code> pragma (<a href="#14.4.3">Section
     14.4.3, "<code>type</code>"</a>), for example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  #pragma db type("CHAR(2)")
  char state_[2];

  #pragma db type("VARCHAR(128)")
  std::string name_;
};
  </pre>

  <p>Alternatively, this can be done on the per-type basis, for example:</p>

  <pre class="cxx">
#pragma db value(std::string) type("VARCHAR(128)")

#pragma db object
class object
{
  ...

  std::string name_; // Mapped to VARCHAR(128).
};
  </pre>

  <p>The <code>char[N]</code> and <code>std::array&lt;char, N></code> values
     may or may not be zero-terminated. When extracting such values from the
     database, ODB will append the zero terminator if there is enough
     space.</p>

  <h3><a name="17.1.2">17.1.2 Binary Type Mapping</a></h3>

  <p>The MySQL ODB runtime library provides support for mapping the
     <code>std::vector&lt;char></code>,
     <code>std::vector&lt;unsigned&nbsp;char></code>,
     <code>char[N]</code>, <code>unsigned&nbsp;char[N]</code>,
     <code>std::array&lt;char, N></code>, and
     <code>std::array&lt;unsigned char, N></code>
     types to the MySQL <code>BINARY</code>, <code>VARBINARY</code>,
     and <code>BLOB</code> types. However, these mappings are not enabled
     by default (in particular, by default, <code>std::vector</code> and
     <code>std::array</code> will be treated as containers). To enable the
     alternative mappings for these types we need to specify the database
     type explicitly using the <code>db&nbsp;type</code> pragma
     (<a href="#14.4.3">Section 14.4.3, "<code>type</code>"</a>), for
     example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  #pragma db type("BLOB")
  std::vector&lt;char> buf_;

  #pragma db type("BINARY(16)")
  unsigned char uuid_[16];
};
  </pre>

  <p>Alternatively, this can be done on the per-type basis, for example:</p>

  <pre class="cxx">
typedef std::vector&lt;char> buffer;
#pragma db value(buffer) type("BLOB")

#pragma db object
class object
{
  ...

  buffer buf_; // Mapped to BLOB.
};
  </pre>

  <p>Note also that in native queries (<a href="#4">Chapter 4, "Querying
     the Database"</a>) <code>char[N]</code> and
     <code>std::array&lt;char, N></code> parameters are by default passed
     as a string rather than a binary. To pass such parameters as a binary,
     we need to specify the database type explicitly in the
     <code>_val()</code>/<code>_ref()</code> calls. Note also that we
     don't need to do this for the integrated queries, for example:</p>

  <pre class="cxx">
char u[16] = {...};

db.query&lt;object> ("uuid = " + query::_val&lt;odb::mysql::id_blob> (u));
db.query&lt;object> (query::uuid == query::_ref (u));
  </pre>

  <h2><a name="17.2">17.2 MySQL Database Class</a></h2>

  <p>The MySQL <code>database</code> class has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace mysql
  {
    class database: public odb::database
    {
    public:
      database (const char* user,
                const char* passwd,
                const char* db,
                const char* host = 0,
                unsigned int port = 0,
                const char* socket = 0,
                const char* charset = 0,
                unsigned long client_flags = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (const std::string&amp; user,
                const std::string&amp; passwd,
                const std::string&amp; db,
                const std::string&amp; host = "",
                unsigned int port = 0,
                const std::string* socket = 0,
                const std::string&amp; charset = "",
                unsigned long client_flags = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (const std::string&amp; user,
                const std::string* passwd,
                const std::string&amp; db,
                const std::string&amp; host = "",
                unsigned int port = 0,
                const std::string* socket = 0,
                const std::string&amp; charset = "",
                unsigned long client_flags = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (const std::string&amp; user,
                const std::string&amp; passwd,
                const std::string&amp; db,
                const std::string&amp; host,
                unsigned int port,
                const std::string&amp; socket,
                const std::string&amp; charset = "",
                unsigned long client_flags = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (const std::string&amp; user,
                const std::string* passwd,
                const std::string&amp; db,
                const std::string&amp; host,
                unsigned int port,
                const std::string&amp; socket,
                const std::string&amp; charset = "",
                unsigned long client_flags = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (int&amp; argc,
                char* argv[],
                bool erase = false,
                const std::string&amp; charset = "",
                unsigned long client_flags = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      static void
      print_usage (std::ostream&amp;);

    public:
      const char*
      user () const;

      const char*
      password () const;

      const char*
      db () const;

      const char*
      host () const;

      unsigned int
      port () const;

      const char*
      socket () const;

      const char*
      charset () const;

      unsigned long
      client_flags () const;

    public:
      connection_ptr
      connection ();
    };
  }
}
  </pre>

  <p>You will need to include the <code>&lt;odb/mysql/database.hxx></code>
     header file to make this class available in your application.</p>

  <p>The overloaded <code>database</code> constructors allow us
     to specify MySQL database parameters that should be used when
     connecting to the database. In MySQL <code>NULL</code> and an
     empty string are treated as the same values for all the
     string parameters except <code>password</code> and
     <code>socket</code>.</p>

  <p>The <code>charset</code> argument allows us to specify the client
     character set, that is, the character set in which the application
     will encode its text data. Note that this can be different from
     the MySQL server character set. If this argument is not specified or
     is empty, then the default MySQL client character set is used, normally
     <code>latin1</code>. Commonly used values for this argument are
     <code>latin1</code> (equivalent to Windows cp1252 and similar to
     ISO-8859-1) and <code>utf8</code>. For other possible values
     as well as more information on character set support in MySQL,
     refer to the MySQL documentation.</p>

  <p>The <code>client_flags</code> argument allows us to specify various
     MySQL client library flags. For more information on the possible
     values, refer to the MySQL C API documentation. The
     <code>CLIENT_FOUND_ROWS</code> flag is always set by the MySQL ODB
     runtime regardless of whether it was passed in the
     <code>client_flags</code> argument.</p>

  <p>The last constructor extracts the database parameters
     from the command line. The following options are recognized:</p>

  <pre class="terminal">
  --user &lt;login>
  --password &lt;password>
  --database &lt;name>
  --host &lt;host>
  --port &lt;integer>
  --socket &lt;socket>
  --options-file &lt;file>
  </pre>

  <p>The <code>--options-file</code> option allows us to specify some
     or all of the database options in a file with each option appearing
     on a separate line followed by a space and an option value.</p>

  <p>If the <code>erase</code> argument to this constructor is true,
     then the above options are removed from the <code>argv</code>
     array and the <code>argc</code> count is updated accordingly.
     This is primarily useful if your application accepts other
     options or arguments and you would like to get the MySQL
     options out of the <code>argv</code> array.</p>

  <p>This constructor throws the <code>odb::mysql::cli_exception</code>
     exception if the MySQL option values are missing or invalid.
     See section <a href="#17.4">Section 17.4, "MySQL Exceptions"</a>
     for more information on this exception.</p>

  <p>The static <code>print_usage()</code> function prints the list of options
     with short descriptions that are recognized by this constructor.</p>

  <p>The last argument to all of the constructors is a pointer to the
     connection factory. In C++98/03, it is <code>std::auto_ptr</code> while
     in C++11 <code>std::unique_ptr</code> is used instead. If we pass a
     non-<code>NULL</code> value, the database instance assumes ownership
     of the factory instance. The connection factory interface as well as
     the available implementations are described in the next section.</p>

  <p>The set of accessor functions following the constructors allows us
     to query the parameters of the <code>database</code> instance.</p>

  <p>The <code>connection()</code> function returns a pointer to the
     MySQL database connection encapsulated by the
     <code>odb::mysql::connection</code> class. For more information
     on <code>mysql::connection</code>, refer to <a href="#17.3">Section
     17.3, "MySQL Connection and Connection Factory"</a>.</p>

  <h2><a name="17.3">17.3 MySQL Connection and Connection Factory</a></h2>

  <p>The <code>mysql::connection</code> class has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace mysql
  {
    class connection: public odb::connection
    {
    public:
      connection (database&amp;);
      connection (database&amp;, MYSQL*);

      MYSQL*
      handle ();
    };

    typedef details::shared_ptr&lt;connection> connection_ptr;
  }
}
  </pre>

  <p>For more information on the <code>odb::connection</code> interface,
     refer to <a href="#3.6">Section 3.6, "Connections"</a>. The first
     overloaded <code>mysql::connection</code> constructor establishes a
     new MySQL connection. The second constructor allows us to create
     a <code>connection</code> instance by providing an already connected
     native MySQL handle. Note that the <code>connection</code>
     instance assumes ownership of this handle. The <code>handle()</code>
     accessor returns the MySQL handle corresponding to the connection.</p>

  <p>The <code>mysql::connection_factory</code> abstract class has the
     following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace mysql
  {
    class connection_factory
    {
    public:
      virtual void
      database (database&amp;) = 0;

      virtual connection_ptr
      connect () = 0;
    };
  }
}
  </pre>

  <p>The <code>database()</code> function is called when a connection
     factory is associated with a database instance. This happens in
     the <code>odb::mysql::database</code> class constructors. The
     <code>connect()</code> function is called whenever a database
     connection is requested.</p>

  <p>The two implementations of the <code>connection_factory</code>
     interface provided by the MySQL ODB runtime are
     <code>new_connection_factory</code> and
     <code>connection_pool_factory</code>. You will need to include
     the <code>&lt;odb/mysql/connection-factory.hxx></code>
     header file to make the <code>connection_factory</code> interface
     and these implementation classes available in your application.</p>

  <p>The <code>new_connection_factory</code> class creates a new
     connection whenever one is requested. When a connection is no
     longer needed, it is released and closed. The
     <code>new_connection_factory</code> class has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace mysql
  {
    class new_connection_factory: public connection_factory
    {
    public:
      new_connection_factory ();
    };
};
  </pre>

  <p>The <code>connection_pool_factory</code> class implements a
     connection pool. It has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace mysql
  {
    class connection_pool_factory: public connection_factory
    {
    public:
      connection_pool_factory (std::size_t max_connections = 0,
                               std::size_t min_connections = 0,
                               bool ping = true);

    protected:
      class pooled_connection: public connection
      {
      public:
        pooled_connection (database_type&amp;);
        pooled_connection (database_type&amp;, MYSQL*);
      };

      typedef details::shared_ptr&lt;pooled_connection> pooled_connection_ptr;

      virtual pooled_connection_ptr
      create ();
    };
};
  </pre>

  <p>The <code>max_connections</code> argument in the
     <code>connection_pool_factory</code> constructor specifies the maximum
     number of concurrent connections that this pool factory will
     maintain. Similarly, the <code>min_connections</code> argument
     specifies the minimum number of available connections that
     should be kept open. The <code>ping</code> argument specifies
     whether the factory should validate the connection before
     returning it to the caller.</p>

  <p>Whenever a connection is requested, the pool factory first
     checks if there is an unused connection that can be returned.
     If there is none, the pool factory checks the
     <code>max_connections</code> value to see if a new connection
     can be created. If the total number of connections maintained
     by the pool is less than this value, then a new connection is
     created and returned. Otherwise, the caller is blocked until
     a connection becomes available.</p>

  <p>When a connection is released, the pool factory first checks
     if there are blocked callers waiting for a connection. If so, then
     one of them is unblocked and is given the connection. Otherwise,
     the pool factory checks whether the total number of connections
     maintained by the pool is greater than the <code>min_connections</code>
     value. If that's the case, the connection is closed. Otherwise, the
     connection is added to the pool of available connections to be
     returned on the next request. In other words, if the number of
     connections maintained by the pool exceeds <code>min_connections</code>
     and there are no callers waiting for a new connection,
     then the pool will close the excess connections.</p>

  <p>If the <code>max_connections</code> value is 0, then the pool will
     create a new connection whenever all of the existing connections
     are in use. If the <code>min_connections</code> value is 0, then
     the pool will never close a connection and instead maintain all
     the connections that were ever created.</p>

  <p>Connection validation (the <code>ping</code> argument) is useful
     if your application may experience long periods of inactivity. In
     such cases the MySQL server may close network connections that have
     been inactive for too long. If during connection validation the pool
     factory detects that the connection has been terminated, it silently
     closes it and tries to find or create another connection instead.</p>

  <p>The <code>create()</code> virtual function is called whenever the
     pool needs to create a new connection. By deriving from the
     <code>connection_pool_factory</code> class and overriding this
     function we can implement custom connection establishment
     and configuration.</p>

  <p>If you pass <code>NULL</code> as the connection factory to
     one of the <code>database</code> constructors, then the
     <code>connection_pool_factory</code> instance will be
     created by default with the min and max connections values
     set to <code>0</code> and connection validation enabled.
     The following code fragment shows how we can pass our own
     connection factory instance:</p>

  <pre class="cxx">
#include &lt;odb/database.hxx>

#include &lt;odb/mysql/database.hxx>
#include &lt;odb/mysql/connection-factory.hxx>

int
main (int argc, char* argv[])
{
  auto_ptr&lt;odb::mysql::connection_factory> f (
    new odb::mysql::connection_pool_factory (20));

  auto_ptr&lt;odb::database> db (
    new mysql::database (argc, argv, false, 0, f));
}
  </pre>

  <h2><a name="17.4">17.4 MySQL Exceptions</a></h2>

  <p>The MySQL ODB runtime library defines the following MySQL-specific
     exceptions:</p>

  <pre class="cxx">
namespace odb
{
  namespace mysql
  {
    class database_exception: odb::database_exception
    {
    public:
      unsigned int
      error () const;

      const std::string&amp;
      sqlstate () const;

      const std::string&amp;
      message () const;

      virtual const char*
      what () const throw ();
    };

    class cli_exception: odb::exception
    {
    public:
      virtual const char*
      what () const throw ();
    };
  }
}
  </pre>

  <p>You will need to include the <code>&lt;odb/mysql/exceptions.hxx></code>
     header file to make these exceptions available in your application.</p>

  <p>The <code>odb::mysql::database_exception</code> is thrown if
     a MySQL database operation fails. The MySQL-specific error
     information is accessible via the <code>error()</code>,
     <code>sqlstate()</code>, and <code>message()</code> functions.
     All this information is also combined and returned in a
     human-readable form by the <code>what()</code> function.</p>

  <p>The <code>odb::mysql::cli_exception</code> is thrown by the
     command line parsing constructor of the <code>odb::mysql::database</code>
     class if the MySQL option values are missing or invalid. The
     <code>what()</code> function returns a human-readable description
     of an error.</p>

  <h2><a name="17.5">17.5 MySQL Limitations</a></h2>

  <p>The following sections describe MySQL-specific limitations imposed
     by the current MySQL and ODB runtime versions.</p>

  <h3><a name="17.5.1">17.5.1 Foreign Key Constraints</a></h3>

  <p>ODB relies on standard SQL behavior which requires that foreign
     key constraints checking is deferred until the transaction is
     committed. The only behaviors supported by MySQL are to either
     check such constraints immediately (InnoDB engine) or to ignore
     foreign key constraints altogether (all other engines). As a
     result, by default, schemas generated by the ODB compiler for
     MySQL have foreign key definitions commented out. They are
     retained only for documentation.</p>

  <p>You can override the default behavior and instruct the ODB
     compiler to generate non-deferrable foreign keys by specifying
     the <code>--fkeys-deferrable-mode not_deferrable</code> ODB
     compiler option. Note, however, that in this case the order in
     which you persist, update, and erase objects within a transaction
     becomes important.</p>

  <h2><a name="17.6">17.6 MySQL Index Definitions</a></h2>

  <p>When the <code>index</code> pragma (<a href="#14.7">Section 14.7,
     "Index Definition Pragmas"</a>) is used to define a MySQL index,
     the <code>type</code> clause specifies the index type (for example,
     <code>UNIQUE</code>, <code>FULLTEXT</code>, <code>SPATIAL</code>),
     the <code>method</code> clause specifies the index method (for
     example, <code>BTREE</code>, <code>HASH</code>), and the
     <code>options</code> clause is not used. The column options
     can be used to specify column length limits and the sort order.
     For example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  std::string name_;

  #pragma db index method("HASH") member(name_, "(100) DESC")
};
  </pre>

  <h2><a name="17.7">17.7 MySQL Stored Procedures</a></h2>

  <p>ODB native views (<a href="#10.6">Section 10.6, "Native Views"</a>)
     can be used to call MySQL stored procedures. For example, assuming
     we are using the <code>person</code> class from <a href="#2">Chapter
     2, "Hello World Example"</a> (and the corresponding <code>person</code>
     table), we can create a stored procedure that given the min and max
     ages returns some information about all the people in that range:</p>

  <pre class="sql">
CREATE PROCEDURE person_range (
  IN min_age SMALLINT,
  IN max_age SMALLINT)
BEGIN
  SELECT age, first, last FROM person
    WHERE age >= min_age AND age &lt;= max_age;
END
  </pre>

  <p>Given the above stored procedure we can then define an ODB view
     that can be used to call it and retrieve its result:</p>

  <pre class="cxx">
#pragma db view query("CALL person_range((?))")
struct person_range
{
  unsigned short age;
  std::string first;
  std::string last;
};
  </pre>

  <p>The following example shows how we can use the above view to
     print the list of people in a specific age range:</p>

  <pre class="cxx">
typedef odb::query&lt;person_range> query;
typedef odb::result&lt;person_range> result;

transaction t (db.begin ());

result r (
  db.query&lt;person_range> (
    query::_val (1) + "," + query::_val (18)));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
  cerr &lt;&lt; i->first &lt;&lt; " " &lt;&lt; i->last &lt;&lt; " " &lt;&lt; i->age &lt;&lt; endl;

t.commit ();
  </pre>

   <p>Note that as with all native views, the order and types of data members
      must match those of columns in the <code>SELECT</code> list inside
      the stored procedure.</p>

   <p>There are also a number of limitations when it comes to support for
      MySQL stored procedures in ODB views. First of all, you have to use
      MySQL server and client libraries version 5.5.3 or later since this
      is the version in which support for calling stored procedures with
      prepared statements was first added (the
      <code>mysql_stmt_next_result()</code> function).</p>

   <p>In MySQL, a stored procedure can produce multiple results.
      For example, if a stored procedure executes several
      <code>SELECT</code> statements, then the result of calling such
      a procedure consists of two row sets, one for each <code>SELECT</code>
      statement. Additionally, if the procedure has any <code>OUT</code>
      or <code>INOUT</code> parameters, then their values are returned as
      an additional special row set containing only a single row.
      Because such multiple row sets can contain varying number
      and type of columns, they cannot be all extracted into a
      single view. As a result, an ODB view will only extract the
      data from the first row set and ignore all the subsequent
      ones.</p>

   <p>In particular, this means that we can use an ODB view to extract
      the values of the <code>OUT</code> and <code>INOUT</code>
      parameters provided that the stored procedure does not generate
      any other row sets. For example:</p>

  <pre class="sql">
CREATE PROCEDURE person_min_max_age (
  OUT min_age SMALLINT,
  OUT max_age SMALLINT)
BEGIN
  SELECT MIN(age), MAX(age) INTO min_age, max_age FROM person;
END
  </pre>

  <pre class="cxx">
#pragma db view query("CALL person_min_max_age((?))")
struct person_min_max_age
{
  unsigned short min_age;
  unsigned short max_age;
};
  </pre>

  <pre class="cxx">
typedef odb::query&lt;person_min_max_age> query;

transaction t (db.begin ());

// We know this query always returns a single row, so use query_value().
// We have to pass dummy values for OUT parameters.
//
person_min_max_age mma (
  db.query_value&lt;person_min_max_age> (
    query::_val (0) + "," + query::_val (0)));

cerr &lt;&lt; mma.min_age &lt;&lt; " " &lt;&lt; mma.max_age &lt;&lt; endl;

t.commit ();
  </pre>

  <p>Another limitation that stems from having multiple results is the
     inability to cache the result of a stored procedure call. In
     other words, a MySQL stored procedure call always produces an
     uncached query result (<a href="#4.4">Section 4.4, "Query
     Result"</a>).</p>

  <hr class="page-break"/>
  <h1><a name="18">18 SQLite Database</a></h1>

  <p>To generate support code for the SQLite database you will need
     to pass the "<code>--database&nbsp;sqlite</code>"
     (or "<code>-d&nbsp;sqlite</code>") option to the ODB compiler.
     Your application will also need to link to the SQLite ODB runtime
     library (<code>libodb-sqlite</code>). All SQLite-specific ODB
     classes are defined in the <code>odb::sqlite</code> namespace.</p>

  <h2><a name="18.1">18.1 SQLite Type Mapping</a></h2>

  <p>The following table summarizes the default mapping between basic
     C++ value types and SQLite database types. This mapping can be
     customized on the per-type and per-member basis using the ODB
     Pragma Language (<a href="#14">Chapter 14, "ODB Pragma
     Language"</a>).</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>C++ Type</th>
      <th>SQLite Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>bool</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>char</code></td>
      <td><code>TEXT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>signed char</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned char</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>short</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned short</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>int</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned int</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>long</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned long</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>long long</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned long long</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>float</code></td>
      <td><code>REAL</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>double</code></td>
      <td><code>REAL</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>std::string</code></td>
      <td><code>TEXT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>char[N]</code></td>
      <td><code>TEXT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>std::wstring (Windows only)</code></td>
      <td><code>TEXT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>wchar_t[N] (Windows only)</code></td>
      <td><code>TEXT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>odb::sqlite::text</code></td>
      <td><code>TEXT (STREAM)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>odb::sqlite::blob</code></td>
      <td><code>BLOB (STREAM)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>
  </table>

  <p>It is possible to map the <code>char</code> C++ type to the
     <code>INTEGER</code> SQLite type using the <code>db&nbsp;type</code>
     pragma (<a href="#14.4.3">Section 14.4.3, "<code>type</code>"</a>).</p>

  <p>SQLite represents the <code>NaN</code> <code>FLOAT</code> value
     as a <code>NULL</code> value. As a result, columns of the
     <code>float</code> and <code>double</code> types are by default
     declared as <code>NULL</code>. However, you can override this by
     explicitly declaring them as <code>NOT NULL</code> with the
     <code>db&nbsp;not_null</code> pragma (<a href="#14.4.6">Section
     14.4.6, "<code>null/not_null</code>"</a>).</p>

  <p>Additionally, by default, C++ enums and C++11 enum classes are
     automatically mapped to the SQLite <code>INTEGER</code> type with
     the default <code>NULL</code> semantics being <code>NOT NULL</code>.
     For example:</p>

  <pre class="cxx">
enum color {red, green, blue};
enum class taste: unsigned char
{
  bitter = 1,
  sweet,
  sour = 4,
  salty
};

#pragma db object
class object
{
  ...

  color color_; // Automatically mapped to INTEGER.
  taste taste_; // Automatically mapped to INTEGER.
};
  </pre>

  <p>Note also that SQLite only operates with signed integers and the largest
     value that an SQLite database can store is a signed 64-bit integer. As
     a result, greater <code>unsigned&nbsp;long</code> and
     <code>unsigned&nbsp;long&nbsp;long</code> values will be represented in
     the database as negative values.</p>

  <p>It is also possible to add support for additional SQLite types,
     such as <code>NUMERIC</code>. For more information, refer to
     <a href="#14.8">Section 14.8, "Database Type Mapping
     Pragmas"</a>.</p>

  <h3><a name="18.1.1">18.1.1 String Type Mapping</a></h3>

  <p>The SQLite ODB runtime library provides support for mapping the
     <code>std::array&lt;char, N></code> and, on Windows,
     <code>std::array&lt;wchar_t, N></code> types to the SQLite
     <code>TEXT</code> type. However, this mapping is not enabled by
     default (in particular, by default, <code>std::array</code> will
     be treated as a container). To enable the alternative mapping for
     this type we need to specify the database type explicitly using
     the <code>db&nbsp;type</code> pragma (<a href="#14.4.3">Section
     14.4.3, "<code>type</code>"</a>), for example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  #pragma db type("TEXT")
  std::array&lt;char, 128> name_;
};
  </pre>

  <p>Alternatively, this can be done on the per-type basis, for example:</p>

  <pre class="cxx">
typedef std::array&lt;char, 128> name_type;
#pragma db value(name_type) type("TEXT")

#pragma db object
class object
{
  ...

  name_type name_; // Mapped to TEXT.
};
  </pre>

  <p>The <code>char[N]</code>, <code>std::array&lt;char, N></code>,
     <code>wchar_t[N]</code>, and <code>std::array&lt;wchar_t, N></code>
     values may or may not be zero-terminated. When extracting such values
     from the database, ODB will append the zero terminator if there is
     enough space.</p>

  <h3><a name="18.1.2">18.1.2 Binary Type Mapping</a></h3>

  <p>The SQLite ODB runtime library provides support for mapping the
     <code>std::vector&lt;char></code>,
     <code>std::vector&lt;unsigned&nbsp;char></code>,
     <code>char[N]</code>, <code>unsigned&nbsp;char[N]</code>,
     <code>std::array&lt;char, N></code>, and
     <code>std::array&lt;unsigned char, N></code>
     types to the SQLite <code>BLOB</code> type. However, these mappings
     are not enabled by default (in particular, by default,
     <code>std::vector</code> and <code>std::array</code> will be treated
     as containers). To enable the alternative mappings for these types
     we need to specify the database type explicitly using the
     <code>db&nbsp;type</code> pragma (<a href="#14.4.3">Section 14.4.3,
     "<code>type</code>"</a>), for example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  #pragma db type("BLOB")
  std::vector&lt;char> buf_;

  #pragma db type("BLOB")
  unsigned char uuid_[16];
};
  </pre>

  <p>Alternatively, this can be done on the per-type basis, for example:</p>

  <pre class="cxx">
typedef std::vector&lt;char> buffer;
#pragma db value(buffer) type("BLOB")

#pragma db object
class object
{
  ...

  buffer buf_; // Mapped to BLOB.
};
  </pre>

  <p>Note also that in native queries (<a href="#4">Chapter 4, "Querying
     the Database"</a>) <code>char[N]</code> and
     <code>std::array&lt;char, N></code> parameters are by default passed
     as a string rather than a binary. To pass such parameters as a binary,
     we need to specify the database type explicitly in the
     <code>_val()</code>/<code>_ref()</code> calls. Note also that we
     don't need to do this for the integrated queries, for example:</p>

  <pre class="cxx">
char u[16] = {...};

db.query&lt;object> ("uuid = " + query::_val&lt;odb::sqlite::id_blob> (u));
db.query&lt;object> (query::uuid == query::_ref (u));
  </pre>

  <h3><a name="18.1.3">18.1.3 Incremental <code>BLOB</code>/<code>TEXT</code> I/O</a></h3>

  <p>This section describes the SQLite ODB runtime library support for
     incremental reading and writing of <code>BLOB</code> and
     <code>TEXT</code> values. The provided API is a thin wrapper
     around the native SQLite <code>sqlite3_blob_*()</code> function
     family. As a result, it is highly recommended that you familiarize
     yourself with the semantics of this SQLite functionality before
     continuing with this section.</p>

  <p>The SQLite runtime provides the <code>blob</code> and
     <code>text</code> types that can be used to represent
     <code>BLOB</code> and <code>TEXT</code> data members
     that will be read/written using the incremental I/O.
     For example:</p>

  <pre class="cxx">
#include &lt;odb/sqlite/blob.hxx>
#include &lt;odb/sqlite/text.hxx>

#pragma db object
class object
{
public
  #pragma db id auto
  unsigned long id;

  odb::sqlite::blob b; // Mapped to BLOB.
  odb::sqlite::text t; // Mapped to TEXT.
};
  </pre>

  <p>The <code>blob</code> and <code>text</code> types should be
     viewed as <em>descriptors</em> of the <code>BLOB</code> and
     <code>TEXT</code> values (rather than the values themselves)
     that can be used to <em>open</em> the values for reading or
     writing. These two types have an identical interface that
     is presented below. Notice that it is essentially the list
     of arguments (except for <code>size</code> which is discussed
     below) to the <code>sqlite3_blob_open()</code> function:</p>

  <pre class="cxx">
namespace odb
{
  namespace sqlite
  {
    class blob|text
    {
    public:
      explicit
      blob|text (std::size_t = 0);

      std::size_t size ()
      void        size (std::size_t);

      const std::string&amp; db () const;
      const std::string&amp; table () const;
      const std::string&amp; column () const;
      long long          rowid () const;

      void
      clear ();
    };
  }
}
  </pre>

  <p>To read/write data from/to a incremental <code>BLOB</code> or
     <code>TEXT</code> value we use the corresponding
     <code>blob_stream</code> and <code>text_stream</code>
     stream types. Their interfaces closely mimic the
     underlying <code>sqlite3_blob_*()</code> functions
     and are presented below. Note that in order to create
     a stream we have to pass the corresponding descriptor:</p>

  <pre class="cxx">
#include &lt;odb/sqlite/stream.hxx>

namespace odb
{
  namespace sqlite
  {
    class stream
    {
    public:
      stream (const char* db,
              const char* table,
              const char* column,
              long long rowid,
              bool rw);

      std::size_t
      size () const;

      // The following two functions throw std::invalid_argument if
      // offset + n is past size().
      //
      void
      read (void* buf, std::size_t n, std::size_t offset = 0);

      void
      write (const void* buf, std::size_t n, std::size_t offset = 0);

      sqlite3_blob*
      handle () const;

      // Close without reporting errors, if any.
      //
      ~stream ();

      // Close with reporting errors, if any.
      //
      void
      close ();

      // Open the same BLOB but in a different row. Can be faster
      // than creating a new stream instance. Note that the stream
      // must be in the open state prior to calling this function.
      //
      void
      reopen (long long rowid);
    };
  }
}

#include &lt;odb/sqlite/blob-stream.hxx>

namespace odb
{
  namespace sqlite
  {
    class blob_stream: public stream
    {
    public:
      blob_stream (const blob&amp;, bool rw);
    };
  }
}

#include &lt;odb/sqlite/text-stream.hxx>

namespace odb
{
  namespace sqlite
  {
    class text_stream: public stream
    {
    public:
      text_stream (const text&amp;, bool rw);
    };
  }
}
  </pre>

  <p>The <code>rw</code> argument to the constructors above
     specifies whether to open the value for reading only
     (<code>false</code>) or to read and write
     (<code>true</code>).</p>

  <p>In SQLite the incremental <code>BLOB</code> and
     <code>TEXT</code> sizes are fixed in the sense that
     they must be specified before the object is persisted
     or updated and the following write operations can
     only write that much data. This is what the <code>size</code>
     data member in the descriptors is for. You can also determine
     the size of the opened value, for both reading and writing,
     using the <code>size()</code> stream function. The
     following example puts all of this together:</p>

  <pre class="cxx">
#include &lt;odb/sqlite/blob-stream.hxx>
#include &lt;odb/sqlite/text-stream.hxx>

string txt (1024 * 1024, 't');
vector&lt;char> blb (1024 * 1024, 'b');

object o;

// Persist.
//
{
  transaction tx (db.begin ());

  // Specify the sizes of the values before calling persist().
  //
  o.t.size (txt.size ());
  o.b.size (blb.size ());

  db.persist (o);

  // Write the data.
  //
  blob_stream bs (o.b, true); // Open for read/write.
  assert (bs.size () == blb.size ());
  bs.write (blb.data (), blb.size ());

  text_stream ts (o.t, true); // Open for read/write.
  assert (ts.size () == txt.size ());
  ts.write (txt.data (), txt.size ());

  tx.commit ();
}

// Load.
//
{
  transaction tx (db.begin ());
  auto_ptr&lt;object> p (db.load&lt;object> (o.id));

  text_stream ts (p->t, false); // Open for reading.
  vector&lt;char> t (ts.size () + 1, '\0');
  ts.read (t.data (), t.size () - 1);
  assert (string (t.data ()) == txt);

  blob_stream bs (p->b, false); // Open for reading.
  vector&lt;char> b (bs.size (), '\0');
  bs.read (b.data (), b.size ());
  assert (b == blb);

  tx.commit ();
}

// Update
//
txt.resize (txt.size () + 1, 't');
txt[0] = 'A';
txt[txt.size () - 1] = 'Z';

blb.resize (blb.size () - 1);
blb.front () = 'A';
blb.back () = 'Z';

{
  transaction tx (db.begin ());

  // Specify the new sizes of the values before calling update().
  //
  o.t.size (txt.size ());
  o.b.size (blb.size ());

  db.update (o);

  // Write the data.
  //
  blob_stream bs (o.b, true);
  bs.write (blb.data (), blb.size ());

  text_stream ts (o.t, true);
  ts.write (txt.data (), txt.size ());

  tx.commit ();
}
  </pre>

  <p>For the most part, the incremental <code>BLOB</code> and
     <code>TEXT</code> descriptors can be used as any other
     simple values. Specifically, they can be used as container
     elements (<a href="#5">Chapter 5, "Containers"</a>), as
     <code>NULL</code>-able values (<a href="#7.3">Section 7.3,
     "Pointers and NULL Value Semantics"</a>), and in views
     (<a href="#10">Chapter 10, "Views"</a>). The following
     example illustrates the use within a view:</p>

  <pre class="cxx">
#pragma db view object(object)
struct load_b
{
  odb::sqlite::blob b;
};

typedef odb::query&lt;load_b> query;

transaction tx (db.begin ());

for (load_b&amp; lb: db.query&lt;load_b> (query::t == "test"))
{
  blob_stream bs (lb.b, false);
  vector&lt;char> b (bs.size (), '\0');
  bs.read (b.data (), b.size ());
}

tx.commit ();
  </pre>

  <p>However, being a low-level, SQLite-specific mechanism, the
     incremental I/O has a number of nuances that should be kept in
     mind. Firstly, the streams should be opened within a transaction
     and, unless already closed, they will be automatically closed
     when the transaction is committed or rolled back. The following
     modification of the previous example helps to illustrate this
     point:</p>

  <pre class="cxx">
{
  transaction tx (db.begin ());

  // ...

  db.persist (o);

  blob_stream bs (o.b, true);

  tx.commit ();

  // ERROR: stream is closed.
  //
  bs.write (blb.data (), blb.size ());
}

// ERROR: not in transaction.
//
text_stream ts (o.t, true);
  </pre>

  <p>Because loading an object with an incremental <code>BLOB</code> or
     <code>TEXT</code> value involves additional actions after the
     database function returns (that is, reading the actual data),
     certain commonly-expected "round-trip" assumptions will no
     longer hold unless special steps are taken, for instance
     (again, continuing with our example):</p>

  <pre class="cxx">
transaction tx (db.begin ());

auto_ptr&lt;object> p (db.load&lt;object> (o.id));
p->name = "foo"; // Update some other member.
db.update (*p);  // Bad behavior: incremental BLOB/TEXT invalidated.

tx.commit ();
  </pre>

  <p>One way to restore the expected behavior is to place the
     incremental <code>BLOB</code> and <code>TEXT</code> values
     into their own, separately loaded/updated sections
     (<a href="#9">Chapter 9, "Sections"</a>). The alternative
     approach would be to perform the incremental I/O as part
     of the database operation <code>post_*</code> callbacks
     (<a href="#14.1.7">Section 14.1.7, "<code>callback</code>"</a>).</p>

  <p>Finally, note that when using incremental <code>TEXT</code>
     values, the data that we read/write is the raw bytes in
     the encoding used by the database (<code>UTF-8</code> by
     default; see SQLite <code>PRAGMA encoding</code> documentation
     for details).</p>

  <h2><a name="18.2">18.2 SQLite Database Class</a></h2>

  <p>The SQLite <code>database</code> class has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace sqlite
  {
    class database: public odb::database
    {
    public:
      database (const std::string&amp; name,
                int flags = SQLITE_OPEN_READWRITE,
                bool foreign_keys = true,
                const std::string&amp; vfs = "",
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

#ifdef _WIN32
      database (const std::wstring&amp; name,
                int flags = SQLITE_OPEN_READWRITE,
                bool foreign_keys = true,
                const std::string&amp; vfs = "",
                std::[auto|unique]_ptr&lt;connection_factory> = 0);
#endif

      database (int&amp; argc,
                char* argv[],
                bool erase = false,
                int flags = SQLITE_OPEN_READWRITE,
                bool foreign_keys = true,
                const std::string&amp; vfs = "",
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      static void
      print_usage (std::ostream&amp;);

    public:
      const std::string&amp;
      name () const;

      int
      flags () const;

    public:
      transaction
      begin_immediate ();

      transaction
      begin_exclusive ();

    public:
      connection_ptr
      connection ();
    };
  }
}
  </pre>

  <p>You will need to include the <code>&lt;odb/sqlite/database.hxx></code>
     header file to make this class available in your application.</p>

  <p>The first constructor opens the specified SQLite database. The
     <code>name</code> argument is the database file name to open in
     the UTF-8 encoding. If this argument is empty, then a temporary,
     on-disk database is created. If this argument is the
     <code>:memory:</code> special value, then a temporary, in-memory
     database is created. The <code>flags</code> argument allows us to
     specify SQLite opening flags. For more information on the possible
     values, refer to the <code>sqlite3_open_v2()</code> function description
     in the SQLite C API documentation. The <code>foreign_keys</code>
     argument specifies whether foreign key constraints checking
     should be enabled. See <a href="#18.5.3">Section 18.5.3,
     "Foreign Key Constraints"</a> for more information on foreign
     keys. The <code>vfs</code> argument specifies the SQLite
     virtual file system module that should be used to access the
     database. If this argument is empty, then the default vfs module
     is used. Again, refer to the <code>sqlite3_open_v2()</code> function
     documentation for detail.</p>

  <p>The following example shows how we can open the <code>test.db</code>
     database in the read-write mode and create it if it does not exist:</p>

  <pre class="cxx">
auto_ptr&lt;odb::database> db (
  new odb::sqlite::database (
    "test.db",
    SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE));
  </pre>

  <p>The second constructor is the same as the first except that the database
     name is passes as <code>std::wstring</code> in the UTF-16 encoding. This
     constructor is only available when compiling for Windows.</p>

  <p>The third constructor extracts the database parameters from the
     command line. The following options are recognized:</p>

  <pre class="terminal">
  --database &lt;name>
  --create
  --read-only
  --options-file &lt;file>
  </pre>

  <p>By default, this constructor opens the database in the read-write mode
     (<code>SQLITE_OPEN_READWRITE</code> flag). If the <code>--create</code>
     flag is specified, then the database file is created if it does
     not already exist (<code>SQLITE_OPEN_CREATE</code> flag). If the
     <code>--read-only</code> flag is specified, then the database is
     opened in the read-only mode (<code>SQLITE_OPEN_READONLY</code>
     flag instead of <code>SQLITE_OPEN_READWRITE</code>). The
     <code>--options-file</code> option allows us to specify some
     or all of the database options in a file with each option appearing
     on a separate line followed by a space and an option value.</p>

  <p>If the <code>erase</code> argument to this constructor is true,
     then the above options are removed from the <code>argv</code>
     array and the <code>argc</code> count is updated accordingly.
     This is primarily useful if your application accepts other
     options or arguments and you would like to get the SQLite
     options out of the <code>argv</code> array.</p>

  <p>The <code>flags</code> argument has the same semantics as in
     the first constructor. Flags from the command line always override
     the corresponding values specified with this argument.</p>

  <p>The third constructor throws the <code>odb::sqlite::cli_exception</code>
     exception if the SQLite option values are missing or invalid.
     See <a href="#18.4">Section 18.4, "SQLite Exceptions"</a>
     for more information on this exception.</p>

  <p>The static <code>print_usage()</code> function prints the list of options
     with short descriptions that are recognized by the third constructor.</p>

  <p>The last argument to all of the constructors is a pointer to the
     connection factory. In C++98/03, it is <code>std::auto_ptr</code> while
     in C++11 <code>std::unique_ptr</code> is used instead. If we pass a
     non-<code>NULL</code> value, the database instance assumes ownership
     of the factory instance. The connection factory interface as well as
     the available implementations are described in the next section.</p>

  <p>The set of accessor functions following the constructors allows us
     to query the parameters of the <code>database</code> instance.</p>

  <p>The <code>begin_immediate()</code> and <code>begin_exclusive()</code>
     functions are the SQLite-specific extensions to the standard
     <code>odb::database::begin()</code> function (see
     <a href="#3.5">Section 3.5, "Transactions"</a>). They allow us
     to start an immediate (<code>BEGIN IMMEDIATE</code>) and an exclusive
     (<code>BEGIN EXCLUSIVE</code>) SQLite transaction, respectively.
     For more information on the semantics of the immediate and exclusive
     transactions, refer to the <code>BEGIN</code> statement description
     in the SQLite documentation.</p>

  <p>The <code>connection()</code> function returns a pointer to the
     SQLite database connection encapsulated by the
     <code>odb::sqlite::connection</code> class. For more information
     on <code>sqlite::connection</code>, refer to <a href="#18.3">Section
     18.3, "SQLite Connection and Connection Factory"</a>.</p>

  <h2><a name="18.3">18.3 SQLite Connection and Connection Factory</a></h2>

  <p>The <code>sqlite::connection</code> class has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace sqlite
  {
    class connection: public odb::connection
    {
    public:
      connection (database&amp;, int extra_flags = 0);
      connection (database&amp;, sqlite3*);

      transaction
      begin_immediate ();

      transaction
      begin_exclusive ();

      sqlite3*
      handle ();
    };

    typedef details::shared_ptr&lt;connection> connection_ptr;
  }
}
  </pre>

  <p>For more information on the <code>odb::connection</code> interface,
     refer to <a href="#3.6">Section 3.6, "Connections"</a>. The first
     overloaded <code>sqlite::connection</code> constructor opens
     a new SQLite connection. The <code>extra_flags</code> argument can
     be used to specify extra <code>sqlite3_open_v2()</code> flags
     that are combined with the flags specified in the
     <code>sqlite::database</code> constructor. The second constructor
     allows us to create a <code>connection</code> instance by providing
     an already open native SQLite handle. Note that the
     <code>connection</code> instance assumes ownership of this handle.</p>

  <p>The <code>begin_immediate()</code> and <code>begin_exclusive()</code>
     functions allow us to start an immediate and an exclusive SQLite
     transaction on the connection, respectively. Their semantics are
     equivalent to the corresponding functions defined in the
     <code>sqlite::database</code> class (<a href="#18.2">Section 18.2,
     "SQLite Database Class"</a>). The <code>handle()</code> accessor
     returns the SQLite handle corresponding to the connection.</p>

  <p>The <code>sqlite::connection_factory</code> abstract class has the
     following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace sqlite
  {
    class connection_factory
    {
    public:
      virtual void
      database (database&amp;) = 0;

      virtual connection_ptr
      connect () = 0;
    };
  }
}
  </pre>

  <p>The <code>database()</code> function is called when a connection
     factory is associated with a database instance. This happens in
     the <code>odb::sqlite::database</code> class constructors. The
     <code>connect()</code> function is called whenever a database
     connection is requested.</p>

  <p>The three implementations of the <code>connection_factory</code>
     interface provided by the SQLite ODB runtime library are
     <code>single_connection_factory</code>,
     <code>new_connection_factory</code>, and
     <code>connection_pool_factory</code>. You will need to include
     the <code>&lt;odb/sqlite/connection-factory.hxx></code>
     header file to make the <code>connection_factory</code> interface
     and these implementation classes available in your application.</p>

  <p>The <code>single_connection_factory</code> class creates a
     single connection that is shared between all the threads in
     an application. If the connection is currently not in use,
     then it is returned to the caller. Otherwise, the caller is
     blocked until the connection becomes available. The
     <code>single_connection_factory</code> class has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace sqlite
  {
    class single_connection_factory: public connection_factory
    {
    public:
      single_connection_factory ();

    protected:
      class single_connection: public connection
      {
      public:
        single_connection (database&amp;, int extra_flags = 0);
        single_connection (database&amp;, sqlite3*);
      };

      typedef details::shared_ptr&lt;single_connection> single_connection_ptr;

      virtual single_connection_ptr
      create ();
    };
};
  </pre>

  <p>The <code>create()</code> virtual function is called when the
     factory needs to create the connection. By deriving from the
     <code>single_connection_factory</code> class and overriding this
     function we can implement custom connection establishment
     and configuration.</p>

  <p>The <code>new_connection_factory</code> class creates a new
     connection whenever one is requested. When a connection is no
     longer needed, it is released and closed. The
     <code>new_connection_factory</code> class has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace sqlite
  {
    class new_connection_factory: public connection_factory
    {
    public:
      new_connection_factory ();
    };
};
  </pre>

  <p>The <code>connection_pool_factory</code> class implements a
     connection pool. It has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace sqlite
  {
    class connection_pool_factory: public connection_factory
    {
    public:
      connection_pool_factory (std::size_t max_connections = 0,
                               std::size_t min_connections = 0);

    protected:
      class pooled_connection: public connection
      {
      public:
        pooled_connection (database_type&amp;, int extra_flags = 0);
        pooled_connection (database_type&amp;, sqlite3*);
      };

      typedef details::shared_ptr&lt;pooled_connection> pooled_connection_ptr;

      virtual pooled_connection_ptr
      create ();
    };
};
  </pre>

  <p>The <code>max_connections</code> argument in the
     <code>connection_pool_factory</code> constructor specifies the maximum
     number of concurrent connections that this pool factory will
     maintain. Similarly, the <code>min_connections</code> argument
     specifies the minimum number of available connections that
     should be kept open.</p>

  <p>Whenever a connection is requested, the pool factory first
     checks if there is an unused connection that can be returned.
     If there is none, the pool factory checks the
     <code>max_connections</code> value to see if a new connection
     can be created. If the total number of connections maintained
     by the pool is less than this value, then a new connection is
     created and returned. Otherwise, the caller is blocked until
     a connection becomes available.</p>

  <p>When a connection is released, the pool factory first checks
     if there are blocked callers waiting for a connection. If so, then
     one of them is unblocked and is given the connection. Otherwise,
     the pool factory checks whether the total number of connections
     maintained by the pool is greater than the <code>min_connections</code>
     value. If that's the case, the connection is closed. Otherwise, the
     connection is added to the pool of available connections to be
     returned on the next request. In other words, if the number of
     connections maintained by the pool exceeds <code>min_connections</code>
     and there are no callers waiting for a new connection,
     then the pool will close the excess connections.</p>

  <p>If the <code>max_connections</code> value is 0, then the pool will
     create a new connection whenever all of the existing connections
     are in use. If the <code>min_connections</code> value is 0, then
     the pool will never close a connection and instead maintain all
     the connections that were ever created.</p>

  <p>The <code>create()</code> virtual function is called whenever the
     pool needs to create a new connection. By deriving from the
     <code>connection_pool_factory</code> class and overriding this
     function we can implement custom connection establishment
     and configuration.</p>

  <p>By default, connections created by <code>new_connection_factory</code>
     and <code>connection_pool_factory</code> enable the SQLite shared cache
     mode and use the unlock notify functionality to aid concurrency. To
     disable the shared cache mode you can pass the
     <code>SQLITE_OPEN_PRIVATECACHE</code> flag when creating the database
     instance. For more information on the shared cache mode refer to the
     SQLite documentation.</p>

  <p>If you pass <code>NULL</code> as the connection factory to one of the
     <code>database</code> constructors, then the <code>connection_pool_factory</code>
     instance will be created by default with the min and max connections
     values set to <code>0</code>. The following code fragment shows how we
     can pass our own connection factory instance:</p>

  <pre class="cxx">
#include &lt;odb/database.hxx>

#include &lt;odb/sqlite/database.hxx>
#include &lt;odb/sqlite/connection-factory.hxx>

int
main (int argc, char* argv[])
{
  auto_ptr&lt;odb::sqlite::connection_factory> f (
    new odb::sqlite::connection_pool_factory (20));

  auto_ptr&lt;odb::database> db (
    new sqlite::database (argc, argv, false, SQLITE_OPEN_READWRITE, f));
}
  </pre>

  <h2><a name="18.4">18.4 SQLite Exceptions</a></h2>

  <p>The SQLite ODB runtime library defines the following SQLite-specific
     exceptions:</p>

  <pre class="cxx">
namespace odb
{
  namespace sqlite
  {
    class forced_rollback: odb::recoverable
    {
    public:
      virtual const char*
      what () const throw ();
    };

    class database_exception: odb::database_exception
    {
    public:
      int
      error () const

      int
      extended_error () const;

      const std::string&amp;
      message () const;

      virtual const char*
      what () const throw ();
    };

    class cli_exception: odb::exception
    {
    public:
      virtual const char*
      what () const throw ();
    };
  }
}
  </pre>

  <p>You will need to include the <code>&lt;odb/sqlite/exceptions.hxx></code>
     header file to make these exceptions available in your application.</p>

  <p>The <code>odb::sqlite::forced_rollback</code> exception is thrown if
     SQLite is forcing the current transaction to roll back. For more
     information on this behavior refer to <a href="#18.5.6">Section 18.5.6,
     "Forced Rollback"</a>.</p>

  <p>The <code>odb::sqlite::database_exception</code> is thrown if
     an SQLite database operation fails. The SQLite-specific error
     information is accessible via the <code>error()</code>,
     <code>extended_error()</code>, and <code>message()</code> functions.
     All this information is also combined and returned in a
     human-readable form by the <code>what()</code> function.</p>

  <p>The <code>odb::sqlite::cli_exception</code> is thrown by the
     command line parsing constructor of the <code>odb::sqlite::database</code>
     class if the SQLite option values are missing or invalid. The
     <code>what()</code> function returns a human-readable description
     of an error.</p>


  <h2><a name="18.5">18.5 SQLite Limitations</a></h2>

  <p>The following sections describe SQLite-specific limitations imposed by
     the current SQLite and ODB runtime versions.</p>

  <h3><a name="18.5.1">18.5.1 Query Result Caching</a></h3>

  <p>SQLite ODB runtime implementation does not perform query result caching
     (<a href="#4.4">Section 4.4, "Query Result"</a>) even when explicitly
     requested. The SQLite API supports interleaving execution of multiple
     prepared statements on a single connection. As a result, with SQLite, it
     is possible to have multiple uncached results and calls to other database
     functions do not invalidate them. The only limitation of the uncached
     SQLite results is the unavailability of the <code>result::size()</code>
     function. If you call this function on an SQLite query result, then
     the <code>odb::result_not_cached</code> exception
     (<a href="#3.14">Section 3.14, "ODB Exceptions"</a>) is always
     thrown. Future versions of the SQLite ODB runtime library may add support
     for result caching.</p>

  <h3><a name="18.5.2">18.5.2 Automatic Assignment of Object Ids</a></h3>

  <p>Due to SQLite API limitations, every automatically assigned object id
     (<a href="#14.4.2">Section 14.4.2, "<code>auto</code>"</a>) should have
     the <code>INTEGER</code> SQLite type. While SQLite will treat other
     integer type names (such as <code>INT</code>, <code>BIGINT</code>, etc.)
     as <code>INTEGER</code>, automatic id assignment will not work. By default,
     ODB maps all C++ integral types to <code>INTEGER</code>. This means that
     the only situation that requires consideration is the assignment of a
     custom database type using the <code>db&nbsp;type</code> pragma
     (<a href="#14.4.3">Section 14.4.3, "<code>type</code>"</a>). For
     example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  //#pragma db id auto type("INT")     // Will not work.
  //#pragma db id auto type("INTEGER") // Ok.
  #pragma db id auto                   // Ok, Mapped to INTEGER.
  unsigned int id_;
};
  </pre>

  <h3><a name="18.5.3">18.5.3 Foreign Key Constraints</a></h3>

  <p>By default the SQLite ODB runtime enables foreign key constraints
     checking (<code>PRAGMA foreign_keys=ON</code>). You can disable foreign
     keys by passing <code>false</code> as the <code>foreign_keys</code>
     argument to one of the <code>odb::sqlite::database</code> constructors.
     Foreign keys will also be disabled if the SQLite library is built without
     support for foreign keys (<code>SQLITE_OMIT_FOREIGN_KEY</code> and
     <code>SQLITE_OMIT_TRIGGER</code> macros) or if you are using
     an SQLite version prior to 3.6.19, which does not support foreign
     key constraints checking.</p>

  <p>If foreign key constraints checking is disabled or not available,
     then inconsistencies in object relationships will not be detected.
     Furthermore, using the <code>erase_query()</code> function
     (<a href="#3.11">Section 3.11, "Deleting Persistent Objects"</a>)
     to delete persistent objects that contain containers will not work
     correctly. Container data for such objects will not be deleted.</p>

  <p>When foreign key constraints checking is enabled, then you may
     get the "foreign key constraint failed" error while re-creating the
     database schema. This error is due to bugs in the SQLite DDL foreign
     keys support. The recommended work-around for this problem is to
     temporarily disable foreign key constraints checking while
     re-creating the schema. The following code fragment shows how
     this can be done:</p>

  <pre class="cxx">
#include &lt;odb/connection.hxx>
#include &lt;odb/transaction.hxx>
#include &lt;odb/schema-catalog.hxx>

odb::database&amp; db = ...

{
  odb::connection_ptr c (db.connection ());

  c->execute ("PRAGMA foreign_keys=OFF");

  odb::transaction t (c->begin ());
  odb::schema_catalog::create_schema (db);
  t.commit ();

  c->execute ("PRAGMA foreign_keys=ON");
}
  </pre>

  <p>Finally, ODB assumes the standard SQL behavior which requires
     that foreign key constraints checking is deferred until the
     transaction is committed. Default SQLite behavior is to check such
     constraints immediately. As a result, when used with ODB, a custom
     database schema that defines foreign key constraints may need to
     declare such constraints as <code>DEFERRABLE INITIALLY DEFERRED</code>,
     as shown in the following example. By default, schemas generated by
     the ODB compiler meet this requirement automatically.</p>

  <pre class="sql">
CREATE TABLE Employee (
  ...
  employer INTEGER REFERENCES Employer(id)
           DEFERRABLE INITIALLY DEFERRED);
  </pre>

  <p>You can override the default behavior and instruct the ODB
     compiler to generate non-deferrable foreign keys by specifying
     the <code>--fkeys-deferrable-mode not_deferrable</code> ODB
     compiler option. Note, however, that in this case the order in
     which you persist, update, and erase objects within a transaction
     becomes important.</p>

  <h3><a name="18.5.4">18.5.4 Constraint Violations</a></h3>

  <p>Due to the granularity of the SQLite error codes, it is impossible
     to distinguish between the duplicate primary key and other constraint
     violations. As a result, when making an object persistent, the SQLite
     ODB runtime will translate all constraint violation errors to the
     <code>object_already_persistent</code> exception (<a href="#3.14">Section
     3.14, "ODB Exceptions"</a>).</p>

  <h3><a name="18.5.5">18.5.5 Sharing of Queries</a></h3>

  <p>As discussed in <a href="#4.3">Section 4.3, "Executing a Query"</a>, a
     query instance that does not have any by-reference parameters is
     immutable and can be shared between multiple threads without
     synchronization. Currently, the SQLite ODB runtime does not support this
     functionality. Future versions of the library will remove this
     limitation.</p>

  <h3><a name="18.5.6">18.5.6 Forced Rollback</a></h3>

  <p>In SQLite 3.7.11 or later, if one of the connections participating in
     the shared cache rolls back a transaction, then ongoing transactions
     on other connections in the shared cache may also be forced to roll back.
     An example of such behavior would be a read-only transaction that is
     forced to roll back while iterating over the query result because another
     transaction on another connection was rolled back.</p>

  <p>If a transaction is being forced to roll back by SQLite, then ODB
     throws <code>odb::sqlite::forced_rollback</code>
     (<a href="#18.4">Section 18.4, "SQLite Exceptions"</a>) which is
     a recoverable exception (<a href="#3.7">3.7 Error Handling and
     Recovery</a>). As a result, the recommended way to handle this
     exception is to re-execute the affected transaction.</p>

  <h3><a name="18.5.7">18.5.7 Database Schema Evolution</a></h3>

  <p>From the list of schema migration changes supported by ODB
     (<a href="#13.2">Section 13.2, "Schema Migration"</a>), the
     following are not supported by SQLite:</p>

  <ul class="list">
    <li>drop column</li>
    <li>alter column, set <code>NULL</code>/<code>NOT NULL</code></li>
    <li>add foreign key</li>
    <li>drop foreign key</li>
  </ul>

  <p>The biggest problem is the lack of support for dropping columns.
     This means that it would be impossible to delete a data member
     in a persistent class. To work around this limitation ODB
     implements <em>logical delete</em> for columns that allow
     <code>NULL</code> values. In this case, instead of dropping
     the column (in the post-migration stage), the schema migration
     statements will automatically reset this column in all the
     existing rows to <code>NULL</code>. Any new rows that are
     inserted later will also automatically have this column set
     to <code>NULL</code> (unless the column specifies a default
     value).</p>

  <p>Since it is also impossible to change the column's
     <code>NULL</code>/<code>NOT NULL</code> attribute after it
     has been added, to make schema evolution support usable in
     SQLite, all the columns should be added as <code>NULL</code>
     even if semantically they should not allow <code>NULL</code>
     values. We should also normally refrain from assigning
     default values to columns (<a href="#14.4.7">Section 14.4.7,
     <code>default</code></a>), unless the space overhead of
     a default value is not a concern. Explicitly making all
     the data members <code>NULL</code> would be burdensome
     and ODB provides the <code>--sqlite-override-null</code>
     command line option that forces all the columns, even those
     that were explicitly marked <code>NOT NULL</code>, to be
     <code>NULL</code> in SQLite.</p>

  <p>SQLite only supports adding foreign keys as part of the
     column addition. As a result, we can only add a new
     data member of an object pointer type if it points
     to an object with a simple (single-column) object id.</p>

  <p>SQLite also doesn't support dropping foreign keys.
     Leaving a foreign key around works well with logical
     delete unless we also want to delete the pointed-to
     object. In this case we will have to leave an
     empty table corresponding to the pointed-to object
     around. An alternative would be to make a copy of the
     pointing object without the object pointer, migrate the
     data, and then delete both the old pointing and the
     pointed-to objects. Since this will result in dropping
     the pointing table, the foreign key will be dropped
     as well. Yet another, more radical, solution to this
     problem is to disable foreign keys checking altogether
     (see the <code>foreign_keys</code> SQLite pragma).</p>

  <p>To summarize, to make schema evolution support usable
     in SQLite we should pass the <code>--sqlite-override-null</code>
     option when compiling our persistent classes and also refrain
     from assigning default values to data members. Note also that
     this has to be done from the start so that every column is added
     as <code>NULL</code> and therefore can be logically deleted later.
     In particular, you cannot add the <code>--sqlite-override-null</code>
     option when you realize you need to delete a data member. At this
     point it is too late since the column has already been added
     as <code>NOT NULL</code> in existing databases. We should also
     avoid composite object ids if we are planning to use object
     relationships.</p>

  <h2><a name="18.6">18.6 SQLite Index Definitions</a></h2>

  <p>When the <code>index</code> pragma (<a href="#14.7">Section 14.7,
     "Index Definition Pragmas"</a>) is used to define an SQLite index,
     the <code>type</code> clause specifies the index type (for example,
     <code>UNIQUE</code>) while the <code>method</code> and
     <code>options</code> clauses are not used. The column options
     can be used to specify collations and the sort order. For example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  std::string name_;

  #pragma db index member(name_, "COLLATE binary DESC")
};
  </pre>

  <p>Index names in SQLite are database-global. To avoid name clashes,
     ODB automatically prefixes each index name with the table name on
     which it is defined.</p>

  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="19">19 PostgreSQL Database</a></h1>

  <p>To generate support code for the PostgreSQL database you will need
     to pass the "<code>--database&nbsp;pgsql</code>"
     (or "<code>-d&nbsp;pgsql</code>") option to the ODB compiler.
     Your application will also need to link to the PostgreSQL ODB runtime
     library (<code>libodb-pgsql</code>). All PostgreSQL-specific ODB
     classes are defined in the <code>odb::pgsql</code> namespace.</p>

  <p>ODB utilizes prepared statements extensively. Support for prepared
     statements was added in PostgreSQL version 7.4 with the introduction
     of the messaging protocol version 3.0. For this reason, ODB supports
     only PostgreSQL version 7.4 and later.</p>

  <h2><a name="19.1">19.1 PostgreSQL Type Mapping</a></h2>

  <p>The following table summarizes the default mapping between basic
     C++ value types and PostgreSQL database types. This mapping can be
     customized on the per-type and per-member basis using the ODB
     Pragma Language (<a href="#14">Chapter 14, "ODB Pragma
     Language"</a>).</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>C++ Type</th>
      <th>PostgreSQL Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>bool</code></td>
      <td><code>BOOLEAN</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>char</code></td>
      <td><code>CHAR(1)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>signed char</code></td>
      <td><code>SMALLINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned char</code></td>
      <td><code>SMALLINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>short</code></td>
      <td><code>SMALLINT NULL</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned short</code></td>
      <td><code>SMALLINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>int</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned int</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>long</code></td>
      <td><code>BIGINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned long</code></td>
      <td><code>BIGINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>long long</code></td>
      <td><code>BIGINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned long long</code></td>
      <td><code>BIGINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>float</code></td>
      <td><code>REAL</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>double</code></td>
      <td><code>DOUBLE PRECISION</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>std::string</code></td>
      <td><code>TEXT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>char[N]</code></td>
      <td><code>VARCHAR(N-1)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>
  </table>

  <p>It is possible to map the <code>char</code> C++ type to an integer
     database type (for example, <code>SMALLINT</code>) using the
     <code>db&nbsp;type</code> pragma (<a href="#14.4.3">Section 14.4.3,
     "<code>type</code>"</a>).</p>

  <p>Additionally, by default, C++ enums and C++11 enum classes are
     automatically mapped to the PostgreSQL types corresponding to their
     underlying integral types (see table above). The default
     <code>NULL</code> semantics is <code>NOT NULL</code>. For
     example:</p>

  <pre class="cxx">
enum color {red, green, blue};
enum class taste: unsigned char
{
  bitter = 1,
  sweet,
  sour = 4,
  salty
};

#pragma db object
class object
{
  ...

  color color_; // Automatically mapped to INTEGER.
  taste taste_; // Automatically mapped to SMALLINT.
};
  </pre>

  <p>Note also that because PostgreSQL does not support unsigned integers,
     the <code>unsigned&nbsp;short</code>, <code>unsigned&nbsp;int</code>, and
     <code>unsigned&nbsp;long</code>/<code>unsigned&nbsp;long&nbsp;long</code> C++ types
     are by default mapped to the <code>SMALLINT</code>, <code>INTEGER</code>,
     and <code>BIGINT</code> PostgreSQL types, respectively. The sign bit
     of the value stored by the database for these types will contain
     the most significant bit of the actual unsigned value being
     persisted.</p>

  <p>It is also possible to add support for additional PostgreSQL types,
     such as <code>NUMERIC</code>, geometry types, <code>XML</code>,
     <code>JSON</code>, enumeration types, composite types, arrays,
     geospatial types, and the key-value store (<code>HSTORE</code>).
     For more information, refer to <a href="#14.8">Section 14.8,
     "Database Type Mapping Pragmas"</a>.</p>

  <h3><a name="19.1.1">19.1.1 String Type Mapping</a></h3>

  <p>The PostgreSQL ODB runtime library provides support for mapping the
     <code>std::string</code>, <code>char[N]</code>, and
     <code>std::array&lt;char, N></code> types to the PostgreSQL
     <code>CHAR</code>, <code>VARCHAR</code>, and <code>TEXT</code>
     types. However, these mappings are not enabled by default (in
     particular, by default, <code>std::array</code> will be treated
     as a container). To enable the alternative mappings for these
     types we need to specify the database type explicitly using the
     <code>db&nbsp;type</code> pragma (<a href="#14.4.3">Section 14.4.3,
     "<code>type</code>"</a>), for example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  #pragma db type("CHAR(2)")
  char state_[2];

  #pragma db type("VARCHAR(128)")
  std::string name_;
};
  </pre>

  <p>Alternatively, this can be done on the per-type basis, for example:</p>

  <pre class="cxx">
#pragma db value(std::string) type("VARCHAR(128)")

#pragma db object
class object
{
  ...

  std::string name_; // Mapped to VARCHAR(128).
};
  </pre>

  <p>The <code>char[N]</code> and <code>std::array&lt;char, N></code> values
     may or may not be zero-terminated. When extracting such values from the
     database, ODB will append the zero terminator if there is enough
     space.</p>

  <h3><a name="19.1.2">19.1.2 Binary Type and <code>UUID</code> Mapping</a></h3>

  <p>The PostgreSQL ODB runtime library provides support for mapping the
     <code>std::vector&lt;char></code>,
     <code>std::vector&lt;unsigned&nbsp;char></code>,
     <code>char[N]</code>, <code>unsigned&nbsp;char[N]</code>,
     <code>std::array&lt;char, N></code>, and
     <code>std::array&lt;unsigned char, N></code> types to the PostgreSQL
     <code>BYTEA</code> type. There is also support for mapping the
     <code>char[16]</code> array to the PostgreSQL <code>UUID</code> type.
     However, these mappings are not enabled by default (in particular, by
     default, <code>std::vector</code> and <code>std::array</code> will be
     treated as containers). To enable the alternative mappings for these
     types we need to specify the database type explicitly using the
     <code>db&nbsp;type</code> pragma (<a href="#14.4.3">Section 14.4.3,
     "<code>type</code>"</a>), for example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  #pragma db type("UUID")
  char uuid_[16];

  #pragma db type("BYTEA")
  std::vector&lt;char> buf_;

  #pragma db type("BYTEA")
  unsigned char data_[256];
};
  </pre>

  <p>Alternatively, this can be done on the per-type basis, for example:</p>

  <pre class="cxx">
typedef std::vector&lt;char> buffer;
#pragma db value(buffer) type("BYTEA")

#pragma db object
class object
{
  ...

  buffer buf_; // Mapped to BYTEA.
};
  </pre>

  <p>Note also that in native queries (<a href="#4">Chapter 4, "Querying
     the Database"</a>) <code>char[N]</code> and
     <code>std::array&lt;char, N></code> parameters are by default passed
     as a string rather than a binary. To pass such parameters as a binary,
     we need to specify the database type explicitly in the
     <code>_val()</code>/<code>_ref()</code> calls. Note also that we
     don't need to do this for the integrated queries, for example:</p>

  <pre class="cxx">
char u[16] = {...};

db.query&lt;object> ("uuid = " + query::_val&lt;odb::pgsql::id_uuid> (u));
db.query&lt;object> ("buf = " + query::_val&lt;odb::pgsql::id_bytea> (u));
db.query&lt;object> (query::uuid == query::_ref (u));
  </pre>

  <h2><a name="19.2">19.2 PostgreSQL Database Class</a></h2>

  <p>The PostgreSQL <code>database</code> class has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace pgsql
  {
    class database: public odb::database
    {
    public:
      database (const std::string&amp; user,
                const std::string&amp; password,
                const std::string&amp; db,
                const std::string&amp; host = "",
                unsigned int port = 0,
                const std::string&amp; extra_conninfo = "",
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (const std::string&amp; user,
                const std::string&amp; password,
                const std::string&amp; db,
                const std::string&amp; host,
                const std::string&amp; socket_ext,
                const std::string&amp; extra_conninfo = "",
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (const std::string&amp; conninfo,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (int&amp; argc,
                char* argv[],
                bool erase = false,
                const std::string&amp; extra_conninfo = "",
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      static void
      print_usage (std::ostream&amp;);

    public:
      const std::string&amp;
      user () const;

      const std::string&amp;
      password () const;

      const std::string&amp;
      db () const;

      const std::string&amp;
      host () const;

      unsigned int
      port () const;

      const std::string&amp;
      socket_ext () const;

      const std::string&amp;
      extra_conninfo () const;

      const std::string&amp;
      conninfo () const;

    public:
      connection_ptr
      connection ();
    };
  }
}
  </pre>

  <p>You will need to include the <code>&lt;odb/pgsql/database.hxx></code>
     header file to make this class available in your application.</p>

  <p>The overloaded <code>database</code> constructors allow us to specify
     the PostgreSQL database parameters that should be used when connecting
     to the database. The <code>port</code> argument in the first constructor
     is an integer value specifying the TCP/IP port number to connect to. A
     zero port number indicates that the default port should be used.
     The <code>socket_ext</code> argument in the second constructor is a
     string value specifying the UNIX-domain socket file name extension.</p>

  <p>The third constructor allows us to specify all the database parameters
     as a single <code>conninfo</code> string. All other constructors
     accept additional database connection parameters as the
     <code>extra_conninfo</code> argument. For more information
     about the format of the <code>conninfo</code> string, refer to
     the <code>PQconnectdb()</code> function description in the PostgreSQL
     documentation. In the case of <code>extra_conninfo</code>, all the
     database parameters provided in this string will take precedence
     over those explicitly specified with other constructor arguments.</p>

  <p>The last constructor extracts the database parameters
     from the command line. The following options are recognized:</p>

  <pre class="terminal">
  --user &lt;login> | --username &lt;login>
  --password &lt;password>
  --database &lt;name> | --dbname &lt;name>
  --host &lt;host>
  --port &lt;integer>
  --options-file &lt;file>
  </pre>

  <p>The <code>--options-file</code> option allows us to specify some
     or all of the database options in a file with each option appearing
     on a separate line followed by a space and an option value.</p>

  <p>If the <code>erase</code> argument to this constructor is true,
     then the above options are removed from the <code>argv</code>
     array and the <code>argc</code> count is updated accordingly.
     This is primarily useful if your application accepts other
     options or arguments and you would like to get the PostgreSQL
     options out of the <code>argv</code> array.</p>

  <p>This constructor throws the <code>odb::pgsql::cli_exception</code>
     exception if the PostgreSQL option values are missing or invalid.
     See section <a href="#19.4">Section 19.4, "PostgreSQL Exceptions"</a>
     for more information on this exception.</p>

  <p>The static <code>print_usage()</code> function prints the list of options
     with short descriptions that are recognized by this constructor.</p>

  <p>The last argument to all of the constructors is a pointer to the
     connection factory. In C++98/03, it is <code>std::auto_ptr</code> while
     in C++11 <code>std::unique_ptr</code> is used instead. If we pass a
     non-<code>NULL</code> value, the database instance assumes ownership
     of the factory instance. The connection factory interface as well as
     the available implementations are described in the next section.</p>

  <p>The set of accessor functions following the constructors allows us
     to query the parameters of the <code>database</code> instance. Note that
     the <code>conninfo()</code> accessor returns a complete
     <code>conninfo</code> string which includes parameters that were
     explicitly specified with the various constructor arguments, as well as
     the extra parameters passed in the <code>extra_conninfo</code> argument.
     The <code>extra_conninfo()</code> accessor will return the
     <code>conninfo</code> string as passed in the <code>extra_conninfo</code>
     argument.</p>

  <p>The <code>connection()</code> function returns a pointer to the
     PostgreSQL database connection encapsulated by the
     <code>odb::pgsql::connection</code> class. For more information
     on <code>pgsql::connection</code>, refer to <a href="#19.3">Section
     19.3, "PostgreSQL Connection and Connection Factory"</a>.</p>

  <h2><a name="19.3">19.3 PostgreSQL Connection and Connection Factory</a></h2>

  <p>The <code>pgsql::connection</code> class has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace pgsql
  {
    class connection: public odb::connection
    {
    public:
      connection (database&amp;);
      connection (database&amp;, PGconn*);

      PGconn*
      handle ();
    };

    typedef details::shared_ptr&lt;connection> connection_ptr;
  }
}
  </pre>

  <p>For more information on the <code>odb::connection</code> interface,
     refer to <a href="#3.6">Section 3.6, "Connections"</a>. The first
     overloaded <code>pgsql::connection</code> constructor establishes a
     new PostgreSQL connection. The second constructor allows us to create
     a <code>connection</code> instance by providing an already connected
     native PostgreSQL handle. Note that the <code>connection</code>
     instance assumes ownership of this handle. The <code>handle()</code>
     accessor returns the PostgreSQL handle corresponding to the connection.</p>

  <p>The <code>pgsql::connection_factory</code> abstract class has the
     following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace pgsql
  {
    class connection_factory
    {
    public:
      virtual void
      database (database&amp;) = 0;

      virtual connection_ptr
      connect () = 0;
    };
  }
}
  </pre>

  <p>The <code>database()</code> function is called when a connection
     factory is associated with a database instance. This happens in
     the <code>odb::pgsql::database</code> class constructors. The
     <code>connect()</code> function is called whenever a database
     connection is requested.</p>

  <p>The two implementations of the <code>connection_factory</code>
     interface provided by the PostgreSQL ODB runtime are
     <code>new_connection_factory</code> and
     <code>connection_pool_factory</code>. You will need to include
     the <code>&lt;odb/pgsql/connection-factory.hxx></code>
     header file to make the <code>connection_factory</code> interface
     and these implementation classes available in your application.</p>

  <p>The <code>new_connection_factory</code> class creates a new
     connection whenever one is requested. When a connection is no
     longer needed, it is released and closed. The
     <code>new_connection_factory</code> class has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace pgsql
  {
    class new_connection_factory: public connection_factory
    {
    public:
      new_connection_factory ();
    };
};
  </pre>

  <p>The <code>connection_pool_factory</code> class implements a
     connection pool. It has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace pgsql
  {
    class connection_pool_factory: public connection_factory
    {
    public:
      connection_pool_factory (std::size_t max_connections = 0,
                               std::size_t min_connections = 0);

    protected:
      class pooled_connection: public connection
      {
      public:
        pooled_connection (database_type&amp;);
        pooled_connection (database_type&amp;, PGconn*);
      };

      typedef details::shared_ptr&lt;pooled_connection> pooled_connection_ptr;

      virtual pooled_connection_ptr
      create ();
    };
};
  </pre>

  <p>The <code>max_connections</code> argument in the
     <code>connection_pool_factory</code> constructor specifies the maximum
     number of concurrent connections that this pool factory will
     maintain. Similarly, the <code>min_connections</code> argument
     specifies the minimum number of available connections that
     should be kept open.</p>

  <p>Whenever a connection is requested, the pool factory first
     checks if there is an unused connection that can be returned.
     If there is none, the pool factory checks the
     <code>max_connections</code> value to see if a new connection
     can be created. If the total number of connections maintained
     by the pool is less than this value, then a new connection is
     created and returned. Otherwise, the caller is blocked until
     a connection becomes available.</p>

  <p>When a connection is released, the pool factory first checks
     if there are blocked callers waiting for a connection. If so, then
     one of them is unblocked and is given the connection. Otherwise,
     the pool factory checks whether the total number of connections
     maintained by the pool is greater than the <code>min_connections</code>
     value. If that's the case, the connection is closed. Otherwise, the
     connection is added to the pool of available connections to be
     returned on the next request. In other words, if the number of
     connections maintained by the pool exceeds <code>min_connections</code>
     and there are no callers waiting for a new connection,
     the pool will close the excess connections.</p>

  <p>If the <code>max_connections</code> value is 0, then the pool will
     create a new connection whenever all of the existing connections
     are in use. If the <code>min_connections</code> value is 0, then
     the pool will never close a connection and instead maintain all
     the connections that were ever created.</p>

  <p>The <code>create()</code> virtual function is called whenever the
     pool needs to create a new connection. By deriving from the
     <code>connection_pool_factory</code> class and overriding this
     function we can implement custom connection establishment
     and configuration.</p>

  <p>If you pass <code>NULL</code> as the connection factory to one of the
     <code>database</code> constructors, then the
     <code>connection_pool_factory</code> instance will be created by default
     with the min and max connections values set to <code>0</code>. The
     following code fragment shows how we can pass our own connection factory
     instance:</p>

  <pre class="cxx">
#include &lt;odb/database.hxx>

#include &lt;odb/pgsql/database.hxx>
#include &lt;odb/pgsql/connection-factory.hxx>

int
main (int argc, char* argv[])
{
  auto_ptr&lt;odb::pgsql::connection_factory> f (
    new odb::pgsql::connection_pool_factory (20));

  auto_ptr&lt;odb::database> db (
    new pgsql::database (argc, argv, false, "", f));
}
  </pre>

  <h2><a name="19.4">19.4 PostgreSQL Exceptions</a></h2>

  <p>The PostgreSQL ODB runtime library defines the following
     PostgreSQL-specific exceptions:</p>

  <pre class="cxx">
namespace odb
{
  namespace pgsql
  {
    class database_exception: odb::database_exception
    {
    public:
      const std::string&amp;
      message () const;

      const std::string&amp;
      sqlstate () const;

      virtual const char*
      what () const throw ();
    };

    class cli_exception: odb::exception
    {
    public:
      virtual const char*
      what () const throw ();
    };
  }
}
  </pre>

  <p>You will need to include the <code>&lt;odb/pgsql/exceptions.hxx></code>
     header file to make these exceptions available in your application.</p>

  <p>The <code>odb::pgsql::database_exception</code> is thrown if
     a PostgreSQL database operation fails. The PostgreSQL-specific error
     information is accessible via the <code>message()</code> and
     <code>sqlstate()</code> functions. All this information is also
     combined and returned in a human-readable form by the <code>what()</code>
     function.</p>

  <p>The <code>odb::pgsql::cli_exception</code> is thrown by the
     command line parsing constructor of the <code>odb::pgsql::database</code>
     class if the PostgreSQL option values are missing or invalid. The
     <code>what()</code> function returns a human-readable description
     of an error.</p>

  <h2><a name="19.5">19.5 PostgreSQL Limitations</a></h2>

  <p>The following sections describe PostgreSQL-specific limitations imposed
     by the current PostgreSQL and ODB runtime versions.</p>

  <h3><a name="19.5.1">19.5.1 Query Result Caching</a></h3>

  <p>The PostgreSQL ODB runtime implementation will always return a
     cached query result (<a href="#4.4">Section 4.4, "Query Result"</a>)
     even when explicitly requested not to. This is a limitation of the
     PostgreSQL client library (<code>libpq</code>) which does not
     support uncached (streaming) query results.</p>

  <h3><a name="19.5.2">19.5.2 Foreign Key Constraints</a></h3>

  <p>ODB assumes the standard SQL behavior which requires that
     foreign key constraints checking is deferred until the
     transaction is committed. Default PostgreSQL behavior is
     to check such constraints immediately. As a result, when
     used with ODB, a custom database schema that defines foreign
     key constraints may need to declare such constraints as
     <code>INITIALLY DEFERRED</code>, as shown in the following example.
     By default, schemas generated by the ODB compiler meet this requirement
     automatically.</p>

  <pre class="sql">
CREATE TABLE Employee (
  ...
  employer BIGINT REFERENCES Employer(id) INITIALLY DEFERRED);
  </pre>

  <p>You can override the default behavior and instruct the ODB
     compiler to generate non-deferrable foreign keys by specifying
     the <code>--fkeys-deferrable-mode not_deferrable</code> ODB
     compiler option. Note, however, that in this case the order in
     which you persist, update, and erase objects within a transaction
     becomes important.</p>

  <h3><a name="19.5.3">19.5.3 Unique Constraint Violations</a></h3>

  <p>Due to the granularity of the PostgreSQL error codes, it is impossible
     to distinguish between the duplicate primary key and other unique
     constraint violations. As a result, when making an object persistent,
     the PostgreSQL ODB runtime will translate all unique constraint violation
     errors to the <code>object_already_persistent</code> exception
     (<a href="#3.14">Section 3.14, "ODB Exceptions"</a>).</p>

  <h3><a name="19.5.4">19.5.4 Date-Time Format</a></h3>

  <p>ODB expects the PostgreSQL server to use integers as a binary
     format for the date-time types, which is the default for most
     PostgreSQL configurations. When creating a connection, ODB
     examines the <code>integer_datetimes</code> PostgreSQL server
     parameter and if it is <code>false</code>,
     <code>odb::pgsql::database_exception</code> is thrown. You may
     check the value of this parameter for your server by executing
     the following SQL query:</p>

  <pre class="sql">
SHOW integer_datetimes
  </pre>

  <h3><a name="19.5.5">19.5.5 Timezones</a></h3>

  <p>ODB does not currently natively support the PostgreSQL date-time types
     with timezone information. However, these types can be accessed by
     mapping them to one of the natively supported types, as discussed
     in <a href="#14.8">Section 14.8, "Database Type Mapping Pragmas"</a>.</p>

  <h3><a name="19.5.6">19.5.6 <code>NUMERIC</code> Type Support</a></h3>

  <p>Support for the PostgreSQL <code>NUMERIC</code> type is limited
     to providing a binary buffer containing the binary representation
     of the value. For more information on the binary format used to
     store <code>NUMERIC</code> values refer to the PostgreSQL
     documentation. An alternative approach to accessing <code>NUMERIC</code>
     values is to map this type to one of the natively supported
     ones, as discussed in <a href="#14.8">Section 14.8, "Database
     Type Mapping Pragmas"</a>.</p>


  <h2><a name="19.6">19.6 PostgreSQL Index Definitions</a></h2>

  <p>When the <code>index</code> pragma (<a href="#14.7">Section 14.7,
     "Index Definition Pragmas"</a>) is used to define a PostgreSQL index,
     the <code>type</code> clause specifies the index type (for example,
     <code>UNIQUE</code>), the <code>method</code> clause specifies the
     index method (for example, <code>BTREE</code>, <code>HASH</code>,
     <code>GIN</code>, etc.), and the <code>options</code> clause
     specifies additional index options, such as storage parameters,
     table spaces, and the <code>WHERE</code> predicate. To support
     the definition of concurrent indexes, the <code>type</code>
     clause can end with the word <code>CONCURRENTLY</code> (upper and
     lower cases are recognized). The column options can be used to
     specify collations, operator classes, and the sort order. For example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  std::string name_;

  #pragma db index                            \
             type("UNIQUE CONCURRENTLY")      \
             method("HASH")                   \
             member(name_, "DESC")            \
             options("WITH(FILLFACTOR = 80)")
};
  </pre>

  <p>Index names in PostgreSQL are schema-global. To avoid name clashes,
     ODB automatically prefixes each index name with the table name on
     which it is defined.</p>

  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="20">20 Oracle Database</a></h1>

  <p>To generate support code for the Oracle database you will need
     to pass the "<code>--database&nbsp;oracle</code>"
     (or "<code>-d&nbsp;oracle</code>") option to the ODB compiler.
     Your application will also need to link to the Oracle ODB runtime
     library (<code>libodb-oracle</code>). All Oracle-specific ODB
     classes are defined in the <code>odb::oracle</code> namespace.</p>

  <h2><a name="20.1">20.1 Oracle Type Mapping</a></h2>

  <p>The following table summarizes the default mapping between basic
     C++ value types and Oracle database types. This mapping can be
     customized on the per-type and per-member basis using the ODB
     Pragma Language (<a href="#14">Chapter 14, "ODB Pragma
     Language"</a>).</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>C++ Type</th>
      <th>Oracle Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>bool</code></td>
      <td><code>NUMBER(1)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>char</code></td>
      <td><code>CHAR(1)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>signed char</code></td>
      <td><code>NUMBER(3)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned char</code></td>
      <td><code>NUMBER(3)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>short</code></td>
      <td><code>NUMBER(5)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned short</code></td>
      <td><code>NUMBER(5)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>int</code></td>
      <td><code>NUMBER(10)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned int</code></td>
      <td><code>NUMBER(10)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>long</code></td>
      <td><code>NUMBER(19)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned long</code></td>
      <td><code>NUMBER(20)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>long long</code></td>
      <td><code>NUMBER(19)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned long long</code></td>
      <td><code>NUMBER(20)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>float</code></td>
      <td><code>BINARY_FLOAT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>double</code></td>
      <td><code>BINARY_DOUBLE</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>std::string</code></td>
      <td><code>VARCHAR2(512)</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>char[N]</code></td>
      <td><code>VARCHAR2(N-1)</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>It is possible to map the <code>char</code> C++ type to an integer
     database type (for example, <code>NUMBER(3)</code>) using the
     <code>db&nbsp;type</code> pragma (<a href="#14.4.3">Section 14.4.3,
     "<code>type</code>"</a>).</p>

  <p>In Oracle empty <code>VARCHAR2</code> and <code>NVARCHAR2</code>
     strings are represented as a <code>NULL</code> value. As a result,
     columns of the <code>std::string</code> and <code>char[N]</code>
     types are by default declared as <code>NULL</code> except for
     primary key columns. However, you can override this by explicitly
     declaring such columns as <code>NOT NULL</code> with the
     <code>db&nbsp;not_null</code> pragma (<a href="#14.4.6">Section
     14.4.6, "<code>null/not_null</code>"</a>). This also means that for
     object ids that are mapped to these Oracle types, an empty string is
     an invalid value.</p>

  <p>Additionally, by default, C++ enums and C++11 enum classes are
     automatically mapped to the Oracle types corresponding to their
     underlying integral types (see table above). The default
     <code>NULL</code> semantics is <code>NOT NULL</code>. For
     example:</p>

  <pre class="cxx">
enum color {red, green, blue};
enum class taste: unsigned char
{
  bitter = 1,
  sweet,
  sour = 4,
  salty
};

#pragma db object
class object
{
  ...

  color color_; // Automatically mapped to NUMBER(10).
  taste taste_; // Automatically mapped to NUMBER(3).
};
  </pre>

  <p>It is also possible to add support for additional Oracle types,
     such as <code>XML</code>, geospatial types, user-defined types,
     and collections (arrays, table types). For more information, refer to
     <a href="#14.8">Section 14.8, "Database Type Mapping
     Pragmas"</a>.</p>

  <h3><a name="20.1.1">20.1.1 String Type Mapping</a></h3>

  <p>The Oracle ODB runtime library provides support for mapping the
     <code>std::string</code>, <code>char[N]</code>, and
     <code>std::array&lt;char, N></code> types to the Oracle <code>CHAR</code>,
     <code>VARCHAR2</code>, <code>CLOB</code>, <code>NCHAR</code>,
     <code>NVARCHAR2</code>, and <code>NCLOB</code> types. However,
     these mappings are not enabled by default (in particular, by
     default, <code>std::array</code> will be treated as a container).
     To enable the alternative mappings for these types we need to
     specify the database type explicitly using the <code>db&nbsp;type</code>
     pragma (<a href="#14.4.3">Section 14.4.3, "<code>type</code>"</a>),
     for example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  #pragma db type ("CHAR(2)")
  char state_[2];

  #pragma db type ("VARCHAR(128)") null
  std::string name_;

  #pragma db type ("CLOB")
  std::string text_;
};
  </pre>

  <p>Alternatively, this can be done on the per-type basis, for example:</p>

  <pre class="cxx">
#pragma db value(std::string) type("VARCHAR(128)") null

#pragma db object
class object
{
  ...

  std::string name_; // Mapped to VARCHAR(128).

  #pragma db type ("CLOB")
  std::string text_; // Mapped to CLOB.
};
  </pre>

  <p>The <code>char[N]</code> and <code>std::array&lt;char, N></code> values
     may or may not be zero-terminated. When extracting such values from the
     database, ODB will append the zero terminator if there is enough
     space.</p>

  <h3><a name="20.1.2">20.1.2 Binary Type Mapping</a></h3>

  <p>The Oracle ODB runtime library provides support for mapping the
     <code>std::vector&lt;char></code>,
     <code>std::vector&lt;unsigned&nbsp;char></code>,
     <code>char[N]</code>, <code>unsigned&nbsp;char[N]</code>,
     <code>std::array&lt;char, N></code>, and
     <code>std::array&lt;unsigned char, N></code>
     types to the Oracle <code>BLOB</code> and <code>RAW</code> types.
     However, these mappings are not enabled by default (in particular, by
     default, <code>std::vector</code> and <code>std::array</code> will be
     treated as containers). To enable the alternative mappings for these
     types we need to specify the database type explicitly using the
     <code>db&nbsp;type</code> pragma (<a href="#14.4.3">Section 14.4.3,
     "<code>type</code>"</a>), for example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  #pragma db type("BLOB")
  std::vector&lt;char> buf_;

  #pragma db type("RAW(16)")
  unsigned char uuid_[16];
};
  </pre>

  <p>Alternatively, this can be done on the per-type basis, for example:</p>

  <pre class="cxx">
typedef std::vector&lt;char> buffer;
#pragma db value(buffer) type("BLOB")

#pragma db object
class object
{
  ...

  buffer buf_; // Mapped to BLOB.
};
  </pre>

  <p>Note also that in native queries (<a href="#4">Chapter 4, "Querying
     the Database"</a>) <code>char[N]</code> and
     <code>std::array&lt;char, N></code> parameters are by default passed
     as a string rather than a binary. To pass such parameters as a binary,
     we need to specify the database type explicitly in the
     <code>_val()</code>/<code>_ref()</code> calls. Note also that we
     don't need to do this for the integrated queries, for example:</p>

  <pre class="cxx">
char u[16] = {...};

db.query&lt;object> ("uuid = " + query::_val&lt;odb::oracle::id_raw> (u));
db.query&lt;object> (query::uuid == query::_ref (u));
  </pre>

  <h2><a name="20.2">20.2 Oracle Database Class</a></h2>

  <p>The Oracle <code>database</code> class encapsulates the OCI environment
     handle as well as the database connection string and user credentials
     that are used to establish connections to the database. It has the
     following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace oracle
  {
    class database: public odb::database
    {
    public:
      database (const std::string&amp; user,
                const std::string&amp; password,
                const std::string&amp; db,
                ub2 charset = 0,
                ub2 ncharset = 0,
                OCIEnv* environment = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (const std::string&amp; user,
                const std::string&amp; password,
                const std::string&amp; service,
                const std::string&amp; host,
                unsigned int port = 0,
                ub2 charset = 0,
                ub2 ncharset = 0,
                OCIEnv* environment = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (int&amp; argc,
                char* argv[],
                bool erase = false,
                ub2 charset = 0,
                ub2 ncharset = 0,
                OCIEnv* environment = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      static void
      print_usage (std::ostream&amp;);

    public:
      const std::string&amp;
      user () const;

      const std::string&amp;
      password () const;

      const std::string&amp;
      db () const;

      const std::string&amp;
      service () const;

      const std::string&amp;
      host () const;

      unsigned int
      port () const;

      ub2
      charset () const;

      ub2
      ncharset () const;

      OCIEnv*
      environment ();

    public:
      connection_ptr
      connection ();
    };
  }
}
  </pre>

  <p>You will need to include the <code>&lt;odb/oracle/database.hxx></code>
     header file to make this class available in your application.</p>

  <p>The overloaded <code>database</code> constructors allow us to specify the
     Oracle database parameters that should be used when connecting to the
     database. The <code>db</code> argument in the first constructor is a
     connection identifier that specifies the database to connect to. For more
     information on the format of the connection identifier, refer to the
     Oracle documentation.</p>

  <p>The second constructor allows us to specify the individual components
     of a connection identifier as the <code>service</code>, <code>host</code>,
     and <code>port</code> arguments. If the <code>host</code> argument is
     empty, then localhost is used by default. Similarly, if the
     <code>port</code> argument is zero, then the default port is used.</p>

  <p>The last constructor extracts the database parameters
     from the command line. The following options are recognized:</p>

  <pre class="terminal">
  --user &lt;login>
  --password &lt;password>
  --database &lt;connect-id>
  --service &lt;name>
  --host &lt;host>
  --port &lt;integer>
  --options-file &lt;file>
  </pre>

  <p>The <code>--options-file</code> option allows us to specify some
     or all of the database options in a file with each option appearing
     on a separate line followed by a space and an option value. Note that it
     is invalid to specify the <code>--database</code> option
     together with <code>--service</code>, <code>--host</code>, or
     <code>--port</code> options.</p>

  <p>If the <code>erase</code> argument to this constructor is true,
     then the above options are removed from the <code>argv</code>
     array and the <code>argc</code> count is updated accordingly.
     This is primarily useful if your application accepts other
     options or arguments and you would like to get the Oracle
     options out of the <code>argv</code> array.</p>

  <p>This constructor throws the <code>odb::oracle::cli_exception</code>
     exception if the Oracle option values are missing or invalid. See section
     <a href="#20.4">Section 20.4, "Oracle Exceptions"</a> for more
     information on this exception.</p>

  <p>The static <code>print_usage()</code> function prints the list of options
     with short descriptions that are recognized by this constructor.</p>

  <p>Additionally, all the constructors have the <code>charset</code>,
     <code>ncharset</code>, and <code>environment</code> arguments.
     The <code>charset</code> argument specifies the client-side database
     character encoding. Character data corresponding to the <code>CHAR</code>,
     <code>VARCHAR2</code>, and <code>CLOB</code> types will be delivered
     to and received from the application in this encoding. Similarly,
     the <code>ncharset</code> argument specifies the client-side national
     character encoding. Character data corresponding to the <code>NCHAR</code>,
     <code>NVARCHAR2</code>, and <code>NCLOB</code> types will be delivered
     to and received from the application in this encoding. For the complete
     list of available character encoding values, refer to the Oracle
     documentation. Commonly used encoding values are <code>873</code>
     (UTF-8), <code>31</code> (ISO-8859-1), and <code>1000</code> (UTF-16).
     If the database character encoding is not specified, then the
     <code>NLS_LANG</code> environment/registry variable is used. Similarly,
     if the national character encoding is not specified, then the
     <code>NLS_NCHAR</code> environment/registry variable is used. For more
     information on character encodings, refer to the
     <code>OCIEnvNlsCreate()</code> function in the Oracle Call Interface
     (OCI) documentation.</p>

  <p>The <code>environment</code> argument allows us to provide a custom
     OCI environment handle. If this argument is not <code>NULL</code>,
     then the passed handle is used in all the OCI function calls made
     by this <code>database</code> class instance. Note also that the
     <code>database</code> instance does not assume ownership of the
     passed environment handle and this handle should be valid for
     the lifetime of the <code>database</code> instance. If a custom
     environment handle is used, then the <code>charset</code> and
     <code>ncharset</code> arguments have no effect.</p>

  <p>The last argument to all of the constructors is a pointer to the
     connection factory. In C++98/03, it is <code>std::auto_ptr</code> while
     in C++11 <code>std::unique_ptr</code> is used instead. If we pass a
     non-<code>NULL</code> value, the database instance assumes ownership
     of the factory instance. The connection factory interface as well as
     the available implementations are described in the next section.</p>

  <p>The set of accessor functions following the constructors allows us
     to query the parameters of the <code>database</code> instance.</p>

  <p>The <code>connection()</code> function returns a pointer to the
     Oracle database connection encapsulated by the
     <code>odb::oracle::connection</code> class. For more information
     on <code>oracle::connection</code>, refer to <a href="#20.3">Section
     20.3, "Oracle Connection and Connection Factory"</a>.</p>

  <h2><a name="20.3">20.3 Oracle Connection and Connection Factory</a></h2>

  <p>The <code>oracle::connection</code> class has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace oracle
  {
    class connection: public odb::connection
    {
    public:
      connection (database&amp;);
      connection (database&amp;, OCISvcCtx*);

      OCISvcCtx*
      handle ();

      OCIError*
      error_handle ();

      details::buffer&amp;
      lob_buffer ();
    };

    typedef details::shared_ptr&lt;connection> connection_ptr;
  }
}
  </pre>

  <p>For more information on the <code>odb::connection</code> interface, refer
     to <a href="#3.6">Section 3.6, "Connections"</a>. The first overloaded
     <code>oracle::connection</code> constructor creates a new OCI service
     context. The OCI statement caching is enabled for the underlying session
     while the OCI connection pooling and session pooling are not used. The
     second constructor allows us to create a <code>connection</code> instance by
     providing an already connected Oracle service context. Note that the
     <code>connection</code> instance assumes ownership of this handle. The
     <code>handle()</code> accessor returns the OCI service context handle
     associated with the <code>connection</code> instance.</p>

  <p>An OCI error handle is allocated for each <code>connection</code>
     instance and is available via the <code>error_handle()</code> accessor
     function.</p>

  <p>Additionally, each <code>connection</code> instance maintains a large
     object (LOB) buffer. This buffer is used by the Oracle ODB runtime
     as an intermediate storage for piecewise handling of LOB data.
     By default, the LOB buffer has zero initial capacity and is
     expanded to 4096 bytes when the first LOB operation is performed.
     If your application requires a bigger or smaller LOB buffer, you can
     specify a custom capacity using the <code>lob_buffer()</code>
     accessor.</p>

  <p>The <code>oracle::connection_factory</code> abstract class has the
     following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace oracle
  {
    class connection_factory
    {
    public:
      virtual void
      database (database&amp;) = 0;

      virtual connection_ptr
      connect () = 0;
    };
  }
}
  </pre>

  <p>The <code>database()</code> function is called when a connection
     factory is associated with a database instance. This happens in
     the <code>odb::oracle::database</code> class constructors. The
     <code>connect()</code> function is called whenever a database
     connection is requested.</p>

  <p>The two implementations of the <code>connection_factory</code>
     interface provided by the Oracle ODB runtime are
     <code>new_connection_factory</code> and
     <code>connection_pool_factory</code>. You will need to include
     the <code>&lt;odb/oracle/connection-factory.hxx></code>
     header file to make the <code>connection_factory</code> interface
     and these implementation classes available in your application.</p>

  <p>The <code>new_connection_factory</code> class creates a new
     connection whenever one is requested. When a connection is no
     longer needed, it is released and closed. The
     <code>new_connection_factory</code> class has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace oracle
  {
    class new_connection_factory: public connection_factory
    {
    public:
      new_connection_factory ();
    };
};
  </pre>

  <p>The <code>connection_pool_factory</code> class implements a
     connection pool. It has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace oracle
  {
    class connection_pool_factory: public connection_factory
    {
    public:
      connection_pool_factory (std::size_t max_connections = 0,
                               std::size_t min_connections = 0);

    protected:
      class pooled_connection: public connection
      {
      public:
        pooled_connection (database_type&amp;);
        pooled_connection (database_type&amp;, OCISvcCtx*);
      };

      typedef details::shared_ptr&lt;pooled_connection> pooled_connection_ptr;

      virtual pooled_connection_ptr
      create ();
    };
};
  </pre>

  <p>The <code>max_connections</code> argument in the
     <code>connection_pool_factory</code> constructor specifies the maximum
     number of concurrent connections that this pool factory will
     maintain. Similarly, the <code>min_connections</code> argument
     specifies the minimum number of available connections that
     should be kept open.</p>

  <p>Whenever a connection is requested, the pool factory first
     checks if there is an unused connection that can be returned.
     If there is none, the pool factory checks the
     <code>max_connections</code> value to see if a new connection
     can be created. If the total number of connections maintained
     by the pool is less than this value, then a new connection is
     created and returned. Otherwise, the caller is blocked until
     a connection becomes available.</p>

  <p>When a connection is released, the pool factory first checks
     if there are blocked callers waiting for a connection. If so, then
     one of them is unblocked and is given the connection. Otherwise,
     the pool factory checks whether the total number of connections
     maintained by the pool is greater than the <code>min_connections</code>
     value. If that's the case, the connection is closed. Otherwise, the
     connection is added to the pool of available connections to be
     returned on the next request. In other words, if the number of
     connections maintained by the pool exceeds <code>min_connections</code>
     and there are no callers waiting for a new connection,
     the pool will close the excess connections.</p>

  <p>If the <code>max_connections</code> value is 0, then the pool will
     create a new connection whenever all of the existing connections
     are in use. If the <code>min_connections</code> value is 0, then
     the pool will never close a connection and instead maintain all
     the connections that were ever created.</p>

  <p>The <code>create()</code> virtual function is called whenever the
     pool needs to create a new connection. By deriving from the
     <code>connection_pool_factory</code> class and overriding this
     function we can implement custom connection establishment
     and configuration.</p>

  <p>If you pass <code>NULL</code> as the connection factory to one of the
     <code>database</code> constructors, then the
     <code>connection_pool_factory</code> instance will be created by default
     with the min and max connections values set to <code>0</code>. The
     following code fragment shows how we can pass our own connection factory
     instance:</p>

  <pre class="cxx">
#include &lt;odb/database.hxx>

#include &lt;odb/oracle/database.hxx>
#include &lt;odb/oracle/connection-factory.hxx>

int
main (int argc, char* argv[])
{
  auto_ptr&lt;odb::oracle::connection_factory> f (
    new odb::oracle::connection_pool_factory (20));

  auto_ptr&lt;odb::database> db (
    new oracle::database (argc, argv, false, 0, 0, 0, f));
}
  </pre>

  <h2><a name="20.4">20.4 Oracle Exceptions</a></h2>

  <p>The Oracle ODB runtime library defines the following
     Oracle-specific exceptions:</p>

  <pre class="cxx">
namespace odb
{
  namespace oracle
  {
    class database_exception: odb::database_exception
    {
    public:
      class record
      {
      public:
        sb4
        error () const;

        const std::string&amp;
        message () const;
      };

      typedef std::vector&lt;record> records;

      typedef records::size_type size_type;
      typedef records::const_iterator iterator;

      iterator
      begin () const;

      iterator
      end () const;

      size_type
      size () const;

      virtual const char*
      what () const throw ();
    };

    class cli_exception: odb::exception
    {
    public:
      virtual const char*
      what () const throw ();
    };

    class invalid_oci_handle: odb::exception
    {
    public:
      virtual const char*
      what () const throw ();
    };
  }
}
  </pre>

  <p>You will need to include the <code>&lt;odb/oracle/exceptions.hxx></code>
     header file to make these exceptions available in your application.</p>

  <p>The <code>odb::oracle::database_exception</code> is thrown if
     an Oracle database operation fails. The Oracle-specific error
     information is stored as a series of records, each containing
     the error code as a signed 4-byte integer and the message string.
     All this information is also combined and returned in a
     human-readable form by the <code>what()</code> function.</p>

  <p>The <code>odb::oracle::cli_exception</code> is thrown by the
     command line parsing constructor of the <code>odb::oracle::database</code>
     class if the Oracle option values are missing or invalid. The
     <code>what()</code> function returns a human-readable description
     of an error.</p>

  <p>The <code>odb::oracle::invalid_oci_handle</code> is thrown if an
     invalid handle is passed to an OCI function or if an OCI function
     was unable to allocate a handle. The former normally indicates
     a programming error while the latter indicates an out of memory
     condition. The <code>what()</code> function returns a human-readable
     description of an error.</p>

  <h2><a name="20.5">20.5 Oracle Limitations</a></h2>

  <p>The following sections describe Oracle-specific limitations imposed
     by the current Oracle and ODB runtime versions.</p>

  <h3><a name="20.5.1">20.5.1 Identifier Truncation</a></h3>

  <p>Oracle limits the length of database identifiers (table, column, etc.,
     names) to 30 characters. The ODB compiler automatically truncates
     any identifier that is longer than 30 characters. This, however,
     can lead to duplicate names. A common symptom of this problem
     are errors during the database schema creation indicating
     that a database object with the same name already exists. To
     resolve this problem we can assign custom, shorter identifiers
     using the <code>db&nbsp;table</code> and <code>db&nbsp;column</code>
     pragmas (<a href="#14">Chapter 14, "ODB Pragma Language")</a>. For
     example:</p>

  <pre class="cxx">
#pragma db object
class long_class_name
{
  ...

  std::vector&lt;int> long_container_x_;
  std::vector&lt;int> long_container_y_;
};
  </pre>

  <p>In the above example, the names of the two container tables will be
     <code>long_class_name_long_container_x_</code> and
     <code>long_class_name_long_container_y_</code>. However, when
     truncated to 30 characters, they both become
     <code>long_class_name_long_container</code>. To resolve this
     collision we can assign a custom table name for each container:</p>

  <pre class="cxx">
#pragma db object
class long_class_name
{
  ...

  #pragma db table("long_class_name_cont_x")
  std::vector&lt;int> long_container_x_;

  #pragma db table("long_class_name_cont_y")
  std::vector&lt;int> long_container_y_;
};
  </pre>

  <h3><a name="20.5.2">20.5.2 Query Result Caching</a></h3>

  <p>Oracle ODB runtime implementation does not perform query result caching
     (<a href="#4.4">Section 4.4, "Query Result"</a>) even when explicitly
     requested. The OCI API supports interleaving execution of multiple
     prepared statements on a single connection. As a result, with OCI,
     it is possible to have multiple uncached results and calls to other
     database functions do not invalidate them. The only limitation of
     the uncached Oracle results is the unavailability of the
     <code>result::size()</code> function. If you call this function on
     an Oracle query result, then the <code>odb::result_not_cached</code>
     exception (<a href="#3.14">Section 3.14, "ODB Exceptions"</a>) is
     always thrown. Future versions of the Oracle ODB runtime library
     may add support for result caching.</p>

  <h3><a name="20.5.3">20.5.3 Foreign Key Constraints</a></h3>

  <p>ODB assumes the standard SQL behavior which requires that
     foreign key constraints checking is deferred until the
     transaction is committed. Default Oracle behavior is
     to check such constraints immediately. As a result, when
     used with ODB, a custom database schema that defines foreign
     key constraints may need to declare such constraints as
     <code>INITIALLY DEFERRED</code>, as shown in the following example.
     By default, schemas generated by the ODB compiler meet this requirement
     automatically.</p>

  <pre class="sql">
CREATE TABLE Employee (
  ...
  employer NUMBER(20) REFERENCES Employer(id)
           DEFERRABLE INITIALLY DEFERRED);
  </pre>

  <p>You can override the default behavior and instruct the ODB
     compiler to generate non-deferrable foreign keys by specifying
     the <code>--fkeys-deferrable-mode not_deferrable</code> ODB
     compiler option. Note, however, that in this case the order in
     which you persist, update, and erase objects within a transaction
     becomes important.</p>

  <h3><a name="20.5.4">20.5.4 Unique Constraint Violations</a></h3>

  <p>Due to the granularity of the Oracle error codes, it is impossible
     to distinguish between the duplicate primary key and other unique
     constraint violations. As a result, when making an object persistent,
     the Oracle ODB runtime will translate all unique constraint violation
     errors to the <code>object_already_persistent</code> exception
     (<a href="#3.14">Section 3.14, "ODB Exceptions"</a>).</p>

  <h3><a name="20.5.5">20.5.5 Large <code>FLOAT</code> and
      <code>NUMBER</code> Types</a></h3>

  <p>The Oracle <code>FLOAT</code> type with a binary precision greater
     than 53 and fixed-point <code>NUMBER</code> type with a decimal
     precision greater than 15 cannot be automatically extracted
     into the C++ <code>float</code> and <code>double</code> types.
     Instead, the Oracle ODB runtime uses a 21-byte buffer containing
     the binary representation of a value as an image type for such
     <code>FLOAT</code> and <code>NUMBER</code> types. In order to
     convert them into an application-specific large number representation,
     you will need to provide a suitable <code>value_traits</code>
     template specialization. For more information on the binary format
     used to store the <code>FLOAT</code> and <code>NUMBER</code> values,
     refer to the Oracle Call Interface (OCI) documentation.</p>

  <p>An alternative approach to accessing large <code>FLOAT</code> and
     <code>NUMBER</code> values is to map these type to one of the
     natively supported ones, as discussed in <a href="#14.8">Section
     14.8, "Database Type Mapping Pragmas"</a>.</p>

  <p>Note that a <code>NUMBER</code> type that is used to represent a
     floating point number (declared by specifying <code>NUMBER</code>
     without any range and scale) can be extracted into the C++
     <code>float</code> and <code>double</code> types.</p>

  <h3><a name="20.5.6">20.5.6 Timezones</a></h3>

  <p>ODB does not currently support the Oracle date-time types with timezone
     information. However, these types can be accessed by mapping them to
     one of the natively supported types, as discussed in
     <a href="#14.8">Section 14.8, "Database Type Mapping Pragmas"</a>.</p>

  <h3><a name="20.5.7">20.5.7 <code>LONG</code> Types</a></h3>

  <p>ODB does not support the deprecated Oracle <code>LONG</code> and
     <code>LONG RAW</code> data types. However, these types can be accessed
     by mapping them to one of the natively supported types, as discussed
     in <a href="#14.8">Section 14.8, "Database Type Mapping Pragmas"</a>.</p>

  <h3><a name="20.5.8">20.5.8 LOB Types and By-Value Accessors/Modifiers</a></h3>

  <p>As discussed in <a href="#14.4.5">Section 14.4.5,
     "<code>get</code>/<code>set</code>/<code>access</code>"</a>, by-value
     accessor and modifier expressions cannot be used with data members
     of Oracle large object (LOB) data types: <code>BLOB</code>,
     <code>CLOB</code>, and <code>NCLOB</code>. The Oracle ODB runtime
     uses streaming for reading/writing LOB data directly from/to
     data members. As a result, by-reference accessors and modifiers
     should be used for these data types.</p>

  <h3><a name="20.5.9">20.5.9 Database Schema Evolution</a></h3>

  <p>In Oracle, the type of the <code>name</code> column in the
     <code>schema_version</code> table is <code>VARCHAR2(512)</code>.
     Because this column is a primary key and <code>VARCHAR2</code>
     represents empty strings as <code>NULL</code> values, it is
     impossible to store an empty string in this column, which
     is what is used to represent the default schema name. As a
     result, in Oracle, the empty schema name is stored as a
     string containing a single space character. ODB performs
     all the necessary translations automatically and normally
     you do not need to worry about this implementation detail
     unless you are querying or modifying the <code>schema_version</code>
     table directly.</p>

  <h2><a name="20.6">20.6 Oracle Index Definitions</a></h2>

  <p>When the <code>index</code> pragma (<a href="#14.7">Section 14.7,
     "Index Definition Pragmas"</a>) is used to define an Oracle index,
     the <code>type</code> clause specifies the index type (for example,
     <code>UNIQUE</code>, <code>BITMAP</code>), the <code>method</code>
     clause is not used, and the <code>options</code> clause specifies
     additional index properties, such as partitioning, table spaces, etc.
     The column options can be used to specify the sort order. For example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  std::string name_;

  #pragma db index                     \
             type("BITMAP")            \
             member(name_, "DESC")     \
             options("TABLESPACE TBS1")
};
  </pre>

  <p>Index names in Oracle are schema-global. To avoid name clashes,
     ODB automatically prefixes each index name with the table name on
     which it is defined.</p>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="21">21 Microsoft SQL Server Database</a></h1>

  <p>To generate support code for the SQL Server database you will need
     to pass the "<code>--database&nbsp;mssql</code>"
     (or "<code>-d&nbsp;mssql</code>") option to the ODB compiler.
     Your application will also need to link to the SQL Server ODB runtime
     library (<code>libodb-mssql</code>). All SQL Server-specific ODB
     classes are defined in the <code>odb::mssql</code> namespace.</p>

  <h2><a name="21.1">21.1 SQL Server Type Mapping</a></h2>

  <p>The following table summarizes the default mapping between basic
     C++ value types and SQL Server database types. This mapping can be
     customized on the per-type and per-member basis using the ODB
     Pragma Language (<a href="#14">Chapter 14, "ODB Pragma Language"</a>).</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>C++ Type</th>
      <th>SQL Server Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>bool</code></td>
      <td><code>BIT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>char</code></td>
      <td><code>CHAR(1)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>signed char</code></td>
      <td><code>TINYINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned char</code></td>
      <td><code>TINYINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>short</code></td>
      <td><code>SMALLINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned short</code></td>
      <td><code>SMALLINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>int</code></td>
      <td><code>INT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned int</code></td>
      <td><code>INT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>long</code></td>
      <td><code>BIGINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned long</code></td>
      <td><code>BIGINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>long long</code></td>
      <td><code>BIGINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned long long</code></td>
      <td><code>BIGINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>float</code></td>
      <td><code>REAL</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>double</code></td>
      <td><code>FLOAT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>std::string</code></td>
      <td><code>VARCHAR(512)/VARCHAR(256)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>char[N]</code></td>
      <td><code>VARCHAR(N-1)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>std::wstring</code></td>
      <td><code>NVARCHAR(512)/NVARCHAR(256)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>wchar_t[N]</code></td>
      <td><code>NVARCHAR(N-1)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>GUID</code></td>
      <td><code>UNIQUEIDENTIFIER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

  </table>

  <p>It is possible to map the <code>char</code> C++ type to an integer
     database type (for example, <code>TINYINT</code>) using the
     <code>db&nbsp;type</code> pragma (<a href="#14.4.3">Section 14.4.3,
     "<code>type</code>"</a>).</p>

  <p>Note that the <code>std::string</code> and <code>std::wstring</code>
     types are mapped differently depending on whether a member of one of
     these types is an object id or not. If the member is an object id,
     then for this member <code>std::string</code> is mapped
     to <code>VARCHAR(256)</code> and <code>std::wstring</code> &mdash;
     to <code>NVARCHAR(256)</code>. Otherwise, <code>std::string</code>
     is mapped to <code>VARCHAR(512)</code> and <code>std::wstring</code>
     &mdash; to <code>NVARCHAR(512)</code>. Note also that you can
     always change this mapping using the <code>db&nbsp;type</code> pragma
     (<a href="#14.4.3">Section 14.4.3, "<code>type</code>"</a>).</p>

  <p>Additionally, by default, C++ enums and C++11 enum classes are
     automatically mapped to the SQL Server types corresponding to their
     underlying integral types (see table above). The default
     <code>NULL</code> semantics is <code>NOT NULL</code>. For
     example:</p>

  <pre class="cxx">
enum color {red, green, blue};
enum class taste: unsigned char
{
  bitter = 1,
  sweet,
  sour = 4,
  salty
};

#pragma db object
class object
{
  ...

  color color_; // Automatically mapped to INT.
  taste taste_; // Automatically mapped to TINYINT.
};
  </pre>

  <p>Note also that because SQL Server does not support unsigned integers,
     the <code>unsigned&nbsp;short</code>, <code>unsigned&nbsp;int</code>, and
     <code>unsigned&nbsp;long</code>/<code>unsigned&nbsp;long&nbsp;long</code> C++ types
     are by default mapped to the <code>SMALLINT</code>, <code>INT</code>,
     and <code>BIGINT</code> SQL Server types, respectively. The sign bit
     of the value stored by the database for these types will contain
     the most significant bit of the actual unsigned value being
     persisted. Similarly, because there is no signed version of the
     <code>TINYINT</code> SQL Server type, by default, the
     <code>signed char</code> C++ type is mapped to <code>TINYINT</code>.
     As a result, the most significant bit of the value stored by the
     database for this type will contain the sign bit of the actual
     signed value being persisted.</p>

  <p>It is also possible to add support for additional SQL Server types,
     such as geospatial types, <code>XML</code>, and user-defined types.
     For more information, refer to <a href="#14.8">Section 14.8, "Database
     Type Mapping Pragmas"</a>.</p>

  <h3><a name="21.1.1">21.1.1 String Type Mapping</a></h3>

  <p>The SQL Server ODB runtime library provides support for mapping the
     <code>std::string</code>, <code>char[N]</code>, and
     <code>std::array&lt;char, N></code> types to the SQL Server
     <code>CHAR</code>, <code>VARCHAR</code>, and <code>TEXT</code>
     types as well as the <code>std::wstring</code>, <code>wchar_t[N]</code>,
     and <code>std::array&lt;wchar_t, N></code> types to <code>NCHAR</code>,
     <code>NVARCHAR</code>, and <code>NTEXT</code>. However, these mappings
     are not enabled by default (in particular, by default,
     <code>std::array</code> will be treated as a container). To enable the
     alternative mappings for these types we need to specify the database
     type explicitly using the <code>db&nbsp;type</code> pragma
     (<a href="#14.4.3">Section 14.4.3, "<code>type</code>"</a>), for
     example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  #pragma db type ("CHAR(2)")
  char state_[2];

  #pragma db type ("NVARCHAR(max)")
  std::wstring text_;
};
  </pre>

  <p>Alternatively, this can be done on the per-type basis, for example:</p>

  <pre class="cxx">
#pragma db value(std::wstring) type("NVARCHAR(max)")

#pragma db object
class object
{
  ...

  std::wstring text_; // Mapped to NVARCHAR(max).
};
  </pre>

  <p>The <code>char[N]</code>, <code>std::array&lt;char, N></code>,
     <code>wchar_t[N]</code>, and <code>std::array&lt;wchar_t, N></code>
     values may or may not be zero-terminated. When extracting such values
     from the database, ODB will append the zero terminator if there is
     enough space.</p>

  <p>See also <a href="#21.1.4">Section 21.1.4, "Long String and Binary
     Types"</a> for certain limitations of long string types.</p>

  <h3><a name="21.1.2">21.1.2 Binary Type and <code>UNIQUEIDENTIFIER</code> Mapping</a></h3>

  <p>The SQL Server ODB runtime library also provides support for mapping the
     <code>std::vector&lt;char></code>,
     <code>std::vector&lt;unsigned&nbsp;char></code>,
     <code>char[N]</code>, <code>unsigned&nbsp;char[N]</code>,
     <code>std::array&lt;char, N></code>, and <code>std::array&lt;unsigned char, N></code>
     types to the SQL Server <code>BINARY</code>, <code>VARBINARY</code>, and
     <code>IMAGE</code> types. There is also support for mapping the
     <code>char[16]</code> array to the SQL Server <code>UNIQUEIDENTIFIER</code>
     type. However, these mappings are not enabled by default (in particular,
     by default, <code>std::vector</code> and <code>std::array</code> will
     be treated as containers). To enable the alternative mappings for these
     types we need to specify the database type explicitly using the
     <code>db&nbsp;type</code> pragma (<a href="#14.4.3">Section 14.4.3,
     "<code>type</code>"</a>), for example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  #pragma db type("UNIQUEIDENTIFIER")
  char uuid_[16];

  #pragma db type("VARBINARY(max)")
  std::vector&lt;char> buf_;

  #pragma db type("BINARY(256)")
  unsigned char data_[256];
};
  </pre>

  <p>Alternatively, this can be done on the per-type basis, for example:</p>

  <pre class="cxx">
typedef std::vector&lt;char> buffer;
#pragma db value(buffer) type("VARBINARY(max)")

#pragma db object
class object
{
  ...

  buffer buf_; // Mapped to VARBINARY(max).
};
  </pre>

  <p>Note also that in native queries (<a href="#4">Chapter 4, "Querying
     the Database"</a>) <code>char[N]</code> and
     <code>std::array&lt;char, N></code> parameters are by default passed
     as a string rather than a binary. To pass such parameters as a binary,
     we need to specify the database type explicitly in the
     <code>_val()</code>/<code>_ref()</code> calls. Note also that we
     don't need to do this for the integrated queries, for example:</p>

  <pre class="cxx">
char u[16] = {...};

db.query&lt;object> ("uuid = " + query::_val&lt;odb::mssql::id_binary> (u));
db.query&lt;object> (
  "uuid = " + query::_val&lt;odb::mssql::id_uniqueidentifier> (u));
db.query&lt;object> (query::uuid == query::_ref (u));
  </pre>

  <p>See also <a href="#21.1.4">Section 21.1.4, "Long String and Binary
     Types"</a> for certain limitations of long binary types.</p>

  <h3><a name="21.1.3">21.1.3 <code>ROWVERSION</code> Mapping</a></h3>

  <p><code>ROWVERSION</code> is a special SQL Server data type that is
     automatically incremented by the database server whenever a row
     is inserted or updated. As such, it is normally used to implement
     optimistic concurrency and ODB provides support for using
     <code>ROWVERSION</code> instead of the more portable approach
     for optimistic concurrency (<a href="#12">Chapter 12, "Optimistic
     Concurrency"</a>).</p>

  <p><code>ROWVERSION</code> is a 64-bit value which is mapped by ODB
     to <code>unsigned long long</code>. As a result, to use
     <code>ROWVERSION</code> for optimistic concurrency we need to
     make sure that the version column is of the <code>unsigned long
     long</code> type. We also need to explicitly specify that it
     should be mapped to the <code>ROWVERSION</code> data type. For
     example:</p>

  <pre class="cxx">
#pragma db object optimistic
class person
{
  ...

  #pragma db version type("ROWVERSION")
  unsigned long long version_;
};
  </pre>

  <h3><a name="21.1.4">21.1.4 Long String and Binary Types</a></h3>

  <p>For SQL Server, ODB handles character, national character, and
     binary data in two different ways depending on its maximum length.
     If the maximum length (in bytes) is less than or equal to the limit
     specified with the <code>--mssql-short-limit</code> ODB compiler
     option (1024 by default), then it is treated as <i>short data</i>,
     otherwise &mdash; <i>long data</i>. For short data ODB pre-allocates
     an intermediate buffer of the maximum size and binds it directly
     to a parameter or result column. This way the underlying database
     API (ODBC) can read/write directly from/to this buffer. In the case
     of long data, the data is read/written in chunks using the
     <code>SQLGetData()</code>/<code>SQLPutData()</code> ODBC functions.
     While the long data approach reduces the amount of memory used by
     the application, it may require greater CPU resources.</p>

  <p>Long data has a number of limitations. In particular, when setting
     a custom short data limit, make sure that it is sufficiently large
     so that no object id in the application is treated as long data.
     It is also impossible to load an object or view with long data more
     than once as part of a query result iteration (<a href="#4.4">Section
     4.4, "Query Result"</a>). Any such attempt will result in the
     <code>odb::mssql::long_data_reload</code> exception
     (<a href="#21.4">Section 21.4, "SQL Server Exceptions"</a>). For
     example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  int num_;

  #pragma db type("VARCHAR(max)") // Long data.
  std::string str_;
};

typedef odb::query&lt;object> query;
typedef odb::result&lt;object> result;

transaction t (db.begin ());

result r (db.query&lt;object> (query::num &lt; 100));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
{
  if (!i->str_.empty ()) // First load.
  {
    object o;
    i.load (o); // Error: second load, long_data_reload is thrown.
  }
}

t.commit ();
  </pre>

  <p>Finally, if a native view (<a href="#10.6">Section 10.6, "Native
     Views"</a>) contains one or more long data members, then such
     members should come last both in the select-list of the native
     SQL query and the list of data members in the C++ class.</p>

  <h2><a name="21.2">21.2 SQL Server Database Class</a></h2>

  <p>The SQL Server <code>database</code> class encapsulates the ODBC
     environment handle as well as the server instance address and
     user credentials that are used to establish connections to the
     database. It has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace mssql
  {
    enum protocol
    {
      protocol_auto,
      protocol_tcp, // TCP/IP.
      protocol_lpc, // Shared memory (local procedure call).
      protocol_np   // Named pipes.
    };

    enum transaction_isolation
    {
      isolation_read_uncommitted,
      isolation_read_committed,   // SQL Server default.
      isolation_repeatable_read,
      isolation_snapshot,
      isolation_serializable
    };

    class database: public odb::database
    {
    public:
      typedef protocol protocol_type;
      typedef transaction_isolation transaction_isolation_type;

      database (const std::string&amp; user,
                const std::string&amp; password,
                const std::string&amp; db,
                const std::string&amp; server,
                const std::string&amp; driver = "",
                const std::string&amp; extra_connect_string = "",
                transaction_isolation_type = isolation_read_committed,
                SQLHENV environment = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (const std::string&amp; user,
                const std::string&amp; password,
                const std::string&amp; db,
                protocol_type protocol = protocol_auto,
                const std::string&amp; host = "",
                const std::string&amp; instance = "",
                const std::string&amp; driver = "",
                const std::string&amp; extra_connect_string = "",
                transaction_isolation_type = isolation_read_committed,
                SQLHENV environment = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (const std::string&amp; user,
                const std::string&amp; password,
                const std::string&amp; db,
                const std::string&amp; host,
                unsigned int port,
                const std::string&amp; driver = "",
                const std::string&amp; extra_connect_string = "",
                transaction_isolation_type = isolation_read_committed,
                SQLHENV environment = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (const std::string&amp; connect_string,
                transaction_isolation_type = isolation_read_committed,
                SQLHENV environment = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (int&amp; argc,
                char* argv[],
                bool erase = false,
                const std::string&amp; extra_connect_string = "",
                transaction_isolation_type = isolation_read_committed,
                SQLHENV environment = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      static void
      print_usage (std::ostream&amp;);

    public:
      const std::string&amp;
      user () const;

      const std::string&amp;
      password () const;

      const std::string&amp;
      db () const;

      protocol_type
      protocol () const;

      const std::string&amp;
      host () const;

      const std::string&amp;
      instance () const;

      unsigned int
      port () const;

      const std::string&amp;
      server () const;

      const std::string&amp;
      driver () const;

      const std::string&amp;
      extra_connect_string () const;

      transaction_isolation_type
      transaction_isolation () const;

      const std::string&amp;
      connect_string () const;

      SQLHENV
      environment ();

    public:
      connection_ptr
      connection ();
    };
  }
}
  </pre>

  <p>You will need to include the <code>&lt;odb/mssql/database.hxx></code>
     header file to make this class available in your application.</p>

  <p>The overloaded <code>database</code> constructors allow us to specify the
     SQL Server database parameters that should be used when connecting to the
     database. The <code>user</code> and <code>password</code> arguments
     specify the login name and password. If <code>user</code> is empty,
     then Windows authentication is used and the <code>password</code>
     argument is ignored. The <code>db</code> argument specifies the
     database name to open. If it is empty, then the default database for
     the user is used.</p>

  <p>The <code>server</code> argument in the first constructor specifies
     the SQL Server instance address in the standard SQL Server address
     format:</p>

  <p>
  <code>[<i>protocol</i><b>:</b>]<i>host</i>[<b>\</b><i>instance</i>][<b>,</b><i>port</i>]</code>
  </p>

  <p>Where <code><i>protocol</i></code> can be <code>tcp</code>
    (TCP/IP), <code>lpc</code> (shared memory), or
    <code>np</code> (named pipe). If protocol is not specified, then a
    suitable protocol is automatically selected based on the SQL Server
    Native Client configuration. The <code><i>host</i></code> component
    can be a host name or an IP address. If <code><i>instance</i></code>
    is not specified, then the default SQL Server instance is assumed.
    If port is not specified, then the default SQL Server port is
    used (1433). Note that you would normally specify either the
    instance name or the port, but not both. If both are specified,
    then the instance name is ignored by the SQL Server Native Client
    ODBC driver. For more information on the format of the SQL
    Server address, refer to the SQL Server Native Client ODBC
    driver documentation.</p>

  <p>The second and third constructors allow us to specify all these address
     components (protocol, host, instance, and port) as separate
     arguments. The third constructor always connects using TCP/IP
     to the specified host and port.</p>

  <p>The <code>driver</code> argument specifies the SQL Server Native
     Client ODBC driver that should be used to connect to the database.
     If not specified, then the latest available version is used. The
     following examples show common ways of connecting to the database
     using the first three constructors:</p>

  <pre class="cxx">
// Connect to the default SQL Server instance on the local machine
// using the default protocol. Login as 'test' with password 'secret'
// and open the 'example_db' database.
//
odb::mssql::database db1 ("test",
                          "secret",
                          "example_db");

// As above except use Windows authentication and open the default
// database for this user.
//
odb::mssql::database db2 ("",
                          "",
                          "");

// Connect to the default SQL Server instance on 'onega' using the
// default protocol. Login as 'test' with password 'secret' and open
// the 'example_db' database.
//
odb::mssql::database db3 ("test",
                          "secret",
                          "example_db"
                          "onega");

// As above but connect to the 'production' SQL Server instance.
//
odb::mssql::database db4 ("test",
                          "secret",
                          "example_db"
                          "onega\\production");

// Same as above but specify protocol, host, and instance as separate
// arguments.
//
odb::mssql::database db5 ("test",
                          "secret",
                          "example_db",
                          odb::mssql::protocol_auto,
                          "onega",
                          "production");

// As above, but use TCP/IP as the protocol.
//
odb::mssql::database db6 ("test",
                          "secret",
                          "example_db"
                          "tcp:onega\\production");

// Same as above but using separate arguments.
//
odb::mssql::database db7 ("test",
                          "secret",
                          "example_db",
                          odb::mssql::protocol_tcp,
                          "onega",
                          "production");

// As above, but use TCP/IP port instead of the instance name.
//
odb::mssql::database db8 ("test",
                          "secret",
                          "example_db"
                          "tcp:onega,1435");

// Same as above but using separate arguments. Note that here we
// don't need to specify protocol explicitly since it can only
// be TCP/IP.
//
odb::mssql::database db9 ("test",
                          "secret",
                          "example_db",
                          "onega",
                          1435);

// As above but use the specific SQL Server Native Client ODBC
// driver version.
//
odb::mssql::database dbA ("test",
                          "secret",
                          "example_db"
                          "tcp:onega,1435",
                          "SQL Server Native Client 10.0");
  </pre>


  <p>The fourth constructor allows us to pass a custom ODBC connection
     string that provides all the information necessary to connect to
     the database. Note also that all the other constructors have the
     <code>extra_connect_string</code> argument which can be used to
     specify additional ODBC connection attributes. For more information
     on the format of the ODBC connection string, refer to the SQL
     Server Native Client ODBC driver documentation.</p>

  <p>The last constructor extracts the database parameters
     from the command line. The following options are recognized:</p>

  <pre class="terminal">
  --user | -U &lt;login>
  --password | -P &lt;password>
  --database | -d &lt;name>
  --server | -S &lt;address>
  --driver &lt;name>
  --options-file &lt;file>
  </pre>

  <p>The <code>--options-file</code> option allows us to specify some
     or all of the database options in a file with each option appearing
     on a separate line followed by a space and an option value.</p>

  <p>If the <code>erase</code> argument to this constructor is true,
     then the above options are removed from the <code>argv</code>
     array and the <code>argc</code> count is updated accordingly.
     This is primarily useful if your application accepts other
     options or arguments and you would like to get the SQL Server
     options out of the <code>argv</code> array.</p>

  <p>This constructor throws the <code>odb::mssql::cli_exception</code>
     exception if the SQL Server option values are missing or invalid. See
     section <a href="#21.4">Section 21.4, "SQL Server Exceptions"</a> for
     more information on this exception.</p>

  <p>The static <code>print_usage()</code> function prints the list of options
     with short descriptions that are recognized by this constructor.</p>

  <p>Additionally, all the constructors have the <code>transaction_isolation</code>
     and <code>environment</code> arguments. The <code>transaction_isolation</code>
     argument allows us to specify an alternative transaction isolation level
     that should be used by all the connections created by this database instance.
     The <code>environment</code> argument allows us to provide a custom ODBC
     environment handle. If this argument is not <code>NULL</code>, then the
     passed handle is used in all the ODBC function calls made by this
     <code>database</code> instance. Note also that the <code>database</code>
     instance does not assume ownership of the passed environment handle and
     this handle should be valid for the lifetime of the <code>database</code>
     instance.</p>

  <p>The last argument to all of the constructors is a pointer to the
     connection factory. In C++98/03, it is <code>std::auto_ptr</code> while
     in C++11 <code>std::unique_ptr</code> is used instead. If we pass a
     non-<code>NULL</code> value, the database instance assumes ownership
     of the factory instance. The connection factory interface as well as
     the available implementations are described in the next section.</p>

  <p>The set of accessor functions following the constructors allows us
     to query the parameters of the <code>database</code> instance.</p>

  <p>The <code>connection()</code> function returns a pointer to the
     SQL Server database connection encapsulated by the
     <code>odb::mssql::connection</code> class. For more information
     on <code>mssql::connection</code>, refer to <a href="#21.3">Section
     21.3, "SQL Server Connection and Connection Factory"</a>.</p>

  <h2><a name="21.3">21.3 SQL Server Connection and Connection Factory</a></h2>

  <p>The <code>mssql::connection</code> class has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace mssql
  {
    class connection: public odb::connection
    {
    public:
      connection (database&amp;);
      connection (database&amp;, SQLHDBC handle);

      SQLHDBC
      handle ();

      details::buffer&amp;
      long_data_buffer ();
    };

    typedef details::shared_ptr&lt;connection> connection_ptr;
  }
}
  </pre>

  <p>For more information on the <code>odb::connection</code> interface, refer
     to <a href="#3.6">Section 3.6, "Connections"</a>. The first overloaded
     <code>mssql::connection</code> constructor creates a new ODBC connection.
     The created connection is configured to use the manual commit mode with
     multiple active result sets (MARS) enabled. The second constructor allows
     us to create a <code>connection</code> instance by providing an already
     established ODBC connection. Note that the <code>connection</code>
     instance assumes ownership of this handle. The <code>handle()</code>
     accessor returns the underlying ODBC connection handle associated with
     the <code>connection</code> instance.</p>

  <p>Additionally, each <code>connection</code> instance maintains a long
     data buffer. This buffer is used by the SQL Server ODB runtime
     as an intermediate storage for piecewise handling of long data.
     By default, the long data buffer has zero initial capacity and is
     expanded to 4096 bytes when the first long data operation is performed.
     If your application requires a bigger or smaller long data buffer,
     you can specify a custom capacity using the <code>long_data_buffer()</code>
     accessor.</p>

  <p>The <code>mssql::connection_factory</code> abstract class has the
     following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace mssql
  {
    class connection_factory
    {
    public:
      virtual void
      database (database&amp;) = 0;

      virtual connection_ptr
      connect () = 0;
    };
  }
}
  </pre>

  <p>The <code>database()</code> function is called when a connection
     factory is associated with a database instance. This happens in
     the <code>odb::mssql::database</code> class constructors. The
     <code>connect()</code> function is called whenever a database
     connection is requested.</p>

  <p>The two implementations of the <code>connection_factory</code>
     interface provided by the SQL Server ODB runtime are
     <code>new_connection_factory</code> and
     <code>connection_pool_factory</code>. You will need to include
     the <code>&lt;odb/mssql/connection-factory.hxx></code>
     header file to make the <code>connection_factory</code> interface
     and these implementation classes available in your application.</p>

  <p>The <code>new_connection_factory</code> class creates a new
     connection whenever one is requested. When a connection is no
     longer needed, it is released and closed. The
     <code>new_connection_factory</code> class has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace mssql
  {
    class new_connection_factory: public connection_factory
    {
    public:
      new_connection_factory ();
    };
};
  </pre>

  <p>The <code>connection_pool_factory</code> class implements a
     connection pool. It has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace mssql
  {
    class connection_pool_factory: public connection_factory
    {
    public:
      connection_pool_factory (std::size_t max_connections = 0,
                               std::size_t min_connections = 0);

    protected:
      class pooled_connection: public connection
      {
      public:
        pooled_connection (database_type&amp;);
        pooled_connection (database_type&amp;, SQLHDBC handle);
      };

      typedef details::shared_ptr&lt;pooled_connection> pooled_connection_ptr;

      virtual pooled_connection_ptr
      create ();
    };
};
  </pre>

  <p>The <code>max_connections</code> argument in the
     <code>connection_pool_factory</code> constructor specifies the maximum
     number of concurrent connections that this pool factory will
     maintain. Similarly, the <code>min_connections</code> argument
     specifies the minimum number of available connections that
     should be kept open.</p>

  <p>Whenever a connection is requested, the pool factory first
     checks if there is an unused connection that can be returned.
     If there is none, the pool factory checks the
     <code>max_connections</code> value to see if a new connection
     can be created. If the total number of connections maintained
     by the pool is less than this value, then a new connection is
     created and returned. Otherwise, the caller is blocked until
     a connection becomes available.</p>

  <p>When a connection is released, the pool factory first checks
     if there are blocked callers waiting for a connection. If so, then
     one of them is unblocked and is given the connection. Otherwise,
     the pool factory checks whether the total number of connections
     maintained by the pool is greater than the <code>min_connections</code>
     value. If that's the case, the connection is closed. Otherwise, the
     connection is added to the pool of available connections to be
     returned on the next request. In other words, if the number of
     connections maintained by the pool exceeds <code>min_connections</code>
     and there are no callers waiting for a new connection,
     the pool will close the excess connections.</p>

  <p>If the <code>max_connections</code> value is 0, then the pool will
     create a new connection whenever all of the existing connections
     are in use. If the <code>min_connections</code> value is 0, then
     the pool will never close a connection and instead maintain all
     the connections that were ever created.</p>

  <p>The <code>create()</code> virtual function is called whenever the
     pool needs to create a new connection. By deriving from the
     <code>connection_pool_factory</code> class and overriding this
     function we can implement custom connection establishment
     and configuration.</p>

  <p>If you pass <code>NULL</code> as the connection factory to one of the
     <code>database</code> constructors, then the
     <code>connection_pool_factory</code> instance will be created by default
     with the min and max connections values set to <code>0</code>. The
     following code fragment shows how we can pass our own connection factory
     instance:</p>

  <pre class="cxx">
#include &lt;odb/database.hxx>

#include &lt;odb/mssql/database.hxx>
#include &lt;odb/mssql/connection-factory.hxx>

int
main (int argc, char* argv[])
{
  auto_ptr&lt;odb::mssql::connection_factory> f (
    new odb::mssql::connection_pool_factory (20));

  auto_ptr&lt;odb::database> db (
    new mssql::database (argc, argv, false, "", 0, f));
}
  </pre>

  <h2><a name="21.4">21.4 SQL Server Exceptions</a></h2>

  <p>The SQL Server ODB runtime library defines the following
     SQL Server-specific exceptions:</p>

  <pre class="cxx">
namespace odb
{
  namespace mssql
  {
    class database_exception: odb::database_exception
    {
    public:
      class record
      {
      public:
        SQLINTEGER
        error () const;

        const std::string&amp;
        sqlstate () const;

        const std::string&amp;
        message () const;
      };

      typedef std::vector&lt;record> records;

      typedef records::size_type size_type;
      typedef records::const_iterator iterator;

      iterator
      begin () const;

      iterator
      end () const;

      size_type
      size () const;

      virtual const char*
      what () const throw ();
    };

    class cli_exception: odb::exception
    {
    public:
      virtual const char*
      what () const throw ();
    };

    class long_data_reload: odb::exception
    {
    public:
      virtual const char*
      what () const throw ();
    };
  }
}
  </pre>

  <p>You will need to include the <code>&lt;odb/mssql/exceptions.hxx></code>
     header file to make these exceptions available in your application.</p>

  <p>The <code>odb::mssql::database_exception</code> is thrown if
     an SQL Server database operation fails. The SQL Server-specific error
     information is stored as a series of records, each containing
     the error code as a signed 4-byte integer, the SQLSTATE code,
     and the message string. All this information is also combined
     and returned in a human-readable form by the <code>what()</code>
     function.</p>

  <p>The <code>odb::mssql::cli_exception</code> is thrown by the
     command line parsing constructor of the <code>odb::mssql::database</code>
     class if the SQL Server option values are missing or invalid. The
     <code>what()</code> function returns a human-readable description
     of an error.</p>

  <p>The <code>odb::mssql::long_data_reload</code> is thrown if an
     attempt is made to re-load an object or view with long data as
     part of a query result iteration. For more information, refer
     to <a href="#21.1">Section 21.1, "SQL Server Type Mapping"</a>.</p>

  <h2><a name="21.5">21.5 SQL Server Limitations</a></h2>

  <p>The following sections describe SQL Server-specific limitations imposed
     by the current SQL Server and ODB runtime versions.</p>

  <h3><a name="21.5.1">21.5.1 Query Result Caching</a></h3>

  <p>SQL Server ODB runtime implementation does not perform query result
     caching (<a href="#4.4">Section 4.4, "Query Result"</a>) even when
     explicitly requested. The ODBC API and the SQL Server Native Client ODBC
     driver support interleaving execution of multiple prepared statements
     on a single connection. As a result, it is possible to have multiple
     uncached results and calls to other database functions do not invalidate
     them. The only limitation of the uncached SQL Server results is the
     unavailability of the <code>result::size()</code> function. If you
     call this function on an SQL Server query result, then the
     <code>odb::result_not_cached</code> exception (<a href="#3.14">Section
     3.14, "ODB Exceptions"</a>) is always thrown. Future versions of the
     SQL Server ODB runtime library may add support for result caching.</p>

  <h3><a name="21.5.2">21.5.2 Foreign Key Constraints</a></h3>

  <p>ODB assumes the standard SQL behavior which requires that foreign
     key constraints checking is deferred until the transaction is
     committed. The only behavior supported by SQL Server is to check
     such constraints immediately. As a result, by default, schemas
     generated by the ODB compiler for SQL Server have foreign key
     definitions commented out. They are retained only for documentation.</p>

  <p>You can override the default behavior and instruct the ODB
     compiler to generate non-deferrable foreign keys by specifying
     the <code>--fkeys-deferrable-mode not_deferrable</code> ODB
     compiler option. Note, however, that in this case the order in
     which you persist, update, and erase objects within a transaction
     becomes important.</p>

  <h3><a name="21.5.3">21.5.3 Unique Constraint Violations</a></h3>

  <p>Due to the granularity of the ODBC error codes, it is impossible
     to distinguish between the duplicate primary key and other unique
     constraint violations. As a result, when making an object persistent,
     the SQL Server ODB runtime will translate all unique constraint violation
     errors to the <code>object_already_persistent</code> exception
     (<a href="#3.14">Section 3.14, "ODB Exceptions"</a>).</p>

  <h3><a name="21.5.4">21.5.4 Multi-threaded Windows Applications</a></h3>

  <p>Multi-threaded Windows applications must use the
     <code>_beginthread()</code>/<code>_beginthreadex()</code> and
     <code>_endthread()</code>/<code>_endthreadex()</code> CRT functions
     instead of the <code>CreateThread()</code> and <code>EndThread()</code>
     Win32 functions to start and terminate threads. This is a limitation of
     the ODBC implementation on Windows.</p>

  <h3><a name="21.5.5">21.5.5 Affected Row Count and DDL Statements</a></h3>

  <p>SQL Server always returns zero as the number of affected rows
     for DDL statements. In particular, this means that the
     <code>database::execute()</code> (<a href="#3.12">Section 3.12,
     "Executing Native SQL Statements"</a>) function will always
     return zero for such statements.</p>

  <h3><a name="21.5.6">21.5.6 Long Data and Auto Object Ids, <code>ROWVERSION</code></a></h3>

  <p>SQL Server 2005 has a bug that causes it to fail on an <code>INSERT</code>
     or <code>UPDATE</code> statement with the <code>OUTPUT</code> clause
     (used to return automatically assigned object ids as well as
      <code>ROWVERSION</code> values) if one of the inserted columns
     is long data. The symptom of this bug in ODB is an exception thrown
     by the <code>database::persist()</code> or <code>database::update()</code>
     function when used on an object that contains long data and has an
     automatically assigned object id or uses <code>ROWVERSION</code>-based
     optimistic concurrency (<a href="#21.1.1">Section 21.1.1,
     "<code>ROWVERSION</code> Support"</a>). The error message reads "This
     operation conflicts with another pending operation on this transaction.
     The operation failed."</p>

  <p>For automatically assigned object ids ODB includes a workaround for
     this bug which uses a less efficient method to obtain id values for
     objects that contain long data. To enable this workaround you need
     to specify that the generated code will be used with SQL Server 2005
     or later by passing the <code>--mssql-server-version&nbsp;9.0</code>
     ODB compiler option.</p>

  <p>For <code>ROWVERSION</code>-based optimistic concurrency no workaround
     is currently provided. The ODB compiler will issue an error for
     objects that use <code>ROWVERSION</code> for optimistic concurrency
     and containing long data.</p>

  <h3><a name="21.5.7">21.5.7 Long Data and By-Value Accessors/Modifiers</a></h3>

  <p>As discussed in <a href="#14.4.5">Section 14.4.5,
     "<code>get</code>/<code>set</code>/<code>access</code>"</a>, by-value
     accessor and modifier expressions cannot be used with data members
     of long data types. The SQL Server ODB runtime uses streaming for
     reading/writing long data directly from/to data members. As a result,
     by-reference accessors and modifiers should be used for these data
     types.</p>

  <h3><a name="21.5.8">21.5.8 Bulk Update and <code>ROWVERSION</code></a></h3>

  <p>The bulk update operation (<a href="#15.3">Section 15.3, "Bulk Database
     Operations"</a>) is not yet supported for persistent classes that use
     <code>ROWVERSION</code>-based optimistic concurrency. For such classes
     the bulk <code>update()</code> function is not available. The bulk
     persist and erase support is still provided.</p>

  <h2><a name="21.6">21.6 SQL Server Index Definitions</a></h2>

  <p>When the <code>index</code> pragma (<a href="#14.7">Section 14.7,
     "Index Definition Pragmas"</a>) is used to define an SQL Server index,
     the <code>type</code> clause specifies the index type (for example,
     <code>UNIQUE</code>, <code>CLUSTERED</code>), the <code>method</code>
     clause is not used, and the <code>options</code> clause specifies
     additional index properties. The column options can be used to specify
     the sort order. For example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  std::string name_;

  #pragma db index                             \
             type("UNIQUE CLUSTERED")          \
             member(name_, "DESC")             \
             options("WITH(FILLFACTOR = 80)")
};
  </pre>

  <h2><a name="21.7">21.7 SQL Server Stored Procedures</a></h2>

  <p>ODB native views (<a href="#10.6">Section 10.6, "Native Views"</a>)
     can be used to call SQL Server stored procedures. For example, assuming
     we are using the <code>person</code> class from <a href="#2">Chapter
     2, "Hello World Example"</a> (and the corresponding <code>person</code>
     table), we can create a stored procedure that given the min and max
     ages returns some information about all the people in that range:</p>

  <pre class="sql">
CREATE PROCEDURE dbo.person_range (
  @min_age SMALLINT,
  @max_age SMALLINT)
AS
  SELECT age, first, last FROM person
    WHERE age >= @min_age AND age &lt;= @max_age;
  </pre>

  <p>Given the above stored procedure we can then define an ODB view
     that can be used to call it and retrieve its result:</p>

  <pre class="cxx">
#pragma db view query("EXEC person_range (?)")
struct person_range
{
  unsigned short age;
  std::string first;
  std::string last;
};
  </pre>

  <p>The following example shows how we can use the above view to
     print the list of people in a specific age range:</p>

  <pre class="cxx">
typedef odb::query&lt;person_range> query;
typedef odb::result&lt;person_range> result;

transaction t (db.begin ());

result r (
  db.query&lt;person_range> (
    query::_val (1) + "," + query::_val (18)));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
  cerr &lt;&lt; i->first &lt;&lt; " " &lt;&lt; i->last &lt;&lt; " " &lt;&lt; i->age &lt;&lt; endl;

t.commit ();
  </pre>

   <p>Note that as with all native views, the order and types of data members
      must match those of columns in the <code>SELECT</code> list inside
      the stored procedure.</p>

   <p>There are also a number of limitations when it comes to calling
      SQL Server stored procedures with ODB views. There is currently
      no support for output parameters, however, this is planned for
      a future version. In the meantime, to call a stored procedure
      that has output parameters we have to use a wrapper procedure
      that converts such parameters to a <code>SELECT</code>
      result. For example, given the following procedure that
      calculates the age range of the people in our database:</p>

   <pre class="sql">
CREATE PROCEDURE dbo.person_age_range (
  @min_age SMALLINT = NULL OUTPUT,
  @max_age SMALLINT = NULL OUTPUT)
AS
  SELECT @min_age = MIN(age), @max_age = MAX(max) FROM person;
  </pre>

   <p>We can create a wrapper procedure like this:</p>

   <pre class="sql">
CREATE PROCEDURE dbo.person_age_range_odb
AS
  DECLARE @min_age SMALLINT, @max_age SMALLINT;
  EXEC person_age_range @min_age OUTPUT, @max_age OUTPUT;
  SELECT @min_age, @max_age;
   </pre>

   <p>And a view like this:</p>

   <pre class="cxx">
#pragma db view query("EXEC person_age_range_odb")
struct person_age_range
{
  unsigned short min_age;
  unsigned short max_age;
};
  </pre>

  <p>Which we can then use to call the stored procedure:</p>

  <pre class="cxx">
transaction t (db.begin ());

person_age_range ar (db.query_value&lt;person_age_range> ());
cerr &lt;&lt; ar.min_age &lt;&lt; " " &lt;&lt; ar.max_age &lt;&lt; endl;

t.commit ();
  </pre>

  <p>In SQL Server, a stored procedure can produce multiple results.
     For example, if a stored procedure executes several
     <code>SELECT</code> statements, then the result of calling such
     a procedure consists of two row sets, one for each <code>SELECT</code>
     statement. Because such multiple row sets can contain varying number
     and type of columns, they cannot be all extracted into a
     single view. Consequently, these kind of stored procedures are
     currently not supported.</p>

  <p>A stored procedure may also produce no row sets at all. For
     example, a stored procedure that only executes DML statements
     would exhibit this behavior. To call such a procedure we use
     an empty view, for example:</p>

  <pre class="sql">
CREATE PROCEDURE dbo.insert_person (
  @first VARCHAR(512),
  @last VARCHAR(512),
  @age SMALLINT)
AS
  INSERT INTO person(first, last, age)
    VALUES(@first, @last, @age);
  </pre>

  <pre class="cxx">
#pragma db view
struct no_result {};

transaction t (db.begin ());

db.query_one&lt;no_result> (
  "EXEC insert_person" +
    query::_val ("John") + "," +
    query::_val ("Doe") + "," +
    query::_val (21));

t.commit ();
  </pre>

  <p>Finally, an SQL Server stored procedure can also return an
     integer status code. Similar to output parameters, this code
     can only be observed by an ODB view if it is converted to a
     <code>SELECT</code> result. For more information on how to
     do this and for other examples of stored procedure calls,
     refer to the <code>mssql/stored-proc</code> test in the
     <code>odb-tests</code> package.</p>

  <!-- PART -->


  <hr class="page-break"/>
  <h1><a name="III">PART III&nbsp;&nbsp;
      <span style="font-weight: normal;">PROFILES</span></a></h1>

  <p>Part III covers the integration of ODB with popular C++ frameworks
     and libraries. It consists of the following chapters.</p>

  <table class="toc">
    <tr><th>22</th><td><a href="#22">Profiles Introduction</a></td></tr>
    <tr><th>23</th><td><a href="#23">Boost Profile</a></td></tr>
    <tr><th>24</th><td><a href="#24">Qt Profile</a></td></tr>
  </table>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="22">22 Profiles Introduction</a></h1>

  <p>ODB profiles are a generic mechanism for integrating ODB with
     widely-used C++ frameworks and libraries. A profile provides glue
     code which allows you to seamlessly persist various components, such
     as smart pointers, containers, and value types found in these
     frameworks or libraries. The code necessary to implement a profile
     is packaged into the so called profile library. For example, the
     Boost profile implementation is provided by the <code>libodb-boost</code>
     profile library.</p>

  <p>Besides linking the profile library to our application, it is also
     necessary to let the ODB compiler know which profiles we
     are using. This is accomplished with the <code>--profile</code>
     (or <code>-p</code> alias) option. For example:</p>

  <pre class="terminal">
odb --profile boost ...
  </pre>

  <p>Some profiles, especially those covering frameworks or libraries that
     consist of multiple sub-libraries, provide sub-profiles that allow you
     to pick and choose which components you would like to use in your
     application. For example, the <code>boost</code> profile contains
     the <code>boost/data-time</code> sub-profile. If we are only
     interested in the <code>date_time</code> types, then we can
     pass <code>boost/data-time</code> instead of <code>boost</code>
     to the <code>--profile</code> option, for example:</p>

  <pre class="terminal">
odb --profile boost/date-time ...
  </pre>

  <p>To summarize, you will need to perform the following steps in order
     to make use of a profile in your application:</p>

  <ol>
    <li>ODB compiler: if necessary, specify the path to the profile library
        headers (<code>-I</code> option).</li>
    <li>ODB compiler: specify the profile you would like to use with
        the <code>--profile</code> option.</li>
    <li>C++ compiler: if necessary, specify the path to the profile library
        headers (normally <code>-I</code> option).</li>
    <li>Linker: link the profile library to the application.</li>
  </ol>

  <p>The remaining chapters in this part of the manual describe the
     standard profiles provided by ODB.</p>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="23">23 Boost Profile</a></h1>

  <p>The ODB profile implementation for Boost is provided by the
     <code>libodb-boost</code> library and consists of multiple sub-profiles
     corresponding to the individual Boost libraries. To enable all the
     available Boost sub-profiles, pass <code>boost</code> as the profile
     name to the <code>--profile</code> ODB compiler option. Alternatively,
     you can enable only specific sub-profiles by passing individual
     sub-profile names to <code>--profile</code>. The following sections in
     this chapter discuss each Boost sub-profile in detail. The
     <code>boost</code> example in the <code>odb-examples</code>
     package shows how to enable and use the Boost profile.</p>

  <p>Some sub-profiles may throw exceptions to indicate error conditions,
     such as the inability to store a specific value in a particular database
     system. All such exceptions derive from the
     <code>odb::boost::exception</code> class which in turn derives from
     the root of the ODB exception hierarchy, class <code>odb::exception</code>
     (<a href="#3.14">Section 3.14, "ODB Exceptions"</a>). The
     <code>odb::boost::exception</code> class is defined in the
     <code>&lt;odb/boost/exception.hxx></code> header file and has the
     same interface as <code>odb::exception</code>. Concrete exceptions
     that can be thrown by the Boost sub-profiles are described in the
     following sections.</p>

  <h2><a name="23.1">23.1 Smart Pointers Library</a></h2>

  <p>The <code>smart-ptr</code> sub-profile provides persistence
     support for a subset of smart pointers from the Boost
     <code>smart_ptr</code> library. To enable only this profile,
     pass <code>boost/smart-ptr</code> to the <code>--profile</code>
     ODB compiler option.</p>

  <p>The currently supported smart pointers are
     <code>boost::shared_ptr</code> and <code>boost::weak_ptr</code>. For
     more information on using smart pointers as pointers to objects and
     views, refer to <a href="#3.3">Section 3.3, "Object and View Pointers"</a>
     and <a href="#6">Chapter 6, "Relationships"</a>. For more information
     on using smart pointers as pointers to values, refer to
     <a href="#7.3">Section 7.3, "Pointers and <code>NULL</code> Value
     Semantics"</a>. When used as a pointer to a value, only
     <code>boost::shared_ptr</code> is supported. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db null
  boost::shared_ptr&lt;std::string> middle_name_;
};
  </pre>

  <p>To provide finer grained control over object relationship loading,
     the <code>smart-ptr</code> sub-profile also provides the lazy
     counterparts for the above  pointers: <code>odb::boost::lazy_shared_ptr</code> and
     <code>odb::boost::lazy_weak_ptr</code>. You will need to include the
     <code>&lt;odb/boost/lazy-ptr.hxx></code> header file to make the lazy
     variants available in your application. For a description of the lazy
     pointer interface and semantics refer to <a href="#6.4">Section 6.4,
     "Lazy Pointers"</a>. The following example shows how we can use these
     smart pointers to establish a relationship between persistent objects.</p>

  <pre class="cxx">
class employee;

#pragma db object
class position
{
  ...

  #pragma db inverse(position_)
  odb::boost::lazy_weak_ptr&lt;employee> employee_;
};

#pragma db object
class employee
{
  ...

  #pragma db not_null
  boost::shared_ptr&lt;position> position_;
};
  </pre>

  <p>Besides providing persistence support for the above smart pointers,
     the <code>smart-ptr</code> sub-profile also changes the default
     pointer (<a href="#3.3">Section 3.3, "Object and View Pointers"</a>)
     to <code>boost::shared_ptr</code>. In particular, this means that
     database functions that return dynamically allocated objects and views
     will return them as <code>boost::shared_ptr</code> pointers.  To override
     this behavior, add the <code>--default-pointer</code> option specifying
     the alternative pointer type after the <code>--profile</code> option.</p>

  <h2><a name="23.2">23.2 Unordered Containers Library</a></h2>

  <p>The <code>unordered</code> sub-profile provides persistence support for
     the containers from the Boost <code>unordered</code> library. To enable
     only this profile, pass <code>boost/unordered</code> to
     the <code>--profile</code> ODB compiler option.</p>

  <p>The supported containers are <code>boost::unordered_set</code>,
     <code>boost::unordered_map</code>, <code>boost::unordered_multiset</code>,
     and <code>boost::unordered_multimap</code>. For more information on using
     the set and multiset containers with ODB, refer to <a href="#5.2">Section
     5.2, "Set and Multiset Containers"</a>. For more information on using the
     map and multimap containers with ODB, refer to <a href="#5.3"> Section
     5.3, "Map and Multimap Containers"</a>. The following example shows how
     the <code>unordered_set</code> container may be used within a persistent
     object.</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
  boost::unordered_set&lt;std::string&gt; emails_;
};
  </pre>

  <h2><a name="23.3">23.3 Multi-Index Container Library</a></h2>

  <p>The <code>multi-index</code> sub-profile provides persistence support for
     <code>boost::multi_index_container</code> from the Boost Multi-Index
     library. To enable only this profile, pass <code>boost/multi-index</code>
     to the <code>--profile</code> ODB compiler option. The following example
     shows how <code>multi_index_container</code> may be used within a
     persistent object.</p>

  <pre class="cxx">
namespace mi = boost::multi_index;

#pragma db object
class person
{
  ...

  typedef
  mi::multi_index_container&lt;
    std::string,
    mi::indexed_by&lt;
      mi::sequenced&lt;>,
      mi::ordered_unique&lt;mi::identity&lt;std::string> >
    >
  > emails;

  emails emails_;
};
  </pre>

  <p>Note that a <code>multi_index_container</code> instantiation is
     stored differently in the database depending on whether it has
     any <code>sequenced</code> or <code>random_access</code> indexes.
     If it does, then it is treated as an ordered container
     (<a href="#5.1">Section 5.1, "Ordered Containers"</a>) with the
     first such index establishing the order. Otherwise, it is treated
     as a set container (<a href="#5.2">Section 5.2, "Set and Multiset
     Containers"</a>).</p>

  <p>Note also that there is a terminology clash between ODB and Boost
     Multi-Index. The ODB term <em>ordered container</em> translates
     to Multi-Index terms <em>sequenced index</em> and <em>random access
     index</em> while the ODB term <em>set container</em> translates
     to Multi-Index terms <em>ordered index</em> and <em>hashed
     index</em>.</p>

  <p>The <code>emails</code> container from the above example is stored
     as an ordered container. In contrast, the following <code>aliases</code>
     container is stored as a set.</p>

  <pre class="cxx">
namespace mi = boost::multi_index;

#pragma db value
struct name
{
  std::string first;
  std::string last;
};

bool operator&lt; (const name&amp;, const name&amp;);

#pragma db object
class person
{
  ...

  typedef
  mi::multi_index_container&lt;
    name,
    mi::indexed_by&lt;
      mi::ordered_unique&lt;mi::identity&lt;name> >
      mi::ordered_non_unique&lt;
        mi::member&lt;name, std::string, &amp;name::first>
      >,
      mi::ordered_non_unique&lt;
        mi::member&lt;name, std::string, &amp;name::last>
      >
    >
  > aliases;

  aliases aliases_;
};
  </pre>

  <h2><a name="23.4">23.4 Optional Library</a></h2>

  <p>The <code>optional</code> sub-profile provides persistence support for
     the <code>boost::optional</code> container from the Boost
     <code>optional</code> library. To enable only this profile, pass
     <code>boost/optional</code> to the <code>--profile</code> ODB compiler
     option.</p>

  <p>In a relational database <code>boost::optional</code> is mapped to
     a column that can have a <code>NULL</code> value. Similar to
     <code>odb::nullable</code> (<a href="#7.3">Section 7.3, "Pointers and
     <code>NULL</code> Value Semantics"</a>), it can be used to add the
     <code>NULL</code> semantics to existing C++ types. For example:</p>

  <pre class="cxx">
#include &lt;boost/optional.hpp>

#pragma db object
class person
{
  ...

  std::string first_;                    // TEXT NOT NULL
  boost::optional&lt;std::string> middle_;  // TEXT NULL
  std::string last_;                     // TEXT NOT NULL
};
  </pre>

  <p>Note also that similar to <code>odb::nullable</code>, when
     this profile is used, the <code>NULL</code> values are automatically
     enabled for data members of the  <code>boost::optional</code> type.</p>

  <h2><a name="23.5">23.5 Date Time Library</a></h2>

  <p>The <code>date-time</code> sub-profile provides persistence support for a
     subset of types from the Boost <code>date_time</code> library. It is
     further subdivided into two sub-profiles, <code>gregorian</code>
     and <code>posix_time</code>. The <code>gregorian</code> sub-profile
     provides support for types from the <code>boost::gregorian</code>
     namespace, while the <code>posix-time</code> sub-profile provides support
     for types from the <code>boost::posix_time</code> namespace. To enable
     the entire <code>date-time</code> sub-profile, pass
     <code>boost/date-time</code> to the <code>--profile</code> ODB compiler
     option. To enable only the <code>gregorian</code> sub-profile, pass
     <code>boost/date-time/gregorian</code>, and to enable only the
     <code>posix-time</code> sub-profile, pass
     <code>boost/date-time/posix-time</code>.</p>

  <p>The only type that the <code>gregorian</code> sub-profile currently
     supports is <code>gregorian::date</code>. The types currently supported
     by the <code>posix-time</code> sub-profile are
     <code>posix_time::ptime</code> and
     <code>posix_time::time_duration</code>. The manner in which these types
     are persisted is database system dependent and is discussed in the
     sub-sections that follow. The example below shows how
     <code>gregorian::date</code> may be used within a persistent object.</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
  boost::gregorian::date date_of_birth_;
};
  </pre>

  <p>Concrete exceptions that can be thrown by the <code>date-time</code>
     sub-profile implementation are presented below.</p>


  <pre class="cxx">
namespace odb
{
  namespace boost
  {
    namespace date_time
    {
      struct special_value: odb::boost::exception
      {
        virtual const char*
        what () const throw ();
      };

      struct value_out_of_range: odb::boost::exception
      {
        virtual const char*
        what () const throw ();
      };
    }
  }
}
  </pre>

  <p>You will need to include the
     <code>&lt;odb/boost/date-time/exceptions.hxx&gt;</code> header file to
     make these exceptions available in your application.</p>

  <p>The <code>special_value</code> exception is thrown if an attempt is made
     to store a Boost date-time special value that cannot be represented in
     the target database. The <code>value_out_of_range</code> exception is
     thrown if an attempt is made to store a date-time value that is out of
     the target database range. The specific conditions under which these
     exceptions are thrown are database system dependent and are discussed in
     more detail in the following sub-sections.</p>

  <h3><a name="23.5.1">23.5.1 MySQL Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported Boost <code>date_time</code> types and the MySQL database
     types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Boost <code>date_time</code> Type</th>
      <th>MySQL Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>gregorian::date</code></td>
      <td><code>DATE</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>posix_time::ptime</code></td>
      <td><code>DATETIME</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>posix_time::time_duration</code></td>
      <td><code>TIME</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>The Boost special value <code>date_time::not_a_date_time</code> is stored
     as a <code>NULL</code> value in a MySQL database.</p>

  <p>The <code>posix-time</code> sub-profile implementation also provides
     support for mapping <code>posix_time::ptime</code> to the
     <code>TIMESTAMP</code> MySQL type. However, this mapping has to be
     explicitly requested using the <code>db&nbsp;type</code> pragma
     (<a href="#14.4.3">Section 14.4.3, "<code>type</code>"</a>), as shown in
     the following example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
  #pragma db type("TIMESTAMP") not_null
  boost::posix_time::ptime updated_;
};
  </pre>

  <p>Starting with MySQL version 5.6.4 it is possible to store fractional
     seconds up to microsecond precision in <code>TIME</code>,
     <code>DATETIME</code>, and <code>TIMESTAMP</code> columns. However,
     to enable sub-second precision, the corresponding type with the
     desired precision has to be specified explicitly, as shown in the
     following example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
  #pragma db type("DATETIME(6)")     // Microsecond precision.
  boost::posix_time::ptime updated_;
};
  </pre>

  <p>Alternatively, you can enable sub-second precision on the per-type
     basis, for example:</p>

  <pre class="cxx">
#pragma db value(boost::posix_time::ptime) type("DATETIME(6)")

#pragma db object
class person
{
  ...
  boost::posix_time::ptime created_; // Microsecond precision.
  boost::posix_time::ptime updated_; // Microsecond precision.
};
  </pre>

  <p>Some valid Boost date-time values cannot be stored in a MySQL database.
     An attempt to persist any Boost date-time special value other than
     <code>date_time::not_a_date_time</code> will result in the
     <code>special_value</code> exception. An attempt to persist a Boost
     date-time value that is out of the MySQL type range will result in
     the <code>out_of_range</code> exception.  Refer to the MySQL
     documentation for more information on the MySQL data type ranges.</p>

  <h3><a name="23.5.2">23.5.2 SQLite Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported Boost <code>date_time</code> types and the SQLite database
     types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Boost <code>date_time</code> Type</th>
      <th>SQLite Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>gregorian::date</code></td>
      <td><code>TEXT</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>posix_time::ptime</code></td>
      <td><code>TEXT</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>posix_time::time_duration</code></td>
      <td><code>TEXT</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>The Boost special value <code>date_time::not_a_date_time</code> is stored
     as a <code>NULL</code> value in an SQLite database.</p>

  <p>The <code>date-time</code> sub-profile implementation also provides
     support for mapping <code>gregorian::date</code> and
     <code>posix_time::ptime</code> to the <code>INTEGER</code> SQLite type,
     with the integer value representing the UNIX time. Similarly, an
     alternative mapping for <code>posix_time::time_duration</code> to the
     <code>INTEGER</code> type represents the duration as a number of
     seconds. These mappings have to be explicitly requested using the
     <code>db&nbsp;type</code> pragma (<a href="#14.4.3">Section 14.4.3,
     "<code>type</code>"</a>), as shown in the following example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
  #pragma db type("INTEGER")
  boost::gregorian::date born_;
};
  </pre>

  <!--

  <p>The Boost UNIX time interface does not support 64 bit time arithmetic.
     As a result, the UNIX time representations of <code>gregorian::date</code>
     and <code>posix_time::ptime</code> are restricted to the 32 bit range.
     The minimum and maximum date representable by
     <code>gregorian::date</code> is 1901-12-14 and 2038-01-19 respectively,
     while the minimum and maximum date-time representable by
     <code>posix_time::ptime</code> is 1901-12-13&nbsp;20:45:54 GMT and
     2038-01-19&nbsp;03:14:07&nbsp;GMT respectively. Persisting and loading
     of values outside of these ranges will result in undefined behavior.</p>

  -->

  <p>Some valid Boost date-time values cannot be stored in an SQLite database.
     An attempt to persist any Boost date-time special value other than
     <code>date_time::not_a_date_time</code> will result in the
     <code>special_value</code> exception. An attempt to persist a negative
     <code>posix_time::time_duration</code> value as SQLite <code>TEXT</code>
     will result in the <code>out_of_range</code> exception.</p>


  <h3><a name="23.5.3">23.5.3 PostgreSQL Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported Boost <code>date_time</code> types and the PostgreSQL database
     types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Boost <code>date_time</code> Type</th>
      <th>PostgreSQL Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>gregorian::date</code></td>
      <td><code>DATE</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>posix_time::ptime</code></td>
      <td><code>TIMESTAMP</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>posix_time::time_duration</code></td>
      <td><code>TIME</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>The Boost special value <code>date_time::not_a_date_time</code> is stored
     as a <code>NULL</code> value in a PostgreSQL database.
     <code>posix_time::ptime</code> values representing the special values
     <code>date_time::pos_infin</code> and <code>date_time::neg_infin</code>
     are stored as the special PostgreSQL TIMESTAMP values
     <code>infinity</code> and <code>-infinity</code>, respectively.</p>

  <p>Some valid Boost date-time values cannot be stored in a PostgreSQL
     database. The PostgreSQL TIME type represents a clock time, and can
     therefore only store positive durations with a total length of time less
     than 24 hours. An attempt to persist a
     <code>posix_time::time_duration</code> value outside of this range will
     result in the <code>value_out_of_range</code> exception. An attempt to
     persist a <code>posix_time::time_duration</code> value representing any
     special value other than <code>date_time::not_a_date_time</code>  will
     result in the <code>special_value</code> exception.</p>


  <h3><a name="23.5.4">23.5.4 Oracle Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported Boost <code>date_time</code> types and the Oracle database
     types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Boost <code>date_time</code> Type</th>
      <th>Oracle Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>gregorian::date</code></td>
      <td><code>DATE</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>posix_time::ptime</code></td>
      <td><code>TIMESTAMP</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>posix_time::time_duration</code></td>
      <td><code>INTERVAL DAY TO SECOND</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>The Boost special value <code>date_time::not_a_date_time</code> is stored
     as a <code>NULL</code> value in an Oracle database.</p>

  <p>The <code>date-time</code> sub-profile implementation also provides
     support for mapping <code>posix_time::ptime</code> to the
     <code>DATE</code> Oracle type with fractional seconds that may be
     stored in a <code>ptime</code> instance being ignored. This
     alternative mapping has to be explicitly requested using the
     <code>db&nbsp;type</code> pragma (<a href="#14.4.3">Section 14.4.3,
     "<code>type</code>"</a>), as shown in the following example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
  #pragma db type("DATE")
  boost::posix_time::ptime updated_;
};
  </pre>

  <p>Some valid Boost date-time values cannot be stored in an Oracle database.
     An attempt to persist a <code>gregorian::date</code>,
     <code>posix_time::ptime</code>, or
     <code>posix_time::time_duration</code> value representing any special
     value other than <code>date_time::not_a_date_time</code> will result in
     the <code>special_value</code> exception.</p>


  <h3><a name="23.5.5">23.5.5 SQL Server Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported Boost <code>date_time</code> types and the SQL Server database
     types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Boost <code>date_time</code> Type</th>
      <th>SQL Server Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>gregorian::date</code></td>
      <td><code>DATE</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>posix_time::ptime</code></td>
      <td><code>DATETIME2</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>posix_time::time_duration</code></td>
      <td><code>TIME</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>The Boost special value <code>date_time::not_a_date_time</code> is stored
     as a <code>NULL</code> value in an SQL Server database.</p>

  <p>Note that the <code>DATE</code>, <code>TIME</code>, and
     <code>DATETIME2</code> types are only available in SQL Server 2008 and
     later. SQL Server 2005 only supports the <code>DATETIME</code> and
     <code>SMALLDATETIME</code> date-time types. The new types are
     also unavailable when connecting to an SQL Server 2008 or
     later with the SQL Server 2005 Native Client ODBC driver.</p>

  <p>The <code>date-time</code> sub-profile implementation provides
     support for mapping <code>posix_time::ptime</code> to the
     <code>DATETIME</code> and <code>SMALLDATETIME</code> types,
     however, this mapping has to be explicitly requested using the
     <code>db&nbsp;type</code> pragma (<a href="#14.4.3">Section 14.4.3,
     "<code>type</code>"</a>), as shown in the following example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
  #pragma db type("DATETIME")
  boost::posix_time::ptime updated_;
};
  </pre>

  <p>Some valid Boost date-time values cannot be stored in an SQL Server
     database. An attempt to persist a <code>gregorian::date</code>,
     <code>posix_time::ptime</code>, or <code>posix_time::time_duration</code>
     value representing any special value other than
     <code>date_time::not_a_date_time</code> will result in the
     <code>special_value</code> exception. The range of the <code>TIME</code>
     type in SQL server is from <code>00:00:00.0000000</code> to
     <code>23:59:59.9999999</code>. An attempt to persist a
     <code>posix_time::time_duration</code> value out of this range will
     result in the <code>value_out_of_range</code> exception.</p>

  <h2><a name="23.6">23.6 Uuid Library</a></h2>

  <p>The <code>uuid</code> sub-profile provides persistence support for the
     <code>uuid</code> type from the Boost <code>uuid</code> library. To
     enable only this profile, pass <code>boost/uuid</code> to the
     <code>--profile</code> ODB compiler option.</p>

  <p>The manner in which these types are persisted is database system
     dependent and is discussed in the sub-sections that follow. By
     default a data member of the <code>uuid</code> type is mapped to a
     database column with <code>NULL</code> enabled and nil <code>uuid</code>
     instances are stored as a <code>NULL</code> value. However, you can
     change this behavior by declaring the data member <code>NOT NULL</code>
     with the <code>not_null</code> pragma (<a href="#14.4.6">Section
     14.4.6, "<code>null</code>/<code>not_null</code>"</a>). In this
     case, or if the data member is an object id, the implementation
     will store nil <code>uuid</code> instances as zero UUID values
     (<code>{00000000-0000-0000-0000-000000000000}</code>). For example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  boost::uuids::uuid x_; // Nil values stored as NULL.

  #pragma db not_null
  boost::uuids::uuid y_; // Nil values stored as zero.
};
  </pre>

  <h3><a name="23.6.1">23.6.1 MySQL Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the Boost
     <code>uuid</code> type and the MySQL database type.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Boost Type</th>
      <th>MySQL Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>boost::uuids::uuid</code></td>
      <td><code>BINARY(16)</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <h3><a name="23.6.2">23.6.2 SQLite Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the Boost
     <code>uuid</code> type and the SQLite database type.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Boost Type</th>
      <th>SQLite Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>boost::uuids::uuid</code></td>
      <td><code>BLOB</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <h3><a name="23.6.3">23.6.3 PostgreSQL Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the Boost
     <code>uuid</code> type and the PostgreSQL database type.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Boost Type</th>
      <th>PostgreSQL Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>boost::uuids::uuid</code></td>
      <td><code>UUID</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <h3><a name="23.6.4">23.6.4 Oracle Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the Boost
     <code>uuid</code> type and the Oracle database type.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Boost Type</th>
      <th>Oracle Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>boost::uuids::uuid</code></td>
      <td><code>RAW(16)</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <h3><a name="23.6.5">23.6.5 SQL Server Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the Boost
     <code>uuid</code> type and the SQL Server database type.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Boost Type</th>
      <th>SQL Server Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>boost::uuids::uuid</code></td>
      <td><code>UNIQUEIDENTIFIER</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="24">24 Qt Profile</a></h1>

  <p>The ODB profile implementation for Qt is provided by the
     <code>libodb-qt</code> library. Both Qt4 and Qt5 as well
     as C++98/03 and C++11 are supported.</p>

  <p>The Qt profile consists of multiple sub-profiles
     corresponding to the common type groups within Qt. Currently,
     only types from the <code>QtCore</code> module are supported. To
     enable all the available Qt sub-profiles, pass <code>qt</code> as the
     profile name to the <code>--profile</code> ODB compiler  option.
     Alternatively, you can enable only specific sub-profiles by passing
     individual sub-profile names to <code>--profile</code>. The following
     sections in this chapter discuss each Qt sub-profile in detail. The
     <code>qt</code> example in the <code>odb-examples</code>
     package shows how to enable and use the Qt profile.</p>

  <p>Some sub-profiles may throw exceptions to indicate error conditions,
     such as the inability to store a specific value in a particular database
     system. All such exceptions derive from the
     <code>odb::qt::exception</code> class which in turn derives from
     the root of the ODB exception hierarchy, class <code>odb::exception</code>
     (<a href="#3.14">Section 3.14, "ODB Exceptions"</a>). The
     <code>odb::qt::exception</code> class is defined in the
     <code>&lt;odb/qt/exception.hxx></code> header file and has the
     same interface as <code>odb::exception</code>. Concrete exceptions
     that can be thrown by the Qt sub-profiles are described in the
     following sections.</p>

  <h2><a name="24.1">24.1 Basic Types Library</a></h2>

  <p>The <code>basic</code> sub-profile provides persistence support for basic
     types defined by Qt. To enable only this profile, pass
     <code>qt/basic</code> to the <code>--profile</code> ODB compiler
     option.</p>

  <p>The currently supported basic types are <code>QString</code>,
    <code>QByteArray</code>, and <code>QUuid</code>. The manner in
     which these types are persisted is database system dependent
     and is discussed in the sub-sections that follow. The example
     below shows how <code>QString</code> may be used within a
     persistent object.</p>

  <pre class="cxx">
#pragma db object
class Person
{
  ...
  QString name_;
};
  </pre>

  <p>By default a data member of the <code>QUuid</code> type is mapped to a
     database column with <code>NULL</code> enabled and null <code>QUuid</code>
     instances are stored as a <code>NULL</code> value. However, you can
     change this behavior by declaring the data member <code>NOT NULL</code>
     with the <code>not_null</code> pragma (<a href="#14.4.6">Section
     14.4.6, "<code>null</code>/<code>not_null</code>"</a>). In this
     case, or if the data member is an object id, the implementation
     will store null <code>QUuid</code> instances as zero UUID values
     (<code>{00000000-0000-0000-0000-000000000000}</code>). For example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  QUuid x_; // Null values stored as NULL.

  #pragma db not_null
  QUuid y_; // Null values stored as zero.
};
  </pre>

  <h3><a name="24.1.1">24.1.1 MySQL Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported basic Qt types and the MySQL database types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Qt Type</th>
      <th>MySQL Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>QString</code></td>
      <td><code>TEXT/VARCHAR(255)</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QByteArray</code></td>
      <td><code>BLOB</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QUuid</code></td>
      <td><code>BINARY(16)</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>Instances of the <code>QString</code> and <code>QByteArray</code>
     types are stored as a <code>NULL</code> value if their
     <code>isNull()</code> member function returns <code>true</code>.</p>

  <p>Note also that the <code>QString</code> type is mapped
     differently depending on whether a member of this type
     is an object id or not. If the member is an object id,
     then for this member <code>QString</code> is mapped
     to the <code>VARCHAR(255)</code> MySQL type. Otherwise,
     it is mapped to <code>TEXT</code>.</p>

  <p>The <code>basic</code> sub-profile also provides support
     for mapping <code>QString</code> to the <code>CHAR</code>,
     <code>NCHAR</code>, and <code>NVARCHAR</code> MySQL types.
     However, these alternative mappings have to be explicitly
     requested using the <code>db&nbsp;type</code> pragma
     (<a href="#14.4.3">Section 14.4.3, "type"</a>), as shown in
     the following example:</p>

  <pre class="cxx">
#pragma db object
class Person
{
  ...

  #pragma db type("CHAR(2)") not_null
  QString licenseState_;
};
  </pre>


  <h3><a name="24.1.2">24.1.2 SQLite Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported basic Qt types and the SQLite database types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Qt Type</th>
      <th>SQLite Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>QString</code></td>
      <td><code>TEXT</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QByteArray</code></td>
      <td><code>BLOB</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QUuid</code></td>
      <td><code>BLOB</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>Instances of the <code>QString</code> and <code>QByteArray</code> types
     are stored as a <code>NULL</code> value if their <code>isNull()</code>
     member function returns <code>true</code>.</p>

  <h3><a name="24.1.3">24.1.3 PostgreSQL Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported basic Qt types and the PostgreSQL database types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Qt Type</th>
      <th>PostgreSQL Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>QString</code></td>
      <td><code>TEXT</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QByteArray</code></td>
      <td><code>BYTEA</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QUuid</code></td>
      <td><code>UUID</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>Instances of the <code>QString</code> and <code>QByteArray</code> types
     are stored as a <code>NULL</code> value if their <code>isNull()</code>
     member function returns <code>true</code>.</p>

  <p>The <code>basic</code> sub-profile also provides support
     for mapping <code>QString</code> to the <code>CHAR</code>
     and <code>VARCHAR</code> PostgreSQL types.
     However, these alternative mappings have to be explicitly
     requested using the <code>db&nbsp;type</code> pragma
     (<a href="#14.4.3">Section 14.4.3, "type"</a>), as shown in
     the following example:</p>

  <pre class="cxx">
#pragma db object
class Person
{
  ...

  #pragma db type("CHAR(2)") not_null
  QString licenseState_;
};
  </pre>

  <h3><a name="24.1.4">24.1.4 Oracle Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported basic Qt types and the Oracle database types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Qt Type</th>
      <th>Oracle Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>QString</code></td>
      <td><code>VARCHAR2(512)</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QByteArray</code></td>
      <td><code>BLOB</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QUuid</code></td>
      <td><code>RAW(16)</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>Instances of the <code>QString</code> and <code>QByteArray</code> types
     are stored as a <code>NULL</code> value if their <code>isNull()</code>
     member function returns <code>true</code>.</p>

  <p>The <code>basic</code> sub-profile also provides support
     for mapping <code>QString</code> to the <code>CHAR</code>,
     <code>NCHAR</code>, <code>NVARCHAR</code>, <code>CLOB</code>, and
     <code>NCLOB</code> Oracle types, and for mapping <code>QByteArray</code>
     to the <code>RAW</code> Oracle type. However, these alternative
     mappings have to be explicitly requested using the <code>db&nbsp;type</code>
     pragma (<a href="#14.4.3">Section 14.4.3, "type"</a>), as shown in the
     following example:</p>

  <pre class="cxx">
#pragma db object
class Person
{
  ...

  #pragma db type("CLOB") not_null
  QString firstName_;

  #pragma db type("RAW(16)") null
  QByteArray uuid_;
};
  </pre>

  <h3><a name="24.1.5">24.1.5 SQL Server Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported basic Qt types and the SQL Server database types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Qt Type</th>
      <th>SQL Server Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>QString</code></td>
      <td><code>VARCHAR(512)/VARCHAR(256)</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QByteArray</code></td>
      <td><code>VARBINARY(max)</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QUuid</code></td>
      <td><code>UNIQUEIDENTIFIER</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>Instances of the <code>QString</code> and <code>QByteArray</code> types
     are stored as a <code>NULL</code> value if their <code>isNull()</code>
     member function returns <code>true</code>.</p>

  <p>Note also that the <code>QString</code> type is mapped
     differently depending on whether a member of this type
     is an object id or not. If the member is an object id,
     then for this member <code>QString</code> is mapped
     to the <code>VARCHAR(256)</code> SQL Server type. Otherwise,
     it is mapped to <code>VARCHAR(512)</code>.</p>

  <p>The <code>basic</code> sub-profile also provides support
     for mapping <code>QString</code> to the <code>CHAR</code>,
     <code>NCHAR</code>, <code>NVARCHAR</code>, <code>TEXT</code>, and
     <code>NTEXT</code> SQL Server types, and for mapping
     <code>QByteArray</code> to the <code>BINARY</code> and
     <code>IMAGE</code> SQL Server types. However, these alternative
     mappings have to be explicitly requested using the <code>db&nbsp;type</code>
     pragma (<a href="#14.4.3">Section 14.4.3, "type"</a>), as shown in the
     following example:</p>

  <pre class="cxx">
#pragma db object
class Person
{
  ...

  #pragma db type("NVARCHAR(256)") not_null
  QString firstName_;

  #pragma db type("BINARY(16)") null
  QByteArray uuid_;
};
  </pre>

  <h2><a name="24.2">24.2 Smart Pointers Library</a></h2>

  <p>The <code>smart-ptr</code> sub-profile provides persistence support the
     Qt smart pointers. To enable only this profile, pass
     <code>qt/smart-ptr</code> to the <code>--profile</code> ODB compiler
     option.</p>

  <p>The currently supported smart pointers are
     <code>QSharedPointer</code> and <code>QWeakPointer</code>.
     For more information on using smart pointers as pointers to objects
     and views, refer to <a href="#3.3">Section 3.3, "Object and View
     Pointers"</a> and <a href="#6">Chapter 6, "Relationships"</a>. For
     more information on using smart pointers as pointers to values, refer
     to <a href="#7.3">Section 7.3, "Pointers and <code>NULL</code> Value
     Semantics"</a>. When used as a pointer to a value, only
     <code>QSharedPointer</code> is supported. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db null
  QSharedPointer&lt;QString> middle_name_;
};
  </pre>

  <p>To provide finer grained control over object relationship loading,
     the <code>smart-ptr</code> sub-profile also provides the lazy
     counterparts for the above pointers: <code>QLazySharedPointer</code>
     and <code>QLazyWeakPointer</code>. You will need to include the
     <code>&lt;odb/qt/lazy-ptr.hxx></code> header file to make the lazy
     variants available in your application. For a description of the lazy
     pointer interface and semantics refer to <a href="#6.4">Section 6.4,
     "Lazy Pointers"</a>. The following example shows how we can use these
     smart pointers to establish a relationship between persistent objects.</p>

  <pre class="cxx">
class Employee;

#pragma db object
class Position
{
  ...

  #pragma db inverse(position_)
  QLazyWeakPointer&lt;Employee> employee_;
};

#pragma db object
class Employee
{
  ...

  #pragma db not_null
  QSharedPointer&lt;Position> position_;
};
  </pre>

  <p>Besides providing persistence support for the above smart pointers,
     the <code>smart-ptr</code> sub-profile also changes the default
     pointer (<a href="#3.3">Section 3.3, "Object and View Pointers"</a>)
     to <code>QSharedPointer</code>.  In particular, this means that
     database functions that return dynamically allocated objects and views
     will return them as <code>QSharedPointer</code> pointers. To override
     this behavior, add the <code>--default-pointer</code> option specifying
     the alternative pointer type after the <code>--profile</code> option.</p>

  <h2><a name="24.3">24.3 Containers Library</a></h2>

  <p>The <code>containers</code> sub-profile provides persistence support for
     Qt containers. To enable only this profile, pass
     <code>qt/containers</code> to the <code>--profile</code> ODB compiler
     option.</p>

  <p>The currently supported ordered containers are <code>QVector</code>,
     <code>QList</code>, and <code>QLinkedList</code>. Supported map
     containers are <code>QMap</code>, <code>QMultiMap</code>,
     <code>QHash</code>, and <code>QMultiHash</code>. The supported set
     container is <code>QSet</code>. For more information on using
     containers with ODB, refer to <a href="#5">Chapter 5, "Containers"</a>.
     The following example shows how the <code>QSet</code> container may
     be used within a persistent object.</p>

  <pre class="cxx">
#pragma db object
class Person
{
  ...
  QSet&lt;QString> emails_;
};
  </pre>

  <p>The <code>containers</code> sub-profile also provide a change-tracking
     equivalent for <code>QList</code> (<a href="#24.3.1">Section 24.3.1,
     "Change-Tracking <code>QList</code>"</a>) with support for other Qt
     container equivalents planned for future releases. For general information
     on change-tracking containers refer to <a href="#5.4">Section 5.4,
     "Change-Tracking Containers"</a>.</p>

  <h3><a name="24.3.1">24.3.1 Change-Tracking <code>QList</code></a></h3>

  <p>Class template <code>QOdbList</code>, defined in
     <code>&lt;odb/qt/list.hxx></code>, is a change-tracking
     equivalent for <code>QList</code>. It
     is implemented in terms of <code>QList</code> and is
     implicit-convertible to and implicit-constructible from
     <code>const QList&amp;</code>. In particular, this
     means that we can use <code>QOdbList</code> instance
     anywhere <code>const QList&amp;</code> is
     expected. In addition, <code>QOdbList</code> constant
     iterator (<code>const_iterator</code>) is the same type as
     that of <code>QList</code>.</p>

  <p><code>QOdbList</code> incurs 2-bit per element overhead
     in order to store the change state. It cannot
     be stored unordered in the database (<a href="#14.4.19">Section
     14.4.19 "<code>unordered</code>"</a>) but can be used as an inverse
     side of a relationship (<a href="#6.2">6.2 "Bidirectional
     Relationships"</a>). In this case, no change tracking is performed
     since no state for such a container is stored in the database.</p>

  <p>The number of database operations required to update the state
     of <code>QOdbList</code> corresponds well to the complexity
     of <code>QList</code> functions, except for
     <code>prepend()</code>/<code>push_front()</code>. In particular, adding
     or removing an element from the back of the list (for example,
     with <code>append()</code>/<code>push_back()</code> and
     <code>removeLast()</code>/<code>pop_back()</code>),
     requires only a single database statement execution. In contrast,
     inserting or erasing an element at the beginning or in the middle
     of the list will require a database statement for every element that
     follows it.</p>

  <p><code>QOdbList</code> replicates most of the <code>QList</code>
     interface as defined in both Qt4 and Qt5 and includes support for
     C++11. However, functions and operators that provide direct write
     access to the elements had to be altered or disabled in order to
     support change tracking. Additional functions used to interface with
     <code>QList</code> and to control the change tracking state
     were also added. The following listing summarizes the differences
     between the <code>QOdbList</code> and <code>QList</code>
     interfaces. Any <code>QList</code> function or operator
     not mentioned in this listing has exactly the same signature
     and semantics in <code>QOdbList</code>. Functions and
     operators that were disabled are shown as commented out and
     are followed by functions/operators that replace them.</p>

  <pre class="cxx">
template &lt;typename T>
class QOdbList
{
  ...

  // Element access.
  //

  //T&amp; operator[] (int);
    T&amp; modify (int);

  //T&amp; first();
    T&amp; modifyFirst();

  //T&amp; last();
    T&amp; modifyLast();

  //T&amp; front();
    T&amp; modify_front();

  //T&amp; back();
    T&amp; modify_back();

  // Iterators.
  //
  typedef typename QList&lt;T>::const_iterator const_iterator;

  class iterator
  {
    ...

    // Element Access.
    //

    //reference       operator* () const;
      const_reference operator* () const;
      reference       modify () const;

    //pointer       operator-> () const;
      const_pointer operator-> () const;

    //reference       operator[] (difference_type);
      const_reference operator[] (difference_type);
      reference       modify (difference_type) const;

    // Interfacing with QList::iterator.
    //
    typename QList&lt;T>::iterator base () const;
  };

  // Return QList iterators. The begin() functions mark all
  // the elements as modified.
  //
  typename QList&lt;T>::iterator mbegin ();
  typename QList&lt;T>::iterator modifyBegin ();
  typename QList&lt;T>::iterator mend ();
  typename QList&lt;T>::iterator modifyEnd ();

  // Interfacing with QList.
  //
  QOdbList (const QList&lt;T>&amp;);
  QOdbList (QList&lt;T>&amp;&amp;); // C++11 only.

  QOdbList&amp; operator= (const QList&lt;T>&amp;);
  QOdbList&amp; operator= (QList&lt;T>&amp;&amp;);

  operator const QList&lt;T>&amp; () const;
  QList&lt;T>&amp; base ();
  const QList&lt;T>&amp; base () const;

  // Change tracking.
  //
  bool _tracking () const;
  void _start () const;
  void _stop () const;
  void _arm (transaction&amp;) const;
};
  </pre>

  <p>The following example highlights some of the differences between
     the two interfaces. <code>QList</code> versions are commented
     out.</p>

  <pre class="cxx">
#include &lt;QtCore/QList>
#include &lt;odb/qt/list.hxx>

void f (const QList&lt;int>&amp;);

QOdbList&lt;int> l ({1, 2, 3});

f (l); // Ok, implicit conversion.

if (l[1] == 2) // Ok, const access.
  //l[1]++;
  l.modify (1)++;

//l.last () = 4;
l.modifyLast () = 4;

for (auto i (l.begin ()); i != l.end (); ++i)
{
  if (*i != 0) // Ok, const access.
    //*i += 10;
    i.modify () += 10;
}

qSort (l.modifyBegin (), l.modifyEnd ());
  </pre>

  <p>Note also the subtle difference between copy/move construction
     and copy/move assignment of <code>QOdbList</code> instances.
     While copy/move constructor will copy/move both the elements as
     well as their change state, in contrast, assignment is tracked
     as any other change to the vector content.</p>

  <p>The <code>QListIterator</code> and <code>QMutableListIterator</code>
     equivalents are also provided. These are <code>QOdbListIterator</code>
     and <code>QMutableOdbListIterator</code> and are defined in
     <code>&lt;odb/qt/list-iterator.hxx></code> and
     <code>&lt;odb/qt/mutable-list-iterator.hxx></code>, respectively.</p>

  <p><code>QOdbListIterator</code> has exactly the same interface and
     semantics as <code>QListIterator</code>. In fact, we can use
     <code>QListIterator</code> to iterate over a <code>QOdbList</code>
     instance.</p>

  <p><code>QMutableOdbListIterator</code> also has exactly the same
      interface as <code>QMutableListIterator</code>. Note, however,
      that any element that such an iterator passes over with the
      call to <code>next()</code> is marked as modified.</p>

  <h2><a name="24.4">24.4 Date Time Library</a></h2>

  <p>The <code>date-time</code> sub-profile provides persistence support for
     the Qt date-time types. To enable only this profile, pass
     <code>qt/date-time</code> to the <code>--profile</code> ODB compiler
     option.</p>

  <p>The currently supported date-time types are <code>QDate</code>,
     <code>QTime</code>, and <code>QDateTime</code>. The manner in which
     these types are persisted is database system dependent and is
     discussed in the sub-sections that follow. The example below shows how
     <code>QDate</code> may be used within a persistent object.</p>

  <pre class="cxx">
#pragma db object
class Person
{
  ...
  QDate dateOfBirth_;
};
  </pre>

  <p>The single concrete exception that can be thrown by the
     <code>date-time</code> sub-profile implementation is presented below.</p>


  <pre class="cxx">
namespace odb
{
  namespace qt
  {
    namespace date_time
    {
      struct value_out_of_range: odb::qt::exception
      {
        virtual const char*
        what () const throw ();
      };
    }
  }
}
  </pre>

  <p>You will need to include the
     <code>&lt;odb/qt/date-time/exceptions.hxx&gt;</code> header file to
     make this exception available in your application.</p>

  <p>The <code>value_out_of_range</code> exception is thrown if an attempt
     is made to store a date-time value that is out of the target database
     range. The specific conditions under which it is thrown is database
     system dependent and is discussed in more detail in the
     following sub-sections.</p>

  <h3><a name="24.4.1">24.4.1 MySQL Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported Qt date-time types and the MySQL database types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Qt Date Time Type</th>
      <th>MySQL Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>QDate</code></td>
      <td><code>DATE</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QTime</code></td>
      <td><code>TIME</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QDateTime</code></td>
      <td><code>DATETIME</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>Instances of the <code>QDate</code>, <code>QTime</code>, and
     <code>QDateTime</code> types are stored as a <code>NULL</code> value
     if their <code>isNull()</code> member function returns true.</p>

  <p>The <code>date-time</code> sub-profile implementation also provides
     support for mapping <code>QDateTime</code> to the <code>TIMESTAMP</code>
     MySQL type. However, this mapping has to be explicitly requested using
     the <code>db&nbsp;type</code> pragma
     (<a href="#14.4.3">Section 14.4.3, "<code>type</code>"</a>), as shown in
     the following example:</p>

  <pre class="cxx">
#pragma db object
class Person
{
  ...
  #pragma db type("TIMESTAMP") not_null
  QDateTime updated_;
};
  </pre>

  <p>Starting with MySQL version 5.6.4 it is possible to store fractional
     seconds up to microsecond precision in <code>TIME</code>,
     <code>DATETIME</code>, and <code>TIMESTAMP</code> columns. However,
     to enable sub-second precision, the corresponding type with the
     desired precision has to be specified explicitly, as shown in the
     following example:</p>

  <pre class="cxx">
#pragma db object
class Person
{
  ...
  #pragma db type("DATETIME(3)") // Millisecond precision.
  QDateTime updated_;
};
  </pre>

  <p>Alternatively, you can enable sub-second precision on the per-type
     basis, for example:</p>

  <pre class="cxx">
#pragma db value(QDateTime) type("DATETIME(3)")

#pragma db object
class Person
{
  ...
  QDateTime created_; // Millisecond precision.
  QDateTime updated_; // Millisecond precision.
};
  </pre>

  <p>Some valid Qt date-time values cannot be stored in a MySQL database.  An
     attempt to persist a Qt date-time value that is out of the MySQL type
     range will result in the <code>out_of_range</code> exception.  Refer to
     the MySQL documentation for more information on the MySQL data type
     ranges.</p>

  <h3><a name="24.4.2">24.4.2 SQLite Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported Qt date-time types and the SQLite database types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Qt Date Time Type</th>
      <th>SQLite Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>QDate</code></td>
      <td><code>TEXT</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QTime</code></td>
      <td><code>TEXT</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QDateTime</code></td>
      <td><code>TEXT</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>Instances of the <code>QDate</code>, <code>QTime</code>, and
     <code>QDateTime</code> types are stored as a <code>NULL</code> value
     if their <code>isNull()</code> member function returns true.</p>

  <p>The <code>date-time</code> sub-profile implementation also provides
     support for mapping <code>QDate</code> and <code>QDateTime</code> to the
     SQLite <code>INTEGER</code> type, with the integer value representing the
     UNIX time. Similarly, an alternative mapping for <code>QTime</code> to
     the <code>INTEGER</code> type represents a clock time as the number of
     seconds since midnight. These mappings have to be explicitly requested
     using the <code>db&nbsp;type</code> pragma
     (<a href="#14.4.3">Section 14.4.3, "<code>type</code>"</a>), as shown
     in the following example:</p>

  <pre class="cxx">
#pragma db object
class Person
{
  ...
  #pragma db type("INTEGER")
  QDate born_;
};
  </pre>

  <p>Some valid Qt date-time values cannot be stored in an SQLite database.
     An attempt to persist any Qt date-time value representing a negative UNIX
     time (any point in time prior to the 1970-01-01&nbsp;00:00:00 UNIX time
     epoch) as an SQLite <code>INTEGER</code> will result in the
     <code>out_of_range</code> exception.</p>

  <h3><a name="24.4.3">24.4.3 PostgreSQL Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported Qt date-time types and the PostgreSQL database types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Qt Date Time Type</th>
      <th>PostgreSQL Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>QDate</code></td>
      <td><code>DATE</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QTime</code></td>
      <td><code>TIME</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QDateTime</code></td>
      <td><code>TIMESTAMP</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>Instances of the <code>QDate</code>, <code>QTime</code>, and
     <code>QDateTime</code> types are stored as a <code>NULL</code> value
     if their <code>isNull()</code> member function returns true.</p>

  <h3><a name="24.4.4">24.4.4 Oracle Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported Qt date-time types and the Oracle database types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Qt Date Time Type</th>
      <th>Oracle Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>QDate</code></td>
      <td><code>DATE</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QTime</code></td>
      <td><code>INTERVAL DAY(0) TO SECOND(3)</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QDateTime</code></td>
      <td><code>TIMESTAMP(3)</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>Instances of the <code>QDate</code>, <code>QTime</code>, and
     <code>QDateTime</code> types are stored as a <code>NULL</code> value
     if their <code>isNull()</code> member function returns true.</p>

  <p>The <code>date-time</code> sub-profile implementation also provides
     support for mapping <code>QDateTime</code> to the
     <code>DATE</code> Oracle type with fractional seconds that may be
     stored in a <code>QDateTime</code> instance being ignored. This
     alternative mapping has to be explicitly requested using the
     <code>db&nbsp;type</code> pragma (<a href="#14.4.3">Section 14.4.3,
     "<code>type</code>"</a>), as shown in the following example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
  #pragma db type("DATE")
  QDateTime updated_;
};
  </pre>

  <h3><a name="24.4.5">24.4.5 SQL Server Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported Qt date-time types and the SQL Server database types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Qt Date Time Type</th>
      <th>SQL Server Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>QDate</code></td>
      <td><code>DATE</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QTime</code></td>
      <td><code>TIME(3)</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QDateTime</code></td>
      <td><code>DATETIME2(3)</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>Instances of the <code>QDate</code>, <code>QTime</code>, and
     <code>QDateTime</code> types are stored as a <code>NULL</code> value
     if their <code>isNull()</code> member function returns true.</p>

  <p>Note that the <code>DATE</code>, <code>TIME</code>, and
     <code>DATETIME2</code> types are only available in SQL Server 2008 and
     later. SQL Server 2005 only supports the <code>DATETIME</code> and
     <code>SMALLDATETIME</code> date-time types. The new types are
     also unavailable when connecting to an SQL Server 2008 or
     later with the SQL Server 2005 Native Client ODBC driver.</p>

  <p>The <code>date-time</code> sub-profile implementation provides
     support for mapping <code>QDateTime</code> to the <code>DATETIME</code>
     and <code>SMALLDATETIME</code> types, however, this mapping has to
     be explicitly requested using the <code>db&nbsp;type</code> pragma
     (<a href="#14.4.3">Section 14.4.3, "<code>type</code>"</a>), as
     shown in the following example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
  #pragma db type("DATETIME")
  QDateTime updated_;
};
  </pre>

  </div>
</div>

</body>
</html>