aboutsummaryrefslogtreecommitdiff
path: root/doc/manual.xhtml
blob: 393995272b939d683ed773d5e085c4322d9f8768 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>
  <title>C++ Object Persistence with ODB</title>

  <meta name="copyright" content="&copy; 2009-2012 Code Synthesis Tools CC"/>
  <meta name="keywords" content="odb,c++,object,persistence,ORM,relational,database,RDBMS,ODBMS,OODBMS"/>
  <meta name="description" content="C++ Object Persistence with ODB"/>
  <meta name="revision" content="2.1"/>
  <meta name="version" content="2.1.0"/>

<!--

If you make changes to this document, follow these stylistic rules
for consistency.

 - Don't use 'object' for instances of non-persistent classes. Use
   'instance' instead.

 - Each overloaded function should still be referred to as function.
   When saying that a function is overloaded, use term 'version',
   for example The persist() function has two overloaded versions.
   Don't use version to refer to individual functions, use function
   instead. The same holds for constructors.

 - Use 'object id' and 'object's identifier'. But not other combinations
   of the two.

@@ Check that parts TOCs are up to date.

-->

  <link rel="stylesheet" type="text/css" href="default.css" />

<style type="text/css">
  pre {
    padding    : 0 0 0 0em;
    margin     : 0em 0em 0em 0;

    font-size  : 102%
  }

  body {
    min-width: 48em;
  }

  h1 {
    font-weight: bold;
    font-size: 200%;
    line-height: 1.2em;
  }

  h2 {
    font-weight : bold;
    font-size   : 150%;

    padding-top : 0.8em;
  }

  h3 {
    font-size   : 140%;
    padding-top : 0.8em;
  }

  /* Force page break for both PDF and HTML (when printing). */
  hr.page-break {
    height: 0;
    width: 0;
    border: 0;
    visibility: hidden;

    page-break-after: always;
  }

  /* Adjust indentation for three levels. */
  #container {
    max-width: 48em;
  }

  #content {
    padding: 0 0.1em 0 4em;
    /*background-color: red;*/
  }

  #content h1 {
    margin-left: -2.06em;
  }

  #content h2 {
    margin-left: -1.33em;
  }

  /* Title page */

  #titlepage {
    padding: 2em 0 1em 0;
    border-bottom: 1px solid black;
  }

  #titlepage .title {
    font-weight: bold;
    font-size: 200%;
    text-align: center;
    padding: 1em 0 2em 0;
  }

  #titlepage p {
    padding-bottom: 1em;
  }

  #titlepage #revision {
    padding-bottom: 0em;
  }

  /* Lists */
  ul.list li, ol.list li {
    padding-top      : 0.3em;
    padding-bottom   : 0.3em;
  }

  div.img {
    text-align: center;
    padding: 2em 0 2em 0;
  }

  /*  */
  dl dt {
    padding   : 0.8em 0 0 0;
  }

  /* TOC */
  table.toc {
    border-style      : none;
    border-collapse   : separate;
    border-spacing    : 0;

    margin            : 0.2em 0 0.2em 0;
    padding           : 0 0 0 0;
  }

  table.toc tr {
    padding           : 0 0 0 0;
    margin            : 0 0 0 0;
  }

  table.toc * td, table.toc * th {
    border-style      : none;
    margin            : 0 0 0 0;
    vertical-align    : top;
  }

  table.toc * th {
    font-weight       : normal;
    padding           : 0em 0.1em 0em 0;
    text-align        : left;
    white-space       : nowrap;
  }

  table.toc * table.toc th {
    padding-left      : 1em;
  }

  table.toc * td {
    padding           : 0em 0 0em 0.7em;
    text-align        : left;
  }

  /* operators table */
  #operators {
    margin: 2em 0 2em 0;

    border-collapse   : collapse;
    border            : 1px solid;
    border-color      : #000000;

    font-size        : 11px;
    line-height      : 14px;
  }

  #operators th, #operators td {
    border: 1px solid;
    padding           : 0.9em 0.9em 0.7em 0.9em;
  }

  #operators th {
    background : #cde8f6;
  }

  #operators td {
    text-align: left;
  }

  /* specifiers table */
  .specifiers {
    margin: 2em 0 2em 0;

    border-collapse   : collapse;
    border            : 1px solid;
    border-color      : #000000;

    font-size        : 11px;
    line-height      : 14px;
  }

  .specifiers th, .specifiers td {
    border: 1px solid;
    padding           : 0.9em 0.9em 0.7em 0.9em;
  }

  .specifiers th {
    background : #cde8f6;
  }

  .specifiers td {
    text-align: left;
  }

  /* mapping table */
  #mapping {
    margin: 2em 0 2em 0;

    border-collapse   : collapse;
    border            : 1px solid;
    border-color      : #000000;

    font-size        : 11px;
    line-height      : 14px;
  }

  #mapping th, #mapping td {
    border: 1px solid;
    padding           : 0.9em 0.9em 0.7em 0.9em;
  }

  #mapping th {
    background : #cde8f6;
  }

  #mapping td {
    text-align: left;
  }

</style>


</head>

<body>
<div id="container">
  <div id="content">

  <div class="noprint">

  <div id="titlepage">
    <div class="title">C++ Object Persistence with ODB</div>

    <p>Copyright &copy; 2009-2012 Code Synthesis Tools CC</p>

    <p>Permission is granted to copy, distribute and/or modify this
    document under the terms of the
    <a href="http://www.codesynthesis.com/licenses/fdl-1.3.txt">GNU Free
    Documentation License, version 1.3</a>; with no Invariant Sections,
    no Front-Cover Texts and no Back-Cover Texts.</p>

    <!-- REMEMBER TO CHANGE VERSIONS IN THE META TAGS ABOVE! -->
    <p id="revision">Revision 2.1, July 2012</p>
    <p>This revision of the manual describes ODB 2.1.0 and is available
    in the following formats:
    <a href="http://www.codesynthesis.com/products/odb/doc/manual.xhtml">XHTML</a>,
    <a href="http://www.codesynthesis.com/products/odb/doc/odb-manual.pdf">PDF</a>, and
    <a href="http://www.codesynthesis.com/products/odb/doc/odb-manual.ps">PostScript</a>.</p>
  </div>

  <hr class="page-break"/>
  <h1>Table of Contents</h1>

  <table class="toc">
    <tr>
      <th></th><td><a href="#0">Preface</a>
        <table class="toc">
          <tr><th></th><td><a href="#0.1">About This Document</a></td></tr>
	  <tr><th></th><td><a href="#0.2">More Information</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th colspan="2"><a href="#I">PART I OBJECT-RELATIONAL MAPPING</a></th>
    </tr>

    <tr>
      <th>1</th><td><a href="#1">Introduction</a>
        <table class="toc">
          <tr><th>1.1</th><td><a href="#1.1">Architecture and Workflow</a></td></tr>
	  <tr><th>1.2</th><td><a href="#1.2">Benefits</a></td></tr>
	  <tr><th>1.3</th><td><a href="#1.3">Supported C++ Standards</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>2</th><td><a href="#2">Hello World Example</a>
        <table class="toc">
          <tr><th>2.1</th><td><a href="#2.1">Declaring a Persistent Class</a></td></tr>
          <tr><th>2.2</th><td><a href="#2.2">Generating Database Support Code</a></td></tr>
          <tr><th>2.3</th><td><a href="#2.3">Compiling and Running</a></td></tr>
          <tr><th>2.4</th><td><a href="#2.4">Making Objects Persistent</a></td></tr>
          <tr><th>2.5</th><td><a href="#2.5">Querying the Database for Objects</a></td></tr>
          <tr><th>2.6</th><td><a href="#2.6">Updating Persistent Objects</a></td></tr>
	  <tr><th>2.7</th><td><a href="#2.7">Defining and Using Views</a></td></tr>
          <tr><th>2.8</th><td><a href="#2.8">Deleting Persistent Objects</a></td></tr>
          <tr><th>2.9</th><td><a href="#2.9">Summary</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>3</th><td><a href="#3">Working with Persistent Objects</a>
        <table class="toc">
          <tr><th>3.1</th><td><a href="#3.1">Concepts and Terminology</a></td></tr>
	  <tr><th>3.2</th><td><a href="#3.2">Declaring Persistent Objects and Values</a></td></tr>
	  <tr><th>3.3</th><td><a href="#3.3">Object and View Pointers</a></td></tr>
          <tr><th>3.4</th><td><a href="#3.4">Database</a></td></tr>
          <tr><th>3.5</th><td><a href="#3.5">Transactions</a></td></tr>
	  <tr><th>3.6</th><td><a href="#3.6">Connections</a></td></tr>
	  <tr><th>3.7</th><td><a href="#3.7">Error Handling and Recovery</a></td></tr>
          <tr><th>3.8</th><td><a href="#3.8">Making Objects Persistent</a></td></tr>
          <tr><th>3.9</th><td><a href="#3.9">Loading Persistent Objects</a></td></tr>
          <tr><th>3.10</th><td><a href="#3.10">Updating Persistent Objects</a></td></tr>
          <tr><th>3.11</th><td><a href="#3.11">Deleting Persistent Objects</a></td></tr>
	  <tr><th>3.12</th><td><a href="#3.12">Executing Native SQL Statements</a></td></tr>
	  <tr><th>3.13</th><td><a href="#3.13">Tracing SQL Statement Execution</a></td></tr>
          <tr><th>3.14</th><td><a href="#3.14">ODB Exceptions</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>4</th><td><a href="#4">Querying the Database</a>
        <table class="toc">
          <tr><th>4.1</th><td><a href="#4.1">ODB Query Language</a></td></tr>
          <tr><th>4.2</th><td><a href="#4.2">Parameter Binding</a></td></tr>
          <tr><th>4.3</th><td><a href="#4.3">Executing a Query</a></td></tr>
          <tr><th>4.4</th><td><a href="#4.4">Query Result</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>5</th><td><a href="#5">Containers</a>
        <table class="toc">
          <tr><th>5.1</th><td><a href="#5.1">Ordered Containers</a></td></tr>
          <tr><th>5.2</th><td><a href="#5.2">Set and Multiset Containers</a></td></tr>
          <tr><th>5.3</th><td><a href="#5.3">Map and Multimap Containers</a></td></tr>
          <tr><th>5.4</th><td><a href="#5.4">Using Custom Containers</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>6</th><td><a href="#6">Relationships</a>
        <table class="toc">
          <tr>
            <th>6.1</th><td><a href="#6.1">Unidirectional Relationships</a>
              <table class="toc">
                <tr><th>6.1.1</th><td><a href="#6.1.1">To-One Relationships</a></td></tr>
		<tr><th>6.1.2</th><td><a href="#6.1.2">To-Many Relationships</a></td></tr>
              </table>
            </td>
          </tr>
	  <tr>
            <th>6.2</th><td><a href="#6.2">Bidirectional Relationships</a>
              <table class="toc">
                <tr><th>6.2.1</th><td><a href="#6.2.1">One-to-One Relationships</a></td></tr>
		<tr><th>6.2.2</th><td><a href="#6.2.2">One-to-Many Relationships</a></td></tr>
		<tr><th>6.2.3</th><td><a href="#6.2.3">Many-to-Many Relationships</a></td></tr>
              </table>
            </td>
          </tr>
          <tr><th>6.3</th><td><a href="#6.3">Lazy Pointers</a></td></tr>
          <tr><th>6.4</th><td><a href="#6.4">Using Custom Smart Pointers</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>7</th><td><a href="#7">Value Types</a>
        <table class="toc">
	  <tr><th>7.1</th><td><a href="#7.1">Simple Value Types</a></td></tr>
	  <tr>
            <th>7.2</th><td><a href="#7.2">Composite Value Types</a>
              <table class="toc">
		<tr><th>7.2.1</th><td><a href="#7.2.1">Composite Object Ids</a></td></tr>
                <tr><th>7.2.2</th><td><a href="#7.2.2">Composite Value Column and Table Names</a></td></tr>
              </table>
            </td>
          </tr>
	  <tr><th>7.3</th><td><a href="#7.3">Pointers and <code>NULL</code> Value Semantics</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>8</th><td><a href="#8">Inheritance</a>
        <table class="toc">
          <tr><th>8.1</th><td><a href="#8.1">Reuse Inheritance</a></td></tr>
	  <tr>
            <th>8.2</th><td><a href="#8.2">Polymorphism Inheritance</a>
              <table class="toc">
		<tr><th>8.2.1</th><td><a href="#8.2.1">Performance and Limitations</a></td></tr>
              </table>
            </td>
          </tr>
	  <tr><th>8.3</th><td><a href="#8.3">Mixed Inheritance</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>9</th><td><a href="#9">Views</a>
        <table class="toc">
          <tr><th>9.1</th><td><a href="#9.1">Object Views</a></td></tr>
	  <tr><th>9.2</th><td><a href="#9.2">Table Views</a></td></tr>
	  <tr><th>9.3</th><td><a href="#9.3">Mixed Views</a></td></tr>
	  <tr><th>9.4</th><td><a href="#9.4">View Query Conditions</a></td></tr>
	  <tr><th>9.5</th><td><a href="#9.5">Native Views</a></td></tr>
	  <tr><th>9.6</th><td><a href="#9.6">Other View Features and Limitations</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>10</th><td><a href="#10">Session</a>
        <table class="toc">
          <tr><th>10.1</th><td><a href="#10.1">Object Cache</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>11</th><td><a href="#11">Optimistic Concurrency</a></td>
    </tr>

    <tr>
      <th>12</th><td><a href="#12">ODB Pragma Language</a>
        <table class="toc">
          <tr>
            <th>12.1</th><td><a href="#12.1">Object Type Pragmas</a>
              <table class="toc">
                <tr><th>12.1.1</th><td><a href="#12.1.1"><code>table</code></a></td></tr>
		<tr><th>12.1.2</th><td><a href="#12.1.2"><code>pointer</code></a></td></tr>
		<tr><th>12.1.3</th><td><a href="#12.1.3"><code>abstract</code></a></td></tr>
		<tr><th>12.1.4</th><td><a href="#12.1.4"><code>readonly</code></a></td></tr>
		<tr><th>12.1.5</th><td><a href="#12.1.5"><code>optimistic</code></a></td></tr>
		<tr><th>12.1.6</th><td><a href="#12.1.6"><code>no_id</code></a></td></tr>
		<tr><th>12.1.7</th><td><a href="#12.1.7"><code>callback</code></a></td></tr>
		<tr><th>12.1.8</th><td><a href="#12.1.8"><code>schema</code></a></td></tr>
		<tr><th>12.1.9</th><td><a href="#12.1.9"><code>polymorphic</code></a></td></tr>
		<tr><th>12.1.10</th><td><a href="#12.1.10"><code>session</code></a></td></tr>
		<tr><th>12.1.11</th><td><a href="#12.1.11"><code>definition</code></a></td></tr>
		<tr><th>12.1.12</th><td><a href="#12.1.12"><code>transient</code></a></td></tr>
              </table>
            </td>
          </tr>
          <tr>
            <th>12.2</th><td><a href="#12.2">View Type Pragmas</a>
              <table class="toc">
		<tr><th>12.2.1</th><td><a href="#12.2.1"><code>object</code></a></td></tr>
                <tr><th>12.2.2</th><td><a href="#12.2.2"><code>table</code></a></td></tr>
		<tr><th>12.2.3</th><td><a href="#12.2.3"><code>query</code></a></td></tr>
		<tr><th>12.2.4</th><td><a href="#12.2.4"><code>pointer</code></a></td></tr>
		<tr><th>12.2.5</th><td><a href="#12.2.5"><code>callback</code></a></td></tr>
		<tr><th>12.2.6</th><td><a href="#12.2.6"><code>definition</code></a></td></tr>
		<tr><th>12.2.7</th><td><a href="#12.2.7"><code>transient</code></a></td></tr>
              </table>
            </td>
          </tr>
          <tr>
            <th>12.3</th><td><a href="#12.3">Value Type Pragmas</a>
              <table class="toc">
                <tr><th>12.3.1</th><td><a href="#12.3.1"><code>type</code></a></td></tr>
		<tr><th>12.3.2</th><td><a href="#12.3.2"><code>id_type</code></a></td></tr>
		<tr><th>12.3.3</th><td><a href="#12.3.3"><code>null</code>/<code>not_null</code></a></td></tr>
		<tr><th>12.3.4</th><td><a href="#12.3.4"><code>default</code></a></td></tr>
		<tr><th>12.3.5</th><td><a href="#12.3.5"><code>options</code></a></td></tr>
		<tr><th>12.3.6</th><td><a href="#12.3.6"><code>readonly</code></a></td></tr>
		<tr><th>12.3.7</th><td><a href="#12.3.7"><code>definition</code></a></td></tr>
		<tr><th>12.3.8</th><td><a href="#12.3.8"><code>transient</code></a></td></tr>
		<tr><th>12.3.9</th><td><a href="#12.3.9"><code>unordered</code></a></td></tr>
		<tr><th>12.3.10</th><td><a href="#12.3.10"><code>index_type</code></a></td></tr>
		<tr><th>12.3.11</th><td><a href="#12.3.11"><code>key_type</code></a></td></tr>
		<tr><th>12.3.12</th><td><a href="#12.3.12"><code>value_type</code></a></td></tr>
		<tr><th>12.3.13</th><td><a href="#12.3.13"><code>value_null</code>/<code>value_not_null</code></a></td></tr>
		<tr><th>12.3.14</th><td><a href="#12.3.14"><code>id_options</code></a></td></tr>
		<tr><th>12.3.15</th><td><a href="#12.3.15"><code>index_options</code></a></td></tr>
		<tr><th>12.3.16</th><td><a href="#12.3.16"><code>key_options</code></a></td></tr>
		<tr><th>12.3.17</th><td><a href="#12.3.17"><code>value_options</code></a></td></tr>
		<tr><th>12.3.18</th><td><a href="#12.3.18"><code>id_column</code></a></td></tr>
		<tr><th>12.3.19</th><td><a href="#12.3.19"><code>index_column</code></a></td></tr>
		<tr><th>12.3.20</th><td><a href="#12.3.20"><code>key_column</code></a></td></tr>
		<tr><th>12.3.21</th><td><a href="#12.3.21"><code>value_column</code></a></td></tr>
              </table>
            </td>
          </tr>
          <tr>
            <th>12.4</th><td><a href="#12.4">Data Member Pragmas</a>
              <table class="toc">
                <tr><th>12.4.1</th><td><a href="#12.4.1"><code>id</code></a></td></tr>
                <tr><th>12.4.2</th><td><a href="#12.4.2"><code>auto</code></a></td></tr>
                <tr><th>12.4.3</th><td><a href="#12.4.3"><code>type</code></a></td></tr>
		<tr><th>12.4.4</th><td><a href="#12.4.4"><code>id_type</code></a></td></tr>
		<tr><th>12.4.5</th><td><a href="#12.4.5"><code>get</code>/<code>set</code>/<code>access</code></a></td></tr>
		<tr><th>12.4.6</th><td><a href="#12.4.6"><code>null</code>/<code>not_null</code></a></td></tr>
		<tr><th>12.4.7</th><td><a href="#12.4.7"><code>default</code></a></td></tr>
		<tr><th>12.4.8</th><td><a href="#12.4.8"><code>options</code></a></td></tr>
		<tr><th>12.4.9</th><td><a href="#12.4.9"><code>column</code> (object, composite value)</a></td></tr>
		<tr><th>12.4.10</th><td><a href="#12.4.10"><code>column</code> (view)</a></td></tr>
		<tr><th>12.4.11</th><td><a href="#12.4.11"><code>transient</code></a></td></tr>
		<tr><th>12.4.12</th><td><a href="#12.4.12"><code>readonly</code></a></td></tr>
		<tr><th>12.4.13</th><td><a href="#12.4.13"><code>virtual</code></a></td></tr>
		<tr><th>12.4.14</th><td><a href="#12.4.14"><code>inverse</code></a></td></tr>
		<tr><th>12.4.15</th><td><a href="#12.4.15"><code>version</code></a></td></tr>
		<tr><th>12.4.16</th><td><a href="#12.4.16"><code>index</code></a></td></tr>
		<tr><th>12.4.17</th><td><a href="#12.4.17"><code>unique</code></a></td></tr>
		<tr><th>12.4.18</th><td><a href="#12.4.18"><code>unordered</code></a></td></tr>
		<tr><th>12.4.19</th><td><a href="#12.4.19"><code>table</code></a></td></tr>
		<tr><th>12.4.20</th><td><a href="#12.4.20"><code>index_type</code></a></td></tr>
		<tr><th>12.4.21</th><td><a href="#12.4.21"><code>key_type</code></a></td></tr>
		<tr><th>12.4.22</th><td><a href="#12.4.22"><code>value_type</code></a></td></tr>
		<tr><th>12.4.23</th><td><a href="#12.4.23"><code>value_null</code>/<code>value_not_null</code></a></td></tr>
		<tr><th>12.4.24</th><td><a href="#12.4.24"><code>id_options</code></a></td></tr>
		<tr><th>12.4.25</th><td><a href="#12.4.25"><code>index_options</code></a></td></tr>
		<tr><th>12.4.26</th><td><a href="#12.4.26"><code>key_options</code></a></td></tr>
		<tr><th>12.4.27</th><td><a href="#12.4.27"><code>value_options</code></a></td></tr>
		<tr><th>12.4.28</th><td><a href="#12.4.28"><code>id_column</code></a></td></tr>
		<tr><th>12.4.29</th><td><a href="#12.4.29"><code>index_column</code></a></td></tr>
		<tr><th>12.4.30</th><td><a href="#12.4.30"><code>key_column</code></a></td></tr>
		<tr><th>12.4.31</th><td><a href="#12.4.31"><code>value_column</code></a></td></tr>
              </table>
            </td>
          </tr>
	  <tr>
            <th>12.5</th><td><a href="#12.5">Namespace Pragmas</a>
              <table class="toc">
		<tr><th>12.5.1</th><td><a href="#12.5.1"><code>pointer</code></a></td></tr>
		<tr><th>12.5.2</th><td><a href="#12.5.2"><code>table</code></a></td></tr>
                <tr><th>12.5.3</th><td><a href="#12.5.3"><code>schema</code></a></td></tr>
		<tr><th>12.5.4</th><td><a href="#12.5.4"><code>session</code></a></td></tr>
              </table>
            </td>
          </tr>
          <tr>
            <th>12.6</th><td><a href="#12.6">Index Definition Pragmas</a></td>
          </tr>
          <tr>
            <th>12.7</th><td><a href="#12.7">Database Type Mapping Pragmas</a></td>
          </tr>
          <tr>
            <th>12.8</th><td><a href="#12.8">C++ Compiler Warnings</a>
              <table class="toc">
                <tr><th>12.8.1</th><td><a href="#12.8.1">GNU C++</a></td></tr>
                <tr><th>12.8.2</th><td><a href="#12.8.2">Visual C++</a></td></tr>
                <tr><th>12.8.3</th><td><a href="#12.8.3">Sun C++</a></td></tr>
		<tr><th>12.8.4</th><td><a href="#12.8.4">IBM XL C++</a></td></tr>
		<tr><th>12.8.5</th><td><a href="#12.8.5">HP aC++</a></td></tr>
		<tr><th>12.8.6</th><td><a href="#12.8.6">Clang</a></td></tr>
              </table>
            </td>
          </tr>
        </table>
      </td>
    </tr>

    <tr>
      <th colspan="2"><a href="#II">PART II DATABASE SYSTEMS</a></th>
    </tr>

    <tr>
      <th>13</th><td><a href="#13">MySQL Database</a>
        <table class="toc">
          <tr><th>13.1</th><td><a href="#13.1">MySQL Type Mapping</a></td></tr>
          <tr><th>13.2</th><td><a href="#13.2">MySQL Database Class</a></td></tr>
          <tr><th>13.3</th><td><a href="#13.3">MySQL Connection and Connection Factory</a></td></tr>
	  <tr><th>13.4</th><td><a href="#13.4">MySQL Exceptions</a></td></tr>
	  <tr>
            <th>13.5</th><td><a href="#13.5">MySQL Limitations</a>
              <table class="toc">
                <tr><th>13.5.1</th><td><a href="#13.5.1">Foreign Key Constraints</a></td></tr>
              </table>
            </td>
          </tr>
          <tr><th>13.6</th><td><a href="#13.6">MySQL Index Definition</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>14</th><td><a href="#14">SQLite Database</a>
        <table class="toc">
          <tr><th>14.1</th><td><a href="#14.1">SQLite Type Mapping</a></td></tr>
          <tr><th>14.2</th><td><a href="#14.2">SQLite Database Class</a></td></tr>
          <tr><th>14.3</th><td><a href="#14.3">SQLite Connection and Connection Factory</a></td></tr>
	  <tr><th>14.4</th><td><a href="#14.4">SQLite Exceptions</a></td></tr>
          <tr>
            <th>14.5</th><td><a href="#14.5">SQLite Limitations</a>
              <table class="toc">
                <tr><th>14.5.1</th><td><a href="#14.5.1">Query Result Caching</a></td></tr>
		<tr><th>14.5.2</th><td><a href="#14.5.2">Automatic Assignment of Object Ids</a></td></tr>
		<tr><th>14.5.3</th><td><a href="#14.5.3">Foreign Key Constraints</a></td></tr>
		<tr><th>14.5.4</th><td><a href="#14.5.4">Constraint Violations</a></td></tr>
		<tr><th>14.5.5</th><td><a href="#14.5.5">Sharing of Queries</a></td></tr>
              </table>
            </td>
          </tr>
          <tr><th>14.6</th><td><a href="#14.6">SQLite Index Definition</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>15</th><td><a href="#15">PostgreSQL Database</a>
        <table class="toc">
          <tr><th>15.1</th><td><a href="#15.1">PostgreSQL Type Mapping</a></td></tr>
          <tr><th>15.2</th><td><a href="#15.2">PostgreSQL Database Class</a></td></tr>
          <tr><th>15.3</th><td><a href="#15.3">PostgreSQL Connection and Connection Factory</a></td></tr>
	  <tr><th>15.4</th><td><a href="#15.4">PostgreSQL Exceptions</a></td></tr>
          <tr>
            <th>15.5</th><td><a href="#15.5">PostgreSQL Limitations</a>
              <table class="toc">
                <tr><th>15.5.1</th><td><a href="#15.5.1">Query Result Caching</a></td></tr>
                <tr><th>15.5.2</th><td><a href="#15.5.2">Foreign Key Constraints</a></td></tr>
		<tr><th>15.5.3</th><td><a href="#15.5.3">Unique Constraint Violations</a></td></tr>
		<tr><th>15.5.4</th><td><a href="#15.5.4">Date-Time Format</a></td></tr>
		<tr><th>15.5.5</th><td><a href="#15.5.5">Timezones</a></td></tr>
		<tr><th>15.5.6</th><td><a href="#15.5.6"><code>NUMERIC</code> Type Support</a></td></tr>
              </table>
            </td>
          </tr>
	  <tr><th>15.6</th><td><a href="#15.6">PostgreSQL Index Definition</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>16</th><td><a href="#16">Oracle Database</a>
        <table class="toc">
          <tr><th>16.1</th><td><a href="#16.1">Oracle Type Mapping</a></td></tr>
          <tr><th>16.2</th><td><a href="#16.2">Oracle Database Class</a></td></tr>
          <tr><th>16.3</th><td><a href="#16.3">Oracle Connection and Connection Factory</a></td></tr>
	  <tr><th>16.4</th><td><a href="#16.4">Oracle Exceptions</a></td></tr>
          <tr>
            <th>16.5</th><td><a href="#16.5">Oracle Limitations</a>
              <table class="toc">
                <tr><th>16.5.1</th><td><a href="#16.5.1">Identifier Truncation</a></td></tr>
		<tr><th>16.5.2</th><td><a href="#16.5.2">Query Result Caching</a></td></tr>
		<tr><th>16.5.3</th><td><a href="#16.5.3">Foreign Key Constraints</a></td></tr>
		<tr><th>16.5.4</th><td><a href="#16.5.4">Unique Constraint Violations</a></td></tr>
		<tr><th>16.5.5</th><td><a href="#16.5.5">Large <code>FLOAT</code> and <code>NUMBER</code> Types</a></td></tr>
		<tr><th>16.5.6</th><td><a href="#16.5.6">Timezones</a></td></tr>
		<tr><th>16.5.7</th><td><a href="#16.5.7"><code>LONG</code> Types</a></td></tr>
		<tr><th>16.5.8</th><td><a href="#16.5.8">LOB Types and By-Value Accessors/Modifiers</a></td></tr>
              </table>
            </td>
          </tr>
	  <tr><th>16.6</th><td><a href="#16.6">Oracle Index Definition</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>17</th><td><a href="#17">Microsoft SQL Server Database</a>
        <table class="toc">
          <tr><th>17.1</th><td><a href="#17.1">SQL Server Type Mapping</a></td></tr>
          <tr><th>17.2</th><td><a href="#17.2">SQL Server Database Class</a></td></tr>
          <tr><th>17.3</th><td><a href="#17.3">SQL Server Connection and Connection Factory</a></td></tr>
	  <tr><th>17.4</th><td><a href="#17.4">SQL Server Exceptions</a></td></tr>
          <tr>
            <th>17.5</th><td><a href="#17.5">SQL Server Limitations</a>
              <table class="toc">
                <tr><th>17.5.1</th><td><a href="#17.5.1">Query Result Caching</a></td></tr>
		<tr><th>17.5.2</th><td><a href="#17.5.2">Foreign Key Constraints</a></td></tr>
		<tr><th>17.5.3</th><td><a href="#17.5.3">Unique Constraint Violations</a></td></tr>
		<tr><th>17.5.4</th><td><a href="#17.5.4">Multithreaded Windows Applications</a></td></tr>
		<tr><th>17.5.5</th><td><a href="#17.5.5">Affected Row Count and DDL Statements</a></td></tr>
		<tr><th>17.5.6</th><td><a href="#17.5.6">Long Data and Automatically Assigned Object Ids</a></td></tr>
		<tr><th>17.5.7</th><td><a href="#17.5.7">Long Data and By-Value Accessors/Modifiers</a></td></tr>
              </table>
            </td>
          </tr>
          <tr><th>17.6</th><td><a href="#17.6">SQL Server Index Definition</a></td></tr>
        </table>
      </td>
    </tr>

    <tr>
      <th colspan="2"><a href="#III">PART III PROFILES</a></th>
    </tr>

    <tr>
      <th>18</th><td><a href="#18">Profiles Introduction</a></td>
    </tr>

    <tr>
      <th>19</th><td><a href="#19">Boost Profile</a>
        <table class="toc">
          <tr><th>19.1</th><td><a href="#19.1">Smart Pointers Library</a></td></tr>
          <tr><th>19.2</th><td><a href="#19.2">Unordered Containers Library</a></td></tr>
	  <tr><th>19.3</th><td><a href="#19.3">Multi-Index Container Library</a></td></tr>
	  <tr><th>19.4</th><td><a href="#19.4">Optional Library</a></td></tr>
          <tr>
	    <th>19.5</th><td><a href="#19.5">Date Time Library</a>
	      <table class="toc">
	        <tr><th>19.5.1</th><td><a href="#19.5.1">MySQL Database Type Mapping</a></td></tr>
		<tr><th>19.5.2</th><td><a href="#19.5.2">SQLite Database Type Mapping</a></td></tr>
		<tr><th>19.5.3</th><td><a href="#19.5.3">PostgreSQL Database Type Mapping</a></td></tr>
		<tr><th>19.5.4</th><td><a href="#19.5.4">Oracle Database Type Mapping</a></td></tr>
		<tr><th>19.5.5</th><td><a href="#19.5.5">SQL Server Database Type Mapping</a></td></tr>
	      </table>
	    </td>
	  </tr>
          <tr>
	    <th>19.6</th><td><a href="#19.6">Uuid Library</a>
	      <table class="toc">
	        <tr><th>19.6.1</th><td><a href="#19.6.1">MySQL Database Type Mapping</a></td></tr>
		<tr><th>19.6.2</th><td><a href="#19.6.2">SQLite Database Type Mapping</a></td></tr>
		<tr><th>19.6.3</th><td><a href="#19.6.3">PostgreSQL Database Type Mapping</a></td></tr>
		<tr><th>19.6.4</th><td><a href="#19.6.4">Oracle Database Type Mapping</a></td></tr>
		<tr><th>19.6.5</th><td><a href="#19.6.5">SQL Server Database Type Mapping</a></td></tr>
	      </table>
	    </td>
	  </tr>
        </table>
      </td>
    </tr>

    <tr>
      <th>20</th><td><a href="#20">Qt Profile</a>
        <table class="toc">
          <tr>
	    <th>20.1</th><td><a href="#20.1">Basic Types Library</a>
	      <table class="toc">
	        <tr><th>20.1.1</th><td><a href="#20.1.1">MySQL Database Type Mapping</a></td></tr>
		<tr><th>20.1.2</th><td><a href="#20.1.2">SQLite Database Type Mapping</a></td></tr>
		<tr><th>20.1.3</th><td><a href="#20.1.3">PostgreSQL Database Type Mapping</a></td></tr>
		<tr><th>20.1.4</th><td><a href="#20.1.4">Oracle Database Type Mapping</a></td></tr>
		<tr><th>20.1.5</th><td><a href="#20.1.5">SQL Server Database Type Mapping</a></td></tr>
              </table>
	    </td>
	  </tr>
          <tr><th>20.2</th><td><a href="#20.2">Smart Pointers Library</a></td></tr>
          <tr><th>20.3</th><td><a href="#20.3">Containers Library</a></td></tr>
          <tr>
	    <th>20.4</th><td><a href="#20.4">Date Time Library</a>
	      <table class="toc">
	        <tr><th>20.4.1</th><td><a href="#20.4.1">MySQL Database Type Mapping</a></td></tr>
		<tr><th>20.4.2</th><td><a href="#20.4.2">SQLite Database Type Mapping</a></td></tr>
		<tr><th>20.4.3</th><td><a href="#20.4.3">PostgreSQL Database Type Mapping</a></td></tr>
		<tr><th>20.4.4</th><td><a href="#20.4.4">Oracle Database Type Mapping</a></td></tr>
		<tr><th>20.4.5</th><td><a href="#20.4.5">SQL Server Database Type Mapping</a></td></tr>
	      </table>
	    </td>
	  </tr>
        </table>
      </td>
    </tr>

  </table>
  </div>

  <hr class="page-break"/>
  <h1><a name="0">Preface</a></h1>

  <p>As more critical aspects of our lives become dependant on software
     systems, more and more applications are required to save the data
     they work on in persistent and reliable storage. Database management
     systems and, in particular, relational database management systems
     (RDBMS) are commonly used for such storage. However, while the
     application development techniques and programming languages have
     evolved significantly over the past decades, the relational database
     technology in this area stayed relatively unchanged. In particular,
     this led to the now infamous mismatch between the object-oriented
     model used by many modern applications and the relational model still
     used by RDBMS.</p>

  <p>While relational databases may be inconvenient to use from modern
     programming languages, they are still the main choice for many
     applications due to their maturity, reliability, as well as the
     availability of tools and alternative implementations.</p>

  <p>To allow application developers to utilize relational databases
     from their object-oriented applications, a technique called
     object-relational mapping (ORM) is often used. It involves a
     conversion layer that maps between objects in the application's
     memory and their relational representation in the database. While
     the object-relational mapping code can be written manually,
     automated ORM systems are available for most object-oriented
     programming languages in use today.</p>

  <p>ODB is an ORM system for the C++ programming language. It was
     designed and implemented with the following main goals:</p>

  <ul class="list">
    <li>Provide a fully-automatic ORM system. In particular, the
        application developer should not have to manually write any
        mapping code, neither for persistent classes nor for their
        data member. </li>

    <li>Provide clean and easy to use object-oriented persistence
        model and database APIs that support the development of realistic
        applications for a wide variety of domains.</li>

    <li>Provide a portable and thread-safe implementation. ODB should be
        written in standard C++ and capable of persisting any standard
        C++ classes.</li>

    <li>Provide profiles that integrate ODB with type systems of
        widely-used frameworks and libraries such as Qt and Boost.</li>

    <li>Provide a high-performance and low overhead implementation. ODB
        should make efficient use of database and application resources.</li>

  </ul>


  <h2><a name="0.1">About This Document</a></h2>

  <p>The goal of this manual is to provide you with an understanding
     of the object persistence model and APIs which are implemented by ODB.
     As such, this document is intended for C++ application developers and
     software architects who are looking for a C++ object persistence
     solution. Prior experience with C++ is required to understand
     this document. A basic understanding of relational database systems
     is advantageous but not expected or required.</p>


  <h2><a name="0.2">More Information</a></h2>

  <p>Beyond this manual, you may also find the following sources of
     information useful:</p>

  <ul class="list">
    <li><a href="http://www.codesynthesis.com/products/odb/doc/odb.xhtml">ODB
        Compiler Command Line Manual.</a></li>

    <li>The <code>INSTALL</code> files in the ODB source packages provide
        build instructions for various platforms.</li>

    <li>The <code>odb-examples</code> package contains a collection of
        examples and a README file with an overview of each example.</li>

    <li>The <a href="http://www.codesynthesis.com/mailman/listinfo/odb-users">odb-users</a>
        mailing list is the place to ask technical questions about ODB.
        Furthermore, the searchable
        <a href="http://www.codesynthesis.com/pipermail/odb-users/">archives</a>
        may already have answers to some of your questions.</li>

  </ul>


  <!-- PART -->


  <hr class="page-break"/>
  <h1><a name="I">PART I&nbsp;&nbsp;
      <span style="font-weight: normal;">OBJECT-RELATIONAL MAPPING</span></a></h1>

  <p>Part I describes the essential database concepts, APIs, and tools that
     together comprise the object-relational mapping for C++ as implemented
     by ODB. It consists of the following chapters.</p>

  <table class="toc">
    <tr><th>1</th><td><a href="#1">Introduction</a></td></tr>
    <tr><th>2</th><td><a href="#2">Hello World Example</a></td></tr>
    <tr><th>3</th><td><a href="#3">Working with Persistent Objects</a></td></tr>
    <tr><th>4</th><td><a href="#4">Querying the Database</a></td></tr>
    <tr><th>5</th><td><a href="#5">Containers</a></td></tr>
    <tr><th>6</th><td><a href="#6">Relationships</a></td></tr>
    <tr><th>7</th><td><a href="#7">Value Types</a></td></tr>
    <tr><th>8</th><td><a href="#8">Inheritance</a></td></tr>
    <tr><th>9</th><td><a href="#9">Views</a></td></tr>
    <tr><th>10</th><td><a href="#10">Session</a></td></tr>
    <tr><th>11</th><td><a href="#11">Optimistic Concurrency</a></td></tr>
    <tr><th>12</th><td><a href="#12">ODB Pragma Language</a></td></tr>
  </table>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="1">1 Introduction</a></h1>

  <p>ODB is an object-relational mapping (ORM) system for C++. It provides
     tools, APIs, and library support that allow you to persist C++ objects
     to a relational database (RDBMS) without having to deal with tables,
     columns, or SQL and without manually writing any of the mapping code.</p>

  <p>ODB is highly flexible and customizable. It can either completely
     hide the relational nature of the underlying database or expose
     some of the details as required. For example, you can automatically
     map basic C++ types to suitable SQL types, generate the relational
     database schema for your persistent classes, and use simple, safe,
     and yet powerful object query language instead of SQL. Or you can
     assign SQL types to individual data members, use the existing
     database schema, and run native SQL <code>SELECT</code> queries.
     In fact, at an extreme, ODB can be used as <em>just</em> a convenient
     way to handle results of native SQL queries.</p>

  <p>ODB is not a framework. It does not dictate how you should write
     your application. Rather, it is designed to fit into your
     style and architecture by only handling object persistence
     and not interfering with any other functionality. There is
     no common base type that all persistent classes should derive
     from nor are there any restrictions on the data member types
     in persistent classes. Existing classes can be made persistent
     with a few or no modifications.</p>

  <p>ODB has been designed for high performance and low memory
     overhead. Prepared statements are used to send and receive
     object state in binary format instead of text which reduces
     the load on the application and the database server. Extensive
     caching of connections, prepared statements, and buffers saves
     time and resources on connection establishment, statement parsing,
     and memory allocations. For each supported database system the
     native C API is used instead of ODBC or higher-level wrapper
     APIs to reduce overhead and provide the most efficient implementation
     for each database operation. Finally, persistent classes have
     zero memory overhead. There are no hidden "database" members
     that each class must have nor are there per-object data structures
     allocated by ODB.</p>

  <p>In this chapter we present a high-level overview of ODB.
     We will start with the ODB architecture and then outline the
     workflow of building an application that uses ODB. We will
     then continue by contrasting the drawbacks of the traditional
     way of saving C++ objects to relational databases with the
     benefits of using ODB for object persistence. We conclude the
     chapter by discussing the C++ standards supported by ODB. The
     next chapter takes a more hands-on approach and shows the
     concrete steps necessary to implement object persistence in
     a simple "Hello World" application.</p>

  <h2><a name="1.1">1.1 Architecture and Workflow</a></h2>

  <p>From the application developer's perspective, ODB
     consists of three main components: the ODB compiler, the common
     runtime library, called <code>libodb</code>, and the
     database-specific runtime libraries, called
     <code>libodb-&lt;database></code>, where &lt;database> is
     the name of the database system  this runtime
     is for, for example, <code>libodb-mysql</code>. For instance,
     if the application is going to use the MySQL database for
     object persistence, then the three ODB components that this
     application will use are the ODB compiler, <code>libodb</code>
     and <code>libodb-mysql</code>.</p>

  <p>The ODB compiler generates the database support code for
     persistent classes in your application. The input to the ODB
     compiler is one or more C++ header files defining C++ classes
     that you want to make persistent. For each input header file
     the ODB compiler generates a set of C++ source files implementing
     conversion between persistent C++ classes defined in this
     header and their database representation. The ODB compiler
     can also generate a database schema file that creates tables
     necessary to store the persistent classes.</p>

  <p>The ODB compiler is a real C++ compiler except that it produces
     C++ instead of assembly or machine code. In particular, it is not
     an ad-hoc header pre-processor that is only capable of recognizing
     a subset of C++. ODB is capable of parsing any standard C++ code.</p>

  <p>The common runtime library defines database system-independent
     interfaces that your application can use to manipulate persistent
     objects. The database-specific runtime library provides implementations
     of these interfaces for a concrete database as well as other
     database-specific utilities that are used by the generated code.
     Normally, the application does not use the database-specific
     runtime library directly but rather works with it via the common
     interfaces from <code>libodb</code>. The following diagram shows
     the object persistence architecture of an application that uses
     MySQL as the underlying database system:</p>

  <!-- align=center is needed for html2ps -->
  <div class="img" align="center"><img src="odb-arch.png"/></div>

  <p>The ODB system also defines two special-purpose languages:
     the ODB Pragma Language and ODB Query Language. The ODB Pragma
     Language is used to communicate various properties of persistent
     classes to the ODB compiler by means of special <code>#pragma</code>
     directives embedded in the C++ header files. It controls aspects
     of the object-relational mapping such as names of tables and columns
     that are used for persistent classes and their members or mapping between
     C++ types and database types.</p>

  <p>The ODB Query Language is an object-oriented database query
     language that can be used to search for objects matching
     certain criteria. It is modeled after and is integrated into
     C++ allowing you to write expressive and safe queries that look
     and feel like ordinary C++.</p>

  <p>The use of the ODB compiler to generate database support code
     adds an additional step to your application build sequence. The
     following diagram outlines the typical build workflow of an
     application that uses ODB:</p>

  <!-- align=center is needed for html2ps -->
  <div class="img" align="center"><img src="odb-flow.png"/></div>

  <h2><a name="1.2">1.2 Benefits</a></h2>

  <p>The traditional way of saving C++ objects to relational databases
     requires that you manually write code which converts between the database
     and C++ representations of each persistent class. The actions that
     such code usually performs include conversion between C++ values and
     strings or database types, preparation and execution of SQL queries,
     as well as handling the result sets. Writing this code manually has
     the following drawbacks:</p>

  <ul class="list">
    <li><b>Difficult and time consuming.</b> Writing database conversion
        code for any non-trivial application requires extensive
        knowledge of the specific database system and its APIs.
        It can also take a considerable amount of time to write
        and maintain. Supporting multi-threaded applications can
        complicate this task even further.</li>

    <li><b>Suboptimal performance.</b> Optimal conversion often
        requires writing large amounts of extra code, such as
        parameter binding for prepared statements and caching
        of connections, statements, and buffers. Writing code
        like this in an ad-hoc manner is often too difficult
        and time consuming.</li>

    <li><b>Database vendor lock-in.</b> The conversion code is written for
        a specific database which makes it hard to switch to another
        database vendor.</li>

    <li><b>Lack of type safety.</b> It is easy to misspell column names or
        pass incompatible values in SQL queries. Such errors will
        only be detected at runtime.</li>

    <li><b>Complicates the application.</b> The database conversion code
        often ends up interspersed throughout the application making it
        hard to debug, change, and maintain.</li>
  </ul>

  <p>In contrast, using ODB for C++ object persistence has the
     following benefits:</p>

  <ul class="list">
    <li><b>Ease of use.</b> ODB automatically generates database conversion
        code from your C++ class declarations and allows you to manipulate
        persistent objects using simple and thread-safe object-oriented
        database APIs.</li>

    <li><b>Concise code.</b> With ODB hiding the details of the underlying
        database, the application logic is written using the natural object
        vocabulary instead of tables, columns and SQL. The resulting code
        is simpler and thus easier to read and understand.</li>

    <li><b>Optimal performance.</b> ODB has been designed for high performance
        and low memory overhead. All the available optimization techniques,
        such as prepared statements and extensive connection, statement,
        and buffer caching, are used to provide the most efficient
        implementation for each database operation.</li>

    <li><b>Database portability.</b> Because the database conversion code
        is automatically generated, it is easy to switch from one database
        vendor to another. In fact, it is possible to test your application
        on several database systems before making a choice.</li>

    <li><b>Safety.</b> The ODB object persistence and query APIs are
        statically typed. You use C++ identifiers instead of strings
        to refer to object members and the generated code makes sure
        database and C++ types are compatible. All this helps catch
        programming errors at compile-time rather than at runtime.</li>

    <li><b>Maintainability.</b> Automatic code generation minimizes the
        effort needed to adapt the application to changes in persistent
        classes. The database support code is kept separately from the
        class declarations and application logic. This makes the
        application easier to debug and maintain.</li>
  </ul>

  <p>Overall, ODB provides an easy to use yet flexible and powerful
     object-relational mapping (ORM) system for C++. Unlike other
     ORM implementations for C++ that still require you to write
     database conversion or member registration code for each
     persistent class, ODB keeps persistent classes purely
     declarative. The functional part, the database conversion
     code, is automatically generated by the ODB compiler from
     these declarations.</p>

  <h2><a name="1.3">1.3 Supported C++ Standards</a></h2>

  <p>ODB provides support for ISO/IEC C++ 1998 (C++98), ISO/IEC TR 19768
     C++ Library Extensions (C++ TR1), and ISO/IEC C++ 2011 (C++11).
     While the majority of the examples in this manual use C++98,
     support for the new functionality and library components introduced in
     TR1 and C++11 are discussed throughout the document. The <code>c++11</code>
     example in the <code>odb-examples</code> package also shows ODB
     support for various C++11 features.</p>

  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="2">2 Hello World Example</a></h1>

  <p>In this chapter we will show how to create a simple C++
     application that relies on ODB for object persistence using
     the traditional "Hello World" example. In particular, we will
     discuss how to declare persistent classes, generate database
     support code, as well as compile and run our application. We
     will also learn how to make objects persistent, load, update
     and delete persistent objects, as well as query the database
     for persistent objects that match certain criteria. The example
     also shows how to define and use views, a mechanism that allows
     us to create projections of persistent objects, database tables,
     or to handle results of native SQL queries.</p>

  <p>The code presented in this chapter is based on the
     <code>hello</code> example which can be found in the
     <code>odb-examples</code> package of the ODB distribution.</p>

  <h2><a name="2.1">2.1 Declaring a Persistent Class</a></h2>

  <p>In our "Hello World" example we will depart slightly from
     the norm and say hello to people instead of the world. People
     in our application will be represented as objects of C++ class
     <code>person</code> which is saved in <code>person.hxx</code>:</p>

  <pre class="cxx">
// person.hxx
//

#include &lt;string>

class person
{
public:
  person (const std::string&amp; first,
          const std::string&amp; last,
          unsigned short age);

  const std::string&amp; first () const;
  const std::string&amp; last () const;

  unsigned short age () const;
  void age (unsigned short);

private:
  std::string first_;
  std::string last_;
  unsigned short age_;
};
  </pre>

  <p>In order not to miss anyone whom we need to greet, we would like
  to save the <code>person</code> objects in a database. To achieve this
  we declare the <code>person</code> class as persistent:</p>

  <pre class="cxx">
// person.hxx
//

#include &lt;string>

#include &lt;odb/core.hxx>     // (1)

#pragma db object           // (2)
class person
{
  ...

private:
  person () {}              // (3)

  friend class odb::access; // (4)

  #pragma db id auto        // (5)
  unsigned long id_;        // (5)

  std::string first_;
  std::string last_;
  unsigned short age_;
};
  </pre>

  <p>To be able to save the <code>person</code> objects in the database
     we had to make five changes, marked with (1) to (5), to the original
     class definition. The first change is the inclusion of the ODB
     header <code>&lt;odb/core.hxx></code>. This header provides a number
     of core ODB declarations, such as <code>odb::access</code>, that
     are used to define persistent classes.</p>

  <p>The second change is the addition of <code>db&nbsp;object</code>
     pragma just before the class definition. This pragma tells the
     ODB compiler that the class that follows is persistent. Note
     that making a class persistent does not mean that all objects
     of this class will automatically be stored in the database.
     You would still create ordinary or <em>transient</em> instances
     of this class just as you would before. The difference is that
     now you can make such transient instances persistent, as we will
     see shortly.</p>

  <p>The third change is the addition of the default constructor.
     The ODB-generated database support code will use this constructor
     when instantiating an object from the persistent state. Just as we have
     done for the <code>person</code> class, you can make the default
     constructor private or protected if you don't want to make it
     available to the users of your class. Note also that with some
     limitations it is possible to have a persistent class without
     the default constructor.</p>

  <p>With the fourth change we make the <code>odb::access</code> class a
     friend of our <code>person</code> class. This is necessary to make
     the default constructor and the data members accessible to the
     database support code. If your class has a public default constructor and
     either public data members or public accessors and modifiers for the
     data members, then the <code>friend</code> declaration is unnecessary.</p>

  <p>The final change adds a data member called <code>id_</code> which
     is preceded by another pragma. In ODB every persistent object normally
     has a unique, within its class, identifier. Or, in other words, no two
     persistent instances of the same type have equal identifiers. While it
     is possible to define a persistent class without an object id, the number
     of database operations that can be performed on such a class is limited.
     For our class we use an integer id. The <code>db&nbsp;id auto</code>
     pragma that precedes the <code>id_</code> member tells the ODB compiler
     that the following member is the object's identifier. The
     <code>auto</code> specifier indicates that it is a database-assigned
     id. A unique id will be automatically generated by the database and
     assigned to the object when it is made persistent.</p>

  <p>In this example we chose to add an identifier because none of
     the existing members could serve the same purpose. However, if
     a class already has a member with suitable properties, then it
     is natural to use that member as an identifier. For example,
     if our <code>person</code> class contained some form of personal
     identification (SSN in the United States or ID/passport number
     in other countries), then we could use that as an id. Or, if
     we stored an email associated with each person, then we could
     have used that if each person is presumed to have a unique
     email address.</p>

  <p>As another example, consider the following alternative version
     of the <code>person</code> class. Here we use one of
     the existing data members as id. Also the data members are kept
     private and are instead accessed via public accessor and modifier
     functions. Finally, the ODB pragmas are grouped together and are
     placed after the class definition. They could have also been moved
     into a separate header leaving the original class completely
     unchanged (for more information on such a non-intrusive conversion
     refer to <a href="#12">Chapter 12, "ODB Pragma Language"</a>).</p>

  <pre class="cxx">
class person
{
public:
  person ();

  const std::string&amp; email () const;
  void email (const std::string&amp;);

  const std::string&amp; get_name () const;
  std::string&amp; set_name ();

  unsigned short getAge () const;
  void setAge (unsigned short);

private:
  std::string email_;
  std::string name_;
  unsigned short age_;
};

#pragma db object(person)
#pragma db member(person::email_) id
  </pre>

  <p>Now that we have the header file with the persistent class, let's
     see how we can generate that database support code.</p>

  <h2><a name="2.2">2.2 Generating Database Support Code</a></h2>

  <p>The persistent class definition that we created in the previous
     section was particularly light on any code that could actually
     do the job and store the person's data to a database. There
     was no serialization or deserialization code, not even data member
     registration, that you would normally have to write by hand in
     other ORM libraries for C++. This is because in ODB code
     that translates between the database and C++ representations
     of an object is automatically generated by the ODB compiler.</p>

  <p>To compile the <code>person.hxx</code> header we created in the
     previous section and generate the support code for the MySQL
     database, we invoke the ODB compiler from a terminal (UNIX) or
     a command prompt (Windows):</p>

  <pre class="terminal">
odb -d mysql --generate-query person.hxx
  </pre>

  <p>We will use MySQL as the database of choice in the remainder of
     this chapter, though other supported database systems can be used
     instead.</p>

  <p>If you haven't installed the common ODB runtime library
     (<code>libodb</code>) or installed it into a directory where
     C++ compilers don't search for headers by default,
     then you may get the following error:</p>

  <pre class="terminal">
person.hxx:10:24: fatal error: odb/core.hxx: No such file or directory
  </pre>

  <p>To resolve this you will need to specify the <code>libodb</code> headers
     location with the <code>-I</code> preprocessor option, for example:</p>

  <pre class="terminal">
odb -I.../libodb -d mysql --generate-query person.hxx
  </pre>

  <p>Here <code>.../libodb</code> represents the path to the
     <code>libodb</code> directory.</p>

  <p>The above invocation of the ODB compiler produces three C++ files:
     <code>person-odb.hxx</code>, <code>person-odb.ixx</code>,
     <code>person-odb.cxx</code>. You normally don't use types
     or functions contained in these files directly. Rather, all
     you have to do is include <code>person-odb.hxx</code> in
     C++ files where you are performing database operations
     with classes from <code>person.hxx</code> as well as compile
     <code>person-odb.cxx</code> and link the resulting object
     file to your application.</p>

  <p>You may be wondering what the <code>--generate-query</code>
     option is for. It instructs the ODB compiler to generate
     optional query support code that we will use later in our
     "Hello World" example. Another option that we will find
     useful is <code>--generate-schema</code>. This option
     makes the ODB compiler generate a fourth file,
     <code>person.sql</code>, which is the database schema
     for the persistent classes defined in <code>person.hxx</code>:</p>

  <pre class="terminal">
odb -d mysql --generate-query --generate-schema person.hxx
  </pre>

  <p>The database schema file contains SQL statements that creates
     tables necessary to store the persistent classes. We will learn
     how to use it in the next section.</p>

  <p>If you would like to see a list of all the available ODB compiler
     options, refer to the
     <a href="http://www.codesynthesis.com/products/odb/doc/odb.xhtml">ODB
     Compiler Command Line Manual</a>.</p>

  <p>Now that we have the persistent class and the database support
     code, the only part that is left is the application code that
     does something useful with all of this. But before we move on to
     the fun part, let's first learn how to build and run an application
     that uses ODB. This way when we have some application code
     to try, there are no more delays before we can run it.</p>

  <h2><a name="2.3">2.3 Compiling and Running</a></h2>

  <p>Assuming that the <code>main()</code> function with the application
     code is saved in <code>driver.cxx</code> and the database support
     code and schema are generated as described in the previous section,
     to build our application we will first need to compile all the C++
     source files and then link them with two ODB runtime libraries.</p>

  <p>On UNIX, the compilation part can be done with the following commands
     (substitute <code>c++</code> with your C++ compiler name; for Microsoft
     Visual Studio setup, see the <code>odb-examples</code> package):</p>

  <pre class="terminal">
c++ -c driver.cxx
c++ -c person-odb.cxx
  </pre>

  <p>Similar to the ODB compilation, if you get an error stating that
  a header in <code>odb/</code> or <code>odb/mysql</code> directory
  is not found, you will need to use the <code>-I</code>
  preprocessor option to specify the location of the common ODB runtime
  library (<code>libodb</code>) and MySQL ODB runtime library
  (<code>libodb-mysql</code>).</p>

  <p>Once the compilation is done, we can link the application with
  the following command:</p>

  <pre class="terminal">
c++ -o driver driver.o person-odb.o -lodb-mysql -lodb
  </pre>

  <p>Notice that we link our application with two ODB libraries:
    <code>libodb</code> which is a common runtime library and
    <code>libodb-mysql</code> which is a MySQL runtime library
    (if you use another database, then the name of this library
    will change accordingly). If you get an error saying that
    one of these libraries could not be found, then you will need
    to use the <code>-L</code> linker option to specify their locations.</p>

  <p>Before we can run our application we need to create a database
    schema using the generated <code>person.sql</code> file. For MySQL
    we can use the <code>mysql</code> client program, for example:</p>

  <pre class="terminal">
mysql --user=odb_test --database=odb_test &lt; person.sql
  </pre>

  <p>The above command will log in to a local MySQL server as user
    <code>odb_test</code> without a password and use the database
    named <code>odb_test</code>. Beware that after executing this
    command, all the data stored in the <code>odb_test</code> database
    will be deleted.</p>

  <p>Note also that using a standalone generated SQL file is not the
     only way to create a database schema in ODB. We can also embed
     the schema directly into our application or use custom schemas
     that were not generated by the ODB compiler. Refer to
     <a href="#3.4">Section 3.4, "Database"</a> for details.</p>

  <p>Once the database schema is ready, we run our application
  using the same login and database name:</p>

  <pre class="terminal">
./driver --user odb_test --database odb_test
  </pre>


  <h2><a name="2.4">2.4 Making Objects Persistent</a></h2>

  <p>Now that we have the infrastructure work out of the way, it
  is time to see our first code fragment that interacts with the
  database. In this section we will learn how to make <code>person</code>
  objects persistent:</p>

  <pre class="cxx">
// driver.cxx
//

#include &lt;memory>   // std::auto_ptr
#include &lt;iostream>

#include &lt;odb/database.hxx>
#include &lt;odb/transaction.hxx>

#include &lt;odb/mysql/database.hxx>

#include "person.hxx"
#include "person-odb.hxx"

using namespace std;
using namespace odb::core;

int
main (int argc, char* argv[])
{
  try
  {
    auto_ptr&lt;database> db (new odb::mysql::database (argc, argv));

    unsigned long john_id, jane_id, joe_id;

    // Create a few persistent person objects.
    //
    {
      person john ("John", "Doe", 33);
      person jane ("Jane", "Doe", 32);
      person joe ("Joe", "Dirt", 30);

      transaction t (db->begin ());

      // Make objects persistent and save their ids for later use.
      //
      john_id = db->persist (john);
      jane_id = db->persist (jane);
      joe_id = db->persist (joe);

      t.commit ();
    }
  }
  catch (const odb::exception&amp; e)
  {
    cerr &lt;&lt; e.what () &lt;&lt; endl;
    return 1;
  }
}
  </pre>

  <p>Let's examine this code piece by piece. At the beginning we include
     a bunch of headers. After the standard C++ headers we include
     <code>&lt;odb/database.hxx></code>
     and <code>&lt;odb/transaction.hxx></code> which define database
     system-independent <code>odb::database</code> and
     <code>odb::transaction</code> interfaces. Then we include
     <code>&lt;odb/mysql/database.hxx></code> which defines the
     MySQL implementation of the <code>database</code> interface. Finally,
     we include <code>person.hxx</code> and <code>person-odb.hxx</code>
     which define our persistent <code>person</code> class.</p>

  <p>Then we have two <code>using namespace</code> directives. The first
     one brings in the names from the standard namespace and the second
     brings in the ODB declarations which we will use later in the file.
     Notice that in the second directive we use the <code>odb::core</code>
     namespace instead of just <code>odb</code>. The former only brings
     into the current namespace the essential ODB names, such as the
     <code>database</code> and <code>transaction</code> classes, without
     any of the auxiliary objects. This minimizes the likelihood of name
     conflicts with other libraries. Note also that you should continue
     using the <code>odb</code> namespace when qualifying individual names.
     For example, you should write <code>odb::database</code>, not
     <code>odb::core::database</code>.</p>

  <p>Once we are in <code>main()</code>, the first thing we do is create
     the MySQL database object. Notice that this is the last line in
     <code>driver.cxx</code> that mentions MySQL explicitly; the rest
     of the code works through the common interfaces and is database
     system-independent. We use the <code>argc</code>/<code>argv</code>
     <code>mysql::database</code> constructor which automatically
     extract the database parameters, such as login name, password,
     database name, etc., from the command line. In your own applications
     you may prefer to use other <code>mysql::database</code>
     constructors which allow you to pass this information directly
     (<a href="#13.2">Section 13.2, "MySQL Database Class"</a>).</p>

  <p>Next, we create three <code>person</code> objects. Right now they are
     transient objects, which means that if we terminate the application
     at this point, they will be gone without any evidence of them ever
     existing. The next line starts a database transaction. We discuss
     transactions in detail later in this manual. For now, all we need
     to know is that all ODB database operations must be performed within
     a transaction and that a transaction is an atomic unit of work; all
     database operations performed within a transaction either succeed
     (committed) together or are automatically undone (rolled back).</p>

  <p>Once we are in a transaction, we call the <code>persist()</code>
     database function on each of our <code>person</code> objects.
     At this point the state of each object is saved in the database.
     However, note that this state is not permanent until and unless
     the transaction is committed. If, for example, our application
     crashes at this point, there will still be no evidence of our
     objects ever existing.</p>

  <p>In our case, one more thing happens when we call <code>persist()</code>.
     Remember that we decided to use database-assigned identifiers for our
     <code>person</code> objects. The call to <code>persist()</code> is
     where this assignment happens. Once this function returns, the
     <code>id_</code> member contains this object's unique identifier.
     As a convenience, the <code>persist()</code> function also returns
     a copy of the object's identifier that it made persistent. We
     save the returned identifier for each object in a local variable.
     We will use these identifiers later in the chapter to perform other
     database operations on our persistent objects.</p>

  <p>After we have persisted our objects, it is time to commit the
     transaction and make the changes permanent. Only after the
     <code>commit()</code> function returns successfully, are we
     guaranteed that the objects are made persistent. Continuing
     with the crash example, if our application terminates after
     the commit for whatever reason, the objects' state in the
     database will remain intact. In fact, as we will discover
     shortly, our application can be restarted and load the
     original objects from the database. Note also that a
     transaction must be committed explicitly with the
     <code>commit()</code> call. If the <code>transaction</code>
     object leaves scope without the transaction being
     explicitly committed or rolled back, it will automatically be
     rolled back. This behavior allows you not to worry about
     exceptions being thrown within a transaction; if they
     cross the transaction boundary, the transaction will
     automatically be rolled back and all the changes made
     to the database undone.</p>

  <p>The final bit of code in our example is the <code>catch</code>
     block that handles the database exceptions. We do this by catching
     the base ODB exception (<a href="#3.14">Section 3.14, "ODB
     Exceptions"</a>) and printing the diagnostics.</p>

  <p>Let's now compile (<a href="#2.3">Section 2.3, "Compiling and
     Running"</a>) and then run our first ODB application:</p>

  <pre class="terminal">
mysql --user=odb_test --database=odb_test &lt; person.sql
./driver --user odb_test --database odb_test
  </pre>

  <p>Our first application doesn't print anything except for error
     messages so we can't really tell whether it actually stored the
     objects' state in the database. While we will make our application
     more entertaining shortly, for now we can use the <code>mysql</code>
     client to examine the database content. It will also give us a feel
     for how the objects are stored:</p>

  <pre class="terminal">
mysql --user=odb_test --database=odb_test

Welcome to the MySQL monitor.

mysql> select * from person;

+----+-------+------+-----+
| id | first | last | age |
+----+-------+------+-----+
|  1 | John  | Doe  |  33 |
|  2 | Jane  | Doe  |  32 |
|  3 | Joe   | Dirt |  30 |
+----+-------+------+-----+
3 rows in set (0.00 sec)

mysql> quit
  </pre>

  <p>Another way to get more insight into what's going on under the hood,
     is to trace the SQL statements executed by ODB as a result of
     each database operation. Here is how we can enable tracing just for
     the duration of our transaction:</p>

  <pre class="cxx">
    // Create a few persistent person objects.
    //
    {
      ...

      transaction t (db->begin ());

      t.tracer (stderr_tracer);

      // Make objects persistent and save their ids for later use.
      //
      john_id = db->persist (john);
      jane_id = db->persist (jane);
      joe_id = db->persist (joe);

      t.commit ();
    }
  </pre>

  <p>With this modification our application now produces the following
     output:</p>

  <pre class="terminal">
INSERT INTO `person` (`id`,`first`,`last`,`age`) VALUES (?,?,?,?)
INSERT INTO `person` (`id`,`first`,`last`,`age`) VALUES (?,?,?,?)
INSERT INTO `person` (`id`,`first`,`last`,`age`) VALUES (?,?,?,?)
  </pre>

  <p>Note that we see question marks instead of the actual values
     because ODB uses prepared statements and sends the data to the
     database in binary form. For more information on tracing, refer
     to <a href="#3.13">Section 3.13, "Tracing SQL Statement Execution"</a>.
     In the next section we will see how to access persistent objects
     from our application.</p>

  <h2><a name="2.5">2.5 Querying the Database for Objects</a></h2>

  <p>So far our application doesn't resemble a typical "Hello World"
     example. It doesn't print anything except for error messages.
     Let's change that and teach our application to say hello to
     people from our database. To make it a bit more interesting,
     let's say hello only to people over 30:</p>

  <pre class="cxx">
// driver.cxx
//

...

int
main (int argc, char* argv[])
{
  try
  {
    ...

    // Create a few persistent person objects.
    //
    {
      ...
    }

    typedef odb::query&lt;person> query;
    typedef odb::result&lt;person> result;

    // Say hello to those over 30.
    //
    {
      transaction t (db->begin ());

      result r (db->query&lt;person> (query::age > 30));

      for (result::iterator i (r.begin ()); i != r.end (); ++i)
      {
        cout &lt;&lt; "Hello, " &lt;&lt; i->first () &lt;&lt; "!" &lt;&lt; endl;
      }

      t.commit ();
    }
  }
  catch (const odb::exception&amp; e)
  {
    cerr &lt;&lt; e.what () &lt;&lt; endl;
    return 1;
  }
}
  </pre>

  <p>The first half of our application is the same as before and is
     replaced with "..." in the above listing for brevity. Again, let's
     examine the rest of it piece by piece.</p>

  <p>The two <code>typedef</code>s create convenient aliases for two
     template instantiations that will be used a lot in our application.
     The first is the query type for the <code>person</code> objects
     and the second is the result type for that query.</p>

  <p>Then we begin a new transaction and call the <code>query()</code>
     database function. We pass a query expression
     (<code>query::age > 30</code>) which limits the returned objects
     only to those with the age greater than 30. We also save the result
     of the query in a local variable.</p>

  <p>The next few lines perform a standard for-loop iteration
     over the result sequence printing hello for every returned person.
     Then we commit the transaction and that's it. Let's see what
     this application will print:</p>

  <pre class="terminal">
mysql --user=odb_test --database=odb_test &lt; person.sql
./driver --user odb_test --database odb_test

Hello, John!
Hello, Jane!
  </pre>


  <p>That looks about right, but how do we know that the query actually
     used the database instead of just using some in-memory artifacts of
     the earlier <code>persist()</code> calls? One way to test this
     would be to comment out the first transaction in our application
     and re-run it without re-creating the database schema. This way the
     objects that were persisted during the previous run will be returned.
     Alternatively, we can just re-run the same application without
     re-creating the schema and notice that we now show duplicate
     objects:</p>

  <pre class="terminal">
./driver --user odb_test --database odb_test

Hello, John!
Hello, Jane!
Hello, John!
Hello, Jane!
  </pre>

  <p>What happens here is that the previous run of our application
     persisted a set of <code>person</code> objects and when we re-run
     the application, we persist another set with the same names but
     with different ids. When we later run the query, matches from
     both sets are returned. We can change the line where we print
     the "Hello" string as follows to illustrate this point:</p>

  <pre class="cxx">
cout &lt;&lt; "Hello, " &lt;&lt; i->first () &lt;&lt; " (" &lt;&lt; i->id () &lt;&lt; ")!" &lt;&lt; endl;
  </pre>

  <p>If we now re-run this modified program, again without re-creating
     the database schema, we will get the following output:</p>

  <pre class="terminal">
./driver --user odb_test --database odb_test

Hello, John (1)!
Hello, Jane (2)!
Hello, John (4)!
Hello, Jane (5)!
Hello, John (7)!
Hello, Jane (8)!
  </pre>

  <p>The identifiers 3, 6, and 9 that are missing from the above list belong
     to the "Joe Dirt" objects which are not selected by this query.</p>

  <h2><a name="2.6">2.6 Updating Persistent Objects</a></h2>

  <p>While making objects persistent and then selecting some of them using
     queries are two useful operations, most applications will also need
     to change the object's state and then make these changes persistent.
     Let's illustrate this by updating Joe's age who just had a birthday:</p>

  <pre class="cxx">
// driver.cxx
//

...

int
main (int argc, char* argv[])
{
  try
  {
    ...

    unsigned long john_id, jane_id, joe_id;

    // Create a few persistent person objects.
    //
    {
      ...

      // Save object ids for later use.
      //
      john_id = john.id ();
      jane_id = jane.id ();
      joe_id = joe.id ();
    }

    // Joe Dirt just had a birthday, so update his age.
    //
    {
      transaction t (db->begin ());

      auto_ptr&lt;person> joe (db->load&lt;person> (joe_id));
      joe->age (joe->age () + 1);
      db->update (*joe);

      t.commit ();
    }

    // Say hello to those over 30.
    //
    {
      ...
    }
  }
  catch (const odb::exception&amp; e)
  {
    cerr &lt;&lt; e.what () &lt;&lt; endl;
    return 1;
  }
}
  </pre>

  <p>The beginning and the end of the new transaction are the same as
     the previous two. Once within a transaction, we call the
     <code>load()</code> database function to instantiate a
     <code>person</code> object with Joe's persistent state. We
     pass Joe's object identifier that we stored earlier when we
     made this object persistent. While here we use
     <code>std::auto_ptr</code> to manage the returned object, we
     could have also used another smart pointer, for example
     <code>std::unique_ptr</code> from C++11 or <code>shared_ptr</code>
     from TR1, C++11, or Boost. For more information
     on the object lifetime management and the smart pointers that we
     can use for that, see <a href="#3.3">Section 3.3, "Object
     and View Pointers"</a>.</p>

  <p>With the instantiated object in hand we increment the age
     and call the <code>update()</code> function to update
     the object's state in the database. Once the transaction is
     committed, the changes are made permanent.</p>

  <p>If we now run this application, we will see Joe in the output
     since he is now over 30:</p>

  <pre class="terminal">
mysql --user=odb_test --database=odb_test &lt; person.sql
./driver --user odb_test --database odb_test

Hello, John!
Hello, Jane!
Hello, Joe!
  </pre>

  <p>What if we didn't have an identifier for Joe? Maybe this object
     was made persistent in another run of our application or by another
     application altogether. Provided that we only have one Joe Dirt
     in the database, we can use the query facility to come up with
     an alternative implementation of the above transaction:</p>

  <pre class="cxx">
    // Joe Dirt just had a birthday, so update his age. An
    // alternative implementation without using the object id.
    //
    {
      transaction t (db->begin ());

      result r (db->query&lt;person> (query::first == "Joe" &amp;&amp;
                                   query::last == "Dirt"));

      result::iterator i (r.begin ());

      if (i != r.end ())
      {
        auto_ptr&lt;person> joe (i.load ());
        joe->age (joe->age () + 1);
        db->update (*joe);
      }

      t.commit ();
    }
  </pre>

  <h2><a name="2.7">2.7 Defining and Using Views</a></h2>

  <p>Suppose that we need to gather some basic statistics about the people
     stored in our database. Things like the total head count, as well as
     the minimum and maximum ages. One way to do it would be to query
     the database for all the <code>person</code> objects and then
     calculate this information as we iterate over the query result.
     While this approach may work fine for our database with just three
     people in it, it would be very inefficient if we had a large
     number of objects.</p>

  <p>While it may not be conceptually pure from the object-oriented
     programming point of view, a relational database can perform
     some computations much faster and much more economically than
     if we performed the same operations ourselves in the application's
     process.</p>

  <p>To support such cases ODB provides the notion of views. An ODB view
     is a C++ <code>class</code> that embodies a light-weight, read-only
     projection of one or more persistent objects or database tables or
     the result of a native SQL query execution.</p>

  <p>Some of the common applications of views include loading a subset of
     data members from objects or columns database tables, executing and
     handling results of arbitrary SQL queries, including aggregate
     queries, as well as joining multiple objects and/or database
     tables using object relationships or custom join conditions.</p>

  <p>While you can find a much more detailed description of views in
     <a href="#9">Chapter 9, "Views"</a>, here is how we can define
     the <code>person_stat</code> view that returns the basic statistics
     about the <code>person</code> objects:</p>

  <pre class="cxx">
#pragma db view object(person)
struct person_stat
{
  #pragma db column("count(" + person::id_ + ")")
  std::size_t count;

  #pragma db column("min(" + person::age_ + ")")
  unsigned short min_age;

  #pragma db column("max(" + person::age_ + ")")
  unsigned short max_age;
};
  </pre>

  <p>To get the result of a view we use the same <code>query()</code>
     function as when querying the database for an object. Here is
     how we can load and print our statistics using the view we have
     just created:</p>

  <pre class="cxx">
    // Print some statistics about all the people in our database.
    //
    {
      transaction t (db->begin ());

      odb::result&lt;person_stat> r (db->query&lt;person_stat> ());

      // The result of this query always has exactly one element.
      //
      const person_stat&amp; ps (*r.begin ());

      cout &lt;&lt; "count  : " &lt;&lt; ps.count &lt;&lt; endl
           &lt;&lt; "min age: " &lt;&lt; ps.min_age &lt;&lt; endl
           &lt;&lt; "max age: " &lt;&lt; ps.max_age &lt;&lt; endl;

      t.commit ();
    }
  </pre>

  <p>If we now add the <code>person_stat</code> view to the
     <code>person.hxx</code> header, the above transaction
     to <code>driver.cxx</code>, as well as re-compile and
     re-run our example, then we will see the following
     additional lines in the output:</p>

  <pre class="term">
count  : 3
min age: 31
max age: 33
  </pre>

  <h2><a name="2.8">2.8 Deleting Persistent Objects</a></h2>

  <p>The last operation that we will discuss in this chapter is deleting
     the persistent object from the database. The following code
     fragment shows how we can delete an object given its identifier:</p>

  <pre class="cxx">
    // John Doe is no longer in our database.
    //
    {
      transaction t (db->begin ());
      db->erase&lt;person> (john_id);
      t.commit ();
    }
  </pre>

  <p>To delete John from the database we start a transaction, call
     the <code>erase()</code> database function with John's object
     id, and commit the transaction. After the transaction is committed,
     the erased object is no longer persistent.</p>

  <p>If we don't have an object id handy, we can use queries to find
     and delete the object:</p>

  <pre class="cxx">
    // John Doe is no longer in our database. An alternative
    // implementation without using the object id.
    //
    {
      transaction t (db->begin ());

      result r (db->query&lt;person> (query::first == "John" &amp;&amp;
                                   query::last == "Doe"));

      result::iterator i (r.begin ());

      if (i != r.end ())
      {
        auto_ptr&lt;person> john (i.load ());
        db->erase (*john);
      }

      t.commit ();
    }
  </pre>

  <h2><a name="2.9">2.9 Summary</a></h2>

  <p>This chapter presented a very simple application which, nevertheless,
     exercised all of the core database functions: <code>persist()</code>,
     <code>query()</code>, <code>load()</code>, <code>update()</code>,
     and <code>erase()</code>. We also saw that writing an application
     that uses ODB involves the following steps:</p>

  <ol>
    <li>Declare persistent classes in header files.</li>
    <li>Compile these headers to generate database support code.</li>
    <li>Link the application with the generated code and two ODB runtime
        libraries.</li>
  </ol>



  <p>Do not be concerned if, at this point, much appears unclear. The intent
     of this chapter is to give you only a general idea of how to persist C++
     objects with ODB. We will cover all the details throughout the remainder
     of this manual.</p>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="3">3 Working with Persistent Objects</a></h1>

  <p>The previous chapters gave us a high-level overview of ODB and
     showed how to use it to store C++ objects in a database. In this
     chapter we will examine the ODB object persistence model as
     well as the core database APIs in greater detail. We will
     start with basic concepts and terminology in <a href="#3.1">Section
     3.1</a> and <a href="#3.3">Section 3.3</a> and continue with the
     discussion of the <code>odb::database</code> class in
     <a href="#3.4">Section 3.4</a>, transactions in
     <a href="#3.5">Section 3.5</a>, and connections in
     <a href="#3.6">Section 3.6</a>. The remainder of this chapter
     deals with the core database operations and concludes with
     the discussion of ODB exceptions.</p>

  <p>In this chapter we will continue to use and expand the
     <code>person</code> persistent class that we have developed in the
     previous chapter.</p>

  <h2><a name="3.1">3.1 Concepts and Terminology</a></h2>

  <p>The term <em>database</em> can refer to three distinct things:
     a general notion of a place where an application stores its data,
     a software implementation for managing this data (for example
     MySQL), and, finally, some database software implementations
     may manage several data stores which are usually distinguished
     by name. This name is also commonly referred to as a database.</p>

  <p>In this manual, when we use the word <em>database</em>, we
     refer to the first meaning above, for example,
     "The <code>update()</code> function saves the object's state to
     the database." The term Database Management System (DBMS) is
     often used to refer to the second meaning of the word database.
     In this manual we will use the term <em>database system</em>
     for short, for example, "Database system-independent
     application code." Finally, to distinguish the third meaning
     from the other two, we will use the term <em>database name</em>,
     for example, "The second option specifies the database name
     that the application should use to store its data."</p>

  <p>In C++ there is only one notion of a type and an instance
     of a type. For example, a fundamental type, such as <code>int</code>,
     is, for the most part, treated the same as a user defined class
     type. However, when it comes to persistence, we have to place
     certain restrictions and requirements on certain C++ types that
     can be stored in the database. As a result, we divide persistent
     C++ types into two groups: <em>object types</em> and <em>value
     types</em>. An instance of an object type is called an <em>object</em>
     and an instance of a value type &mdash; a <em>value</em>.</p>

  <p>An object is an independent entity. It can be stored, updated,
     and deleted in the database independent of other objects.
     Normally, an object has an identifier, called <em>object id</em>,
     that is unique among all instances of an object type within a
     database. In contrast, a value can only be stored in the database
     as part of an object and doesn't have its own unique identifier.</p>

  <p>An object consists of data members which are either values
     (<a href="#7">Chapter 7, "Value Types"</a>), pointers
     to other objects (<a href="#6">Chapter 6, "Relationships"</a>), or
     containers of values or pointers to other objects (<a href="#5">Chapter
     5, "Containers")</a>. Pointers to other objects and containers can
     be viewed as special kinds of values since they also can only
     be stored in the database as part of an object.</p>

  <p>An object type is a C++ class. Because of this one-to-one
     relationship, we will use terms <em>object type</em>
     and <em>object class</em> interchangeably. In contrast,
     a value type can be a fundamental C++ type, such as
     <code>int</code> or a class type, such as <code>std::string</code>.
     If a value consists of other values, then it is called a
     <em>composite value</em> and its type &mdash; a
     <em>composite value type</em> (<a href="#7.2">Section 7.2,
     "Composite Value Types"</a>). Otherwise, the value is
     called <em>simple value</em> and its type &mdash; a
     <em>simple value type</em> (<a href="#7.1">Section 7.1,
     "Simple Value Types"</a>). Note that the distinction between
     simple and composite values is conceptual rather than
     representational. For example, <code>std::string</code>
     is a simple value type because conceptually string is a
     single value even though the representation of the string
     class may contain several data members each of which could be
     considered a value. In fact, the same value type can be
     viewed (and mapped) as both simple and composite by different
     applications.</p>

  <p>While not strictly necessary in a purely object-oriented application,
     practical considerations often require us to only load a
     subset of an object's data members or a combination of members
     from several objects. We may also need to factor out some
     computations to the relational database instead of performing
     them in the application's process. To support such requirements
     ODB distinguishes a third kind of C++ types, called <em>views</em>
     (<a href="#9">Chapter 9, "Views"</a>). An ODB view is a C++
     <code>class</code> that embodies a light-weight, read-only
     projection of one or more persistent objects or database
     tables or the result of a native SQL query execution.</p>

  <p>Understanding how all these concepts map to the relational model
     will hopefully make these distinctions clearer. In a relational
     database an object type is mapped to a table and a value type is
     mapped to one or more columns. A simple value type is mapped
     to a single column while a composite value type is mapped to
     several columns. An object is stored as a row in this
     table and a value is stored as one or more cells in this row.
     A simple value is stored in a single cell while a composite
     value occupies several cells. A view is not a persistent
     entity and it is not stored in the database. Rather, it is a
     data structure that is used to capture a single row of an SQL
     query result.</p>

  <p>Going back to the distinction between simple and composite
     values, consider a date type which has three integer
     members: year, month, and day. In one application it can be
     considered a composite value and each member will get its
     own column in a relational database. In another application
     it can be considered a simple value and stored in a single
     column as a number of days from some predefined date.</p>

  <p>Until now, we have been using the term <em>persistent class</em>
     to refer to object classes. We will continue to do so even though
     a value type can also be a class. The reason for this asymmetry
     is the subordinate nature of value types when it comes to
     database operations. Remember that values are never stored
     directly but rather as part of an object that contains them.
     As a result, when we say that we want to make a C++ class
     persistent or persist an instance of a class in the database,
     we invariably refer to an object class rather than a value
     class.</p>

  <p>Normally, you would use object types to model real-world entities,
     things that have their own identity. For example, in the
     previous chapter we created a <code>person</code> class to model
     a person, which is a real-world entity. Name and age, which we
     used as data members in our <code>person</code> class are clearly
     values. It is hard to think of age 31 or name "Joe" as having their
     own identities.</p>

  <p>A good test to determine whether something is an object or
     a value, is to consider if other objects might reference
     it. A person is clearly an object because it can be referred
     to by other objects such as a spouse, an employer, or a
     bank. On the other hand, a person's age or name is not
     something that other objects would normally refer to.</p>

  <p>Also, when an object represents a real entity, it is easy to
     choose a suitable object id. For example, for a
     person there is an established notion of an identifier
     (SSN, student id, passport number, etc). Another alternative
     is to use a person's email address as an identifier.</p>

  <p>Note, however, that these are only guidelines. There could
     be good reasons to make something that would normally be
     a value an object. Consider, for example, a database that
     stores a vast number of people. Many of the <code>person</code>
     objects in this database have the same names and surnames and
     the overhead of storing them in every object may negatively
     affect the performance. In this case, we could make the first name
     and last name each an object and only store pointers to
     these objects in the <code>person</code> class.</p>

  <p>An instance of a persistent class can be in one of two states:
    <em>transient</em> and <em>persistent</em>. A transient
    instance only has a representation in the application's
    memory and will cease to exist when the application terminates,
    unless it is explicitly made persistent. In other words, a
    transient instance of a persistent class behaves just like an
    instance of any ordinary C++ class. A persistent instance
    has a representation in both the application's memory and the
    database. A persistent instance will remain even after the
    application terminates unless and until it is explicitly
    deleted from the database.</p>

  <h2><a name="3.2">3.2 Declaring Persistent Objects and Values</a></h2>

  <p>To make a C++ class a persistent object class we declare
     it as such using the <code>db&nbsp;object</code> pragma, for
     example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
};
  </pre>

  <p>The other pragma that we often use is <code>db&nbsp;id</code>
     which designates one of the data members as an object id, for
     example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db id
  unsigned long id_;
};
  </pre>

  <p>The object id can be of a simple or composite (<a href="#7.2.1">Section
     7.2.1, "Composite Object Ids"</a>) value type. This type should be
     default-constructible. It is also possible to declare a persistent
     class without an object id, however, such a class will have limited
     functionality (<a href="#12.1.6">Section 12.1.6,
     "<code>no_id</code>"</a>).</p>

  <p>The above two pragmas are the minimum required to declare a
     persistent class with an object id. Other pragmas can be used to
     fine-tune the database-related properties of a class and its
     members (<a href="#12">Chapter 12, "ODB Pragma Language"</a>).</p>

  <p>Normally, a persistent class should define the default constructor. The
     generated database support code uses this constructor when
     instantiating an object from the persistent state. If we add the
     default constructor only for the database support code, then we
     can make it private provided we also make the <code>odb::access</code>
     class, defined in the <code>&lt;odb/core.hxx></code> header, a
     friend of this object class. For example:</p>

  <pre class="cxx">
#include &lt;odb/core.hxx>

#pragma db object
class person
{
  ...

private:
  friend class odb::access;
  person () {}
};
  </pre>

  <p>It is also possible to have an object class without the default
     constructor. However, in this case, the database operations will
     only be able to load the persistent state into an existing instance
     (<a href="#3.9">Section 3.9, "Loading Persistent Objects"</a>,
     <a href="#4.4">Section 4.4, "Query Result"</a>).</p>

  <p>The ODB compiler also needs access to the non-transient
     (<a href="#12.4.11">Section 12.4.11, "<code>transient</code>"</a>)
     data members of a persistent class. The ODB compiler can access
     such data members directly if they are public. It can also do
     so if they are private or protected and the <code>odb::access</code>
     class is declared a friend of the object type. For example:</p>

  <pre class="cxx">
#include &lt;odb/core.hxx>

#pragma db object
class person
{
  ...

private:
  friend class odb::access;
  person () {}

  #pragma db id
  unsigned long id_;

  std::string name_;
};
  </pre>

  <p>If data members are not accessible directly, then the ODB
     compiler will try to automatically find suitable accessor and
     modifier functions. To accomplish this, the ODB compiler will
     try to lookup common accessor and modifier names derived from
     the data member name. Specifically, for the <code>name_</code>
     data member in the above example, the ODB compiler will look
     for accessor functions with names: <code>get_name()</code>,
     <code>getName()</code>, <code>getname()</code>, and just
     <code>name()</code> as well as for modifier functions with
     names: <code>set_name()</code>, <code>setName()</code>,
     <code>setname()</code>, and just <code>name()</code>. You can
     also add support for custom name derivations with the
     <code>--accessor-regex</code> and <code>--modifier-regex</code>
     ODB compiler options. Refer to the
     <a href="http://www.codesynthesis.com/products/odb/doc/odb.xhtml">ODB
     Compiler Command Line Manual</a> for details on these options.
     The following example illustrates automatic accessor and modifier
     discovery:</p>

  <pre class="cxx">
#pragma db object
class person
{
public:
  person () {}

  ...

  unsigned long id () const;
  void id (unsigned long);

  const std::string&amp; get_name () const;
  std::string&amp; set_name ();

private:
  #pragma db id
  unsigned long id_; // Uses id() for access.

  std::string name_; // Uses get_name()/set_name() for access.
};
  </pre>

  <p>Finally, if a data member is not directly accessible and the
     ODB compiler was unable to discover suitable accessor and
     modifier functions, then we can provide custom accessor
     and modifier expressions using the <code>db&nbsp;get</code>
     and <code>db&nbsp;set</code> pragmas. For more information
     on custom accessor and modifier expressions refer to
     <a href="#12.4.5">Section 12.4.5,
     "<code>get</code>/<code>set</code>/<code>access</code>"</a>.</p>

  <p>You may be wondering whether we also have to declare value types
     as persistent. We don't need to do anything special for simple value
     types such as <code>int</code> or <code>std::string</code> since the
     ODB compiler knows how to map them to suitable database types and
     how to convert between the two. On the other hand, if a simple value
     is unknown to the ODB compiler then we will need to provide the
     mapping to the database type and, possibly, the code to
     convert between the two. For more information on how to achieve
     this refer to the <code>db&nbsp;type</code> pragma description
     in <a href="#12.3.1">Section 12.3.1, "<code>type</code>"</a>.</p>

  <p>Similar to object classes, composite value types have to be
     explicitly declared as persistent using the <code>db&nbsp;value</code>
     pragma, for example:</p>

  <pre class="cxx">
#pragma db value
class name
{
  ...

  std::string first_;
  std::string last_;
};
  </pre>

  <p>Note that a composite value cannot have a data member designated
     as an object id since, as we have discussed earlier, values do
     not have a notion of identity. A composite value type also doesn't
     have to define the default constructor, unless it is used as an
     element of a container. The ODB compiler uses the same mechanisms
     to access data members in composite value types as in object types.
     Composite value types are discussed in more detail in
     <a href="#7.2">Section 7.2, "Composite Value Types"</a>.</p>

  <h2><a name="3.3">3.3 Object and View Pointers</a></h2>

  <p>As we have seen in the previous chapter, some database operations
     create dynamically allocated instances of persistent classes and
     return pointers to these instances. As we will see in later chapters,
     pointers are also used to establish relationships between objects
     (<a href="#6">Chapter 6, "Relationships"</a>) as well as to cache
     persistent objects in a session (<a href="#10">Chapter 10,
     "Session"</a>). While in most cases you won't need to deal with
     pointers to views, it is possible to a obtain a dynamically allocated
     instance of a view using the <code>result_iterator::load()</code>
     function (<a href="#4.4">Section 4.4, "Query Results"</a>).</p>

  <p>By default, all these mechanisms use raw pointers to return
     objects and views as well as to pass and cache objects. This
     is normally sufficient for applications
     that have simple object lifetime requirements and do not use sessions
     or object relationships. In particular, a dynamically allocated object
     or view that is returned as a raw pointer from a database operation
     can be assigned to a smart pointer of our choice, for example
     <code>std::auto_ptr</code>,  <code>std::unique_ptr</code> from C++11, or
     <code>shared_ptr</code> from TR1, C++11, or Boost.</p>

  <p>However, to avoid any possibility of a mistake, such as forgetting
     to use a smart pointer for a returned object or view, as well as to
     simplify the use of more advanced ODB functionality, such as sessions
     and bidirectional object relationships, it is recommended that you use
     smart pointers with the sharing semantics as object pointers.
     The <code>shared_ptr</code> smart pointer from TR1, C++11, or Boost
     is a good default choice. However, if sharing is not required and
     sessions are not used, then <code>std::unique_ptr</code> or
     <code>std::auto_ptr</code> can be used just as well.</p>

  <p>ODB provides several mechanisms for changing the object or view pointer
     type. To specify the pointer type on the per object or per view basis
     we can use the <code>db&nbsp;pointer</code> pragma, for example:</p>

  <pre class="cxx">
#pragma db object pointer(std::tr1::shared_ptr)
class person
{
  ...
};
  </pre>

  <p>We can also specify the default pointer for a group of objects or
     views at the namespace level:</p>

  <pre class="cxx">
#pragma db namespace pointer(std::tr1::shared_ptr)
namespace accounting
{
  #pragma db object
  class employee
  {
    ...
  };

  #pragma db object
  class employer
  {
    ...
  };
}
  </pre>

  <p>Finally, we can use the <code>--default-pointer</code> option to specify
     the default pointer for the whole file. Refer to the
     <a href="http://www.codesynthesis.com/products/odb/doc/odb.xhtml">ODB
     Compiler Command Line Manual</a> for details on this option's argument.
     The typical usage is shown below:</p>

  <pre class="terminal">
--default-pointer std::tr1::shared_ptr
  </pre>

  <p>An alternative to this method with the same effect is to specify the
     default pointer for the  global namespace:</p>

  <pre class="terminal">
#pragma db namespace() pointer(std::tr1::shared_ptr)
  </pre>

  <p>Note that we can always override the default pointer specified
     at the namespace level or with the command line option using
     the <code>db&nbsp;pointer</code> object or view pragma. For
     example:</p>

  <pre class="cxx">
#pragma db object pointer(std::shared_ptr)
namespace accounting
{
  #pragma db object
  class employee
  {
    ...
  };

  #pragma db object pointer(std::unique_ptr)
  class employer
  {
    ...
  };
}
  </pre>

  <p>Refer to <a href="#12.1.2">Section 12.1.2, "<code>pointer</code>
     (object)"</a>, <a href="#12.2.4">Section 12.2.4, "<code>pointer</code>
     (view)"</a>, and <a href="#12.5.1">Section 12.5.1, "<code>pointer</code>
     (namespace)"</a> for more information on these mechanisms.</p>

  <p>Built-in support that is provided by the ODB runtime library allows us
     to use <code>shared_ptr</code> (TR1 or C++11),
     <code>std::unique_ptr</code> (C++11), or <code>std::auto_ptr</code> as
     pointer types. Plus, ODB profile libraries, that are available for
     commonly used frameworks and libraries (such as Boost and Qt),
     provide support for smart pointers found in these frameworks and
     libraries (<a href="#III">Part III, "Profiles"</a>). It is also
     easy to add support for our own smart pointers, as described in
     <a href="#6.4"> Section 6.4, "Using Custom Smart Pointers"</a>.</p>

  <h2><a name="3.4">3.4 Database</a></h2>

  <p>Before an application can make use of persistence services
     offered by ODB, it has to create a database class instance. A
     database instance is the representation of the place where
     the application stores its persistent objects. We create
     a database instance by instantiating one of the database
     system-specific classes. For example, <code>odb::mysql::database</code>
     would be such a class for the MySQL database system. We will
     also normally pass a database name as an argument to the
     class' constructor. The following code fragment
     shows how we can create a database instance for the MySQL
     database system:</p>

  <pre class="cxx">
#include &lt;odb/database.hxx>
#include &lt;odb/mysql/database.hxx>

auto_ptr&lt;odb::database> db (
  new odb::mysql::database (
    "test_user"     // database login name
    "test_password" // database password
    "test_database" // database name
    ));
  </pre>

  <p>The <code>odb::database</code> class is a common interface for
     all the database system-specific classes provided by ODB. You
     would normally work with the database
     instance via this interface unless there is a specific
     functionality that your application depends on and which is
     only exposed by a particular system's <code>database</code>
     class. You will need to include the <code>&lt;odb/database.hxx></code>
     header file to make this class available in your application.</p>

  <p>The <code>odb::database</code> interface defines functions for
     starting transactions and manipulating persistent objects.
     These are discussed in detail in the remainder of this chapter
     as well as the next chapter which is dedicated to the topic of
     querying the database for persistent objects. For details on the
     system-specific <code>database</code> classes, refer to
     <a href="#II">Part II, "Database Systems"</a>.</p>

  <p>Before we can persist our objects, the corresponding database schema has
     to be created in the database. The schema contains table definitions and
     other relational database artifacts that are used to store the state of
     persistent objects in the database.</p>

  <p>There are several ways to create the database schema. The easiest is to
     instruct the ODB compiler to generate the corresponding schema from the
     persistent classes (<code>--generate-schema</code> option). The ODB
     compiler can generate the schema as a standalone SQL file,
     embedded into the generated C++ code, or as a separate C++ source file
     (<code>--schema-format</code> option). If we are using the SQL file
     to create the database schema, then this file should be executed,
     normally only once, before the application is started.</p>

  <p>Alternatively, if the schema is embedded directly into the generated
     code or produced as a separate C++ source file, then we can use the
     <code>odb::schema_catalog</code> class to create it in the database
     from within our application, for example:</p>

  <pre class="cxx">
#include &lt;odb/schema-catalog.hxx>

odb::transaction t (db->begin ());
odb::schema_catalog::create_schema (*db);
t.commit ();
  </pre>

  <p>Refer to the next section for information on the
     <code>odb::transaction</code> class.  The complete version of the above
     code fragment is available in the <code>schema/embedded</code> example in
     the <code>odb-examples</code> package.</p>

  <p>The <code>odb::schema_catalog</code> class has the following interface.
     You will need to include the <code>&lt;odb/schema-catalog.hxx></code>
     header file to make this class available in your application.</p>

  <pre class="cxx">
namespace odb
{
  class schema_catalog
  {
  public:
    static void
    create_schema (database&amp;, const std::string&amp; name = "");
  };
}
  </pre>

  <p>The first argument to the <code>create_schema()</code> function
     is the database instance that we would like to create the schema in.
     The second argument is the schema name. By default, the ODB
     compiler generates all embedded schemas with the default schema
     name (empty string). However, if your application needs to
     have several separate schemas, you can use the
     <code>--schema-name</code> ODB compiler option to assign
     custom schema names and then use these names as a second argument
     to <code>create_schema()</code>. If the schema is not found,
     <code>create_schema()</code> throws the
     <code>odb::unknown_schema</code> exception. The
     <code>create_schema()</code> function should be called within
     a transaction.</p>

  <p>Finally, we can also use a custom database schema with ODB. This approach
     can work similarly to the standalone SQL file described above except that
     the database schema is hand-written or produced by another program. Or we
     could execute custom SQL statements that create the schema directly from
     our application. To map persistent classes to custom database schemas, ODB
     provides a wide range of mapping customization pragmas, such
     as <code>db&nbsp;table</code>, <code>db&nbsp;column</code>,
     and <code>db&nbsp;type</code> (<a href="#12">Chapter 12, "ODB Pragma
     Language"</a>). For sample code that shows how to perform such mapping
     for various C++ constructs, refer to the <code>schema/custom</code>
     example in the <code>odb-examples</code> package.</p>

  <h2><a name="3.5">3.5 Transactions</a></h2>

  <p>A transaction is an atomic, consistent, isolated and durable
     (ACID) unit of work. Database operations can only be
     performed within a transaction and each thread of execution
     in an application can have only one active transaction at a
     time.</p>

  <p>By atomicity we mean that when it comes to making changes to
     the database state within a transaction,
     either all the changes are applied or none at all. Consider,
     for example, a transaction that transfers funds between two
     objects representing bank accounts. If the debit function
     on the first object succeeds but the credit function on
     the second fails, the transaction is rolled back and the
     database state of the first object remains unchanged.</p>

  <p>By consistency we mean that a transaction must take all the
     objects stored in the database from one consistent state
     to another. For example, if a bank account object must
     reference a person object as its owner and we forget to
     set this reference before making the object persistent,
     the transaction will be rolled back and the database
     will remain unchanged.</p>

  <p>By isolation we mean that the changes made to the database
     state during a transaction are only visible inside this
     transaction until and unless it is committed. Using the
     above example with the bank transfer, the results of the
     debit operation performed on the first object is not
     visible to other transactions until the credit operation
     is successfully completed and the transaction is committed.</p>

  <p>By durability we mean that once the transaction is committed,
     the changes that it made to the database state are permanent
     and will survive failures such as an application crash. From
     now on the only way to alter this state is to execute and commit
     another transaction.</p>

  <p>A transaction is started by calling either the
     <code>database::begin()</code> or <code>connection::begin()</code>
     function. The returned transaction handle is stored in
     an instance of the <code>odb::transaction</code> class.
     You will need to include the <code>&lt;odb/transaction.hxx></code>
     header file to make this class available in your application.
     For example:</p>

  <pre class="cxx">
#include &lt;odb/transaction.hxx>

transaction t (db.begin ())

// Perform database operations.

t.commit ();
  </pre>

  <p>The <code>odb::transaction</code> class has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  class transaction
  {
  public:
    typedef odb::database database_type;
    typedef odb::connection connection_type;

    transaction (transaction_impl*, bool make_current = true);

    void
    reset (transaction_impl*, bool make_current = true);

    void
    commit ();

    void
    rollback ();

    database_type&amp;
    database ();

    connection_type&amp;
    connection ();

    static bool
    has_current ();

    static transaction&amp;
    current ();

    static void
    current (transaction&amp;);

    static bool
    reset_current ();
  };
}
  </pre>

  <p>The <code>commit()</code> function commits a transaction and
     <code>rollback()</code> rolls it back. Unless the transaction
     has been <em>finalized</em>, that is, explicitly committed or rolled
     back, the destructor of the <code>transaction</code> class will
     automatically roll it back when the transaction instance goes
     out of scope. If we try to commit or roll back a finalized
     transaction, the <code>odb::transaction_already_finalized</code>
     exception is thrown.</p>

  <p>The <code>database()</code> accessor returns the database this
     transaction is working on. Similarly, the <code>connection()</code>
     accessor returns the database connection this transaction is on
     (<a href="#3.6">Section 3.6, "Connections"</a>).</p>

  <p>The static <code>current()</code> accessor returns the
     currently active transaction for this thread. If there is no active
     transaction, this function throws the <code>odb::not_in_transaction</code>
     exception. We can check whether there is a transaction in effect in
     this thread using the <code>has_current()</code> static function.</p>

  <p>The <code>make_current</code> argument in the <code>transaction</code>
     constructor as well as the static <code>current()</code> modifier and
     <code>reset_current()</code> function give us additional
     control over the nomination of the currently active transaction.
     If we pass <code>false</code> as the <code>make_current</code>
     argument, then the newly created transaction will not
     automatically be made the active transaction for this
     thread. Later, we can use the static <code>current()</code> modifier
     to set this transaction as the active transaction.
     The <code>reset_current()</code> static function clears the
     currently active transaction. Together, these mechanisms
     allow for more advanced use cases, such as multiplexing
     two or more transactions on the same thread. For example:</p>

  <pre class="cxx">
transaction t1 (db1.begin ());        // Active transaction.
transaction t2 (db2.begin (), false); // Not active.

// Perform database operations on db1.

transaction::current (t2);            // Deactivate t1, activate t2.

// Perform database operations on db2.

transaction::current (t1);            // Switch back to t1.

// Perform some more database operations on db1.

t1.commit ();

transaction::current (t2);            // Switch to t2.

// Perform some more database operations on db2.

t2.commit ();
  </pre>

  <p>The <code>reset()</code> modifier allows us to reuse the same
     <code>transaction</code> instance to complete several database
     transactions. Similar to the destructor, <code>reset()</code>
     will roll the current transaction back if it hasn't been finalized.
     Here is how we can use this function to commit the current transaction
     and start a new one every time a certain number of database operations
     has been performed:</p>

  <pre class="cxx">
transaction t (db.begin ());

for (size_t i (0); i &lt; n; ++i)
{
  // Perform a database operation, such as persist an object.

  // Commit the current transaction and start a new one after
  // every 100 operations.
  //
  if (i % 100 == 0)
  {
    t.commit ();
    t.reset (db.begin ());
  }
}

t.commit ();
  </pre>

  <p>Note that in the above discussion of atomicity, consistency,
     isolation, and durability, all of those guarantees only apply
     to the object's state in the database as opposed to the object's
     state in the application's memory. It is possible to roll
     a transaction back but still have changes from this
     transaction in the application's memory. An easy way to
     avoid this potential inconsistency is to instantiate
     persistent objects only within the transaction scope. Consider,
     for example, these two implementations of the same transaction:</p>

  <pre class="cxx">
void
update_age (database&amp; db, person&amp; p)
{
  transaction t (db.begin ());

  p.age (p.age () + 1);
  db.update (p);

  t.commit ();
}
  </pre>

  <p>In the above implementation, if the <code>update()</code> call fails
     and the transaction is rolled back, the state of the <code>person</code>
     object in the database and the state of the same object in the
     application's memory will differ. Now consider an
     alternative implementation which only instantiates the
     <code>person</code> object for the duration of the transaction:</p>

  <pre class="cxx">
void
update_age (database&amp; db, unsigned long id)
{
  transaction t (db.begin ());

  auto_ptr&lt;person> p (db.load&lt;person> (id));
  p.age (p.age () + 1);
  db.update (p);

  t.commit ();
}
  </pre>

  <p>Of course, it may not always be possible to write the
     application in this style. Oftentimes we need to access and
     modify the application's state of persistent objects out of
     transactions. In this case it may make sense to try to
     roll back the changes made to the application state if
     the transaction was rolled back and the database state
     remains unchanged. One way to do this is to re-load
     the object's state from the database, for example:</p>

  <pre class="cxx">
void
update_age (database&amp; db, person&amp; p)
{
  try
  {
    transaction t (db.begin ());

    p.age (p.age () + 1);
    db.update (p);

    t.commit ();
  }
  catch (...)
  {
    transaction t (db.begin ());
    db.load (p.id (), p);
    t.commit ();

    throw;
  }
}
  </pre>

  <h2><a name="3.6">3.6 Connections</a></h2>

  <p>The <code>odb::connection</code> class represents a connection
     to the database. Normally, you wouldn't work with connections
     directly but rather let the ODB runtime obtain and release
     connections as needed. However, certain use cases may require
     obtaining a connection manually. For completeness, this section
     describes the <code>connection</code> class and discusses some
     of its use cases. You may want to skip this section if you are
     reading through the manual for the first time.</p>

  <p>Similar to <code>odb::database</code>, the <code>odb::connection</code>
     class is a common interface for all the database system-specific
     classes provided by ODB. For details on the system-specific
     <code>connection</code> classes, refer to <a href="#II">Part II,
     "Database Systems"</a>.</p>

  <p>To make the <code>odb::connection</code> class available in your
     application you will need to include the <code>&lt;odb/connection.hxx></code>
     header file. The <code>odb::connection</code> class has the
     following interface:</p>

  <pre class="cxx">
namespace odb
{
  class connection
  {
  public:
    typedef odb::database database_type;

    transaction
    begin () = 0;

    unsigned long long
    execute (const char* statement);

    unsigned long long
    execute (const std::string&amp; statement);

    unsigned long long
    execute (const char* statement, std::size_t length);

    database_type&amp;
    database ();
  };

  typedef details::shared_ptr&lt;connection> connection_ptr;
}
  </pre>

  <p>The <code>begin()</code> function is used to start a transaction
     on the connection. The <code>execute()</code> functions allow
     us to execute native database statements on the connection.
     Their semantics are equivalent to the <code>database::execute()</code>
     functions (<a href="#3.12">Section 3.12, "Executing Native SQL
     Statements"</a>) except that they can be legally called outside
     a transaction. Finally, the <code>database()</code> accessor
     returns a reference to the <code>odb::database</code> instance
     to which this connection corresponds.</p>

  <p>To obtain a connection we call the <code>database::connection()</code>
     function. The connection is returned as <code>odb::connection_ptr</code>,
     which is an implementation-specific smart pointer with the shared
     pointer semantics. This, in particular, means that the connection
     pointer can be copied and returned from functions. Once the last
     instance of <code>connection_ptr</code> pointing to the same
     connection is destroyed, the connection is returned to the
     <code>database</code> instance. The following code fragment
     shows how we can obtain, use, and release a connection:</p>

  <pre class="cxx">
using namespace odb::core;

database&amp; db = ...
connection_ptr c (db.connection ());

// Temporarily disable foreign key constraints.
//
c->execute ("SET FOREIGN_KEY_CHECKS = 0");

// Start a transaction on this connection.
//
transaction t (c->begin ());
...
t.commit ();

// Restore foreign key constraints.
//
c->execute ("SET FOREIGN_KEY_CHECKS = 1");

// When 'c' goes out of scope, the connection is returned to 'db'.
  </pre>

  <p>Some of the use cases which may require direct manipulation of
     connections include out-of-transaction statement execution,
     such as the execution of connection configuration statements,
     the implementation of a connection-per-thread policy, and making
     sure that a set of transactions is executed on the same
     connection.</p>

  <h2><a name="3.7">3.7 Error Handling and Recovery</a></h2>

  <p>ODB uses C++ exceptions to report database operation errors. Most
     ODB exceptions signify <em>hard</em> errors or errors that cannot
     be corrected without some intervention from the application.
     For example, if we try to load an object with an unknown object
     id, the <code>odb::object_not_persistent</code> exception is
     thrown. Our application may be able to correct this error, for
     instance, by obtaining a valid object id and trying again.
     The hard errors and corresponding ODB exceptions that can be
     thrown by each database function are described in the remainder
     of this chapter with <a href="#3.14">Section 3.14, "ODB Exceptions"</a>
     providing a quick reference for all the ODB exceptions.</p>

  <p>The second group of ODB exceptions signify <em>soft</em> or
     <em>recoverable</em> errors. Such errors are temporary
     failures which normally can be corrected by simply re-executing
     the transaction. ODB defines three such exceptions:
     <code>odb::connection_lost</code>, <code>odb::timeout</code>,
     and <code>odb::deadlock</code>. All recoverable ODB exceptions
     are derived from the common <code>odb::recoverable</code> base
     exception which can be used to handle all the recoverable
     conditions with a single <code>catch</code> block.</p>

  <p>The <code>odb::connection_lost</code> exception is thrown if
     a connection to the database is lost in the middle of
     a transaction. In this situation the transaction is aborted but
     it can be re-tried without any changes. Similarly, the
     <code>odb::timeout</code> exception is thrown if one of the
     database operations or the whole transaction has timed out.
     Again, in this case the transaction is aborted but can be
     re-tried as is.</p>

  <p>If two or more transactions access or modify more than one object
     and are executed concurrently by different applications or by
     different threads within the same application, then it is possible
     that these transactions will try to access objects in an incompatible
     order and deadlock. The canonical example of a deadlock are
     two transactions in which the first has modified <code>object1</code>
     and is waiting for the second transaction to commit its changes to
     <code>object2</code> so that it can also update <code>object2</code>.
     At the same time the second transaction has modified <code>object2</code>
     and is waiting for the first transaction to commit its changes to
     <code>object1</code> because it also needs to modify <code>object1</code>.
     As a result, none of the two transactions can be completed.</p>

  <p>The database system detects such situations and automatically
     aborts the waiting operation in one of the deadlocked transactions.
     In ODB this translates to the <code>odb::deadlock</code>
     recoverable exception being thrown from one of the database functions.</p>

  <p>The following code fragment shows how to handle the recoverable
     exceptions by restarting the affected transaction:</p>

  <pre class="cxx">
const unsigned short max_retries = 5;

for (unsigned short retry_count (0); ; retry_count++)
{
  try
  {
    transaction t (db.begin ());

    ...

    t.commit ();
    break;
  }
  catch (const odb::recoverable&amp; e)
  {
    if (retry_count > max_retries)
      throw retry_limit_exceeded (e.what ());
    else
      continue;
  }
}
  </pre>

  <h2><a name="3.8">3.8 Making Objects Persistent</a></h2>

  <p>A newly created instance of a persistent class is transient.
     We use the <code>database::persist()</code> function template
     to make a transient instance persistent. This function has four
     overloaded versions with the following signatures:</p>

  <pre class="cxx">
  template &lt;typename T>
  typename object_traits&lt;T>::id_type
  persist (const T&amp; object);

  template &lt;typename T>
  typename object_traits&lt;T>::id_type
  persist (const object_traits&lt;T>::const_pointer_type&amp; object);

  template &lt;typename T>
  typename object_traits&lt;T>::id_type
  persist (T&amp; object);

  template &lt;typename T>
  typename object_traits&lt;T>::id_type
  persist (const object_traits&lt;T>::pointer_type&amp; object);
  </pre>

  <p>Here and in the rest of the manual,
     <code>object_traits&lt;T>::pointer_type</code> and
     <code>object_traits&lt;T>::const_pointer_type</code> denote the
     unrestricted and constant object pointer types (<a href="#3.3">Section
     3.3, "Object and View Pointers"</a>), respectively.
     Similarly, <code>object_traits&lt;T>::id_type</code> denotes the object
     id type. The <code>odb::object_traits</code> template is part of the
     database support code generated by the ODB compiler.</p>

  <p>The first <code>persist()</code> function expects a constant reference
     to an instance being persisted. The second function expects a constant
     object pointer. Both of these functions can only be used on objects with
     application-assigned object ids (<a href="#12.4.2">Section 12.4.2,
     "<code>auto</code>"</a>).</p>

  <p>The second and third <code>persist()</code> functions are similar to the
     first two except that they operate on unrestricted references and object
     pointers. If the identifier of the object being persisted is assigned
     by the database, these functions update the id member of the passed
     instance with the assigned value. All four functions return the object
     id of the newly persisted object.</p>

  <p>If the database already contains an object of this type with this
     identifier, the <code>persist()</code> functions throw the
     <code>odb::object_already_persistent</code> exception. This should
     never happen for database-assigned object ids as long as the
     number of objects persisted does not exceed the value space of
     the id type.</p>

  <p>When calling the <code>persist()</code> functions, we don't need to
     explicitly specify the template type since it will be automatically
     deduced from the argument being passed. The following example shows
     how we can call these functions:</p>

  <pre class="cxx">
person john ("John", "Doe", 33);
shared_ptr&lt;person> jane (new person ("Jane", "Doe", 32));

transaction t (db.begin ());

db.persist (john);
unsigned long jane_id (db.persist (jane));

t.commit ();

cerr &lt;&lt; "Jane's id: " &lt;&lt; jane_id &lt;&lt; endl;
  </pre>

  <p>Notice that in the above code fragment we have created instances
     that we were planning to make persistent before starting the
     transaction. Likewise, we printed Jane's id after we have committed
     the transaction. As a general rule, you should avoid performing
     operations within the transaction scope that can be performed
     before the transaction starts or after it terminates. An active
     transaction consumes both your application's resources, such as
     a database connection, as well as the database server's
     resources, such as object locks. By following the above rule you
     make sure these resources are released and made available to other
     threads in your application and to other applications as soon as
     possible.</p>

  <h2><a name="3.9">3.9 Loading Persistent Objects</a></h2>

  <p>Once an object is made persistent, and you know its object id, it
     can be loaded by the application using the <code>database::load()</code>
     function template. This function has two overloaded versions with
     the following signatures:</p>

  <pre class="cxx">
  template &lt;typename T>
  typename object_traits&lt;T>::pointer_type
  load (const typename object_traits&lt;T>::id_type&amp; id);

  template &lt;typename T>
  void
  load (const typename object_traits&lt;T>::id_type&amp; id, T&amp; object);
  </pre>

  <p>Given an object id, the first function allocates a new instance
     of the object class in the dynamic memory, loads its state from
     the database, and returns the pointer to the new instance. The
     second function loads the object's state into an existing instance.
     Both functions throw <code>odb::object_not_persistent</code> if
     there is no object of this type with this id in the database.</p>

  <p>When we call the first <code>load()</code> function, we need to
     explicitly specify the object type. We don't need to do this for
     the second function because the object type will be automatically
     deduced from the second argument, for example:</p>

  <pre class="cxx">
transaction t (db.begin ());

auto_ptr&lt;person> jane (db.load&lt;person> (jane_id));

db.load (jane_id, *jane);

t.commit ();
  </pre>

  <p>In certain situations it may be necessary to reload the state
     of an object from the database. While this is easy to achieve
     using the second <code>load()</code> function, ODB provides
     the <code>database::reload()</code> function template that
     has a number of special properties. This function has two
     overloaded versions with the following signatures:</p>

  <pre class="cxx">
  template &lt;typename T>
  void
  reload (T&amp; object);

  template &lt;typename T>
  void
  reload (const object_traits&lt;T>::pointer_type&amp; object);
  </pre>

  <p>The first <code>reload()</code> function expects an object
     reference, while the second expects an object pointer. Both
     functions expect the id member in the passed object to contain
     a valid object identifier and, similar to <code>load()</code>,
     both will throw <code>odb::object_not_persistent</code> if
     there is no object of this type with this id in the database.</p>

  <p>The first special property of <code>reload()</code>
     compared to the <code>load()</code> function is that it
     does not interact with the session's object cache
     (<a href="#10.1">Section 10.1, "Object Cache"</a>). That is, if
     the object being reloaded is already in the cache, then it will
     remain there after <code>reload()</code> returns. Similarly, if the
     object is not in the cache, then <code>reload()</code> won't
     put it there either.</p>

  <p>The second special property of the <code>reload()</code> function
     only manifests itself when operating on an object with the optimistic
     concurrency model. In this case, if the states of the object
     in the application memory and in the database are the same, then
     no reloading will occur. For more information on optimistic
     concurrency, refer to <a href="#11">Chapter 11, "Optimistic
     Concurrency"</a>.</p>

  <p>If we don't know for sure whether an object with a given id
     is persistent, we can use the <code>find()</code> function
     instead of <code>load()</code>, for example:</p>

  <pre class="cxx">
  template &lt;typename T>
  typename object_traits&lt;T>::pointer_type
  find (const typename object_traits&lt;T>::id_type&amp; id);

  template &lt;typename T>
  bool
  find (const typename object_traits&lt;T>::id_type&amp; id, T&amp; object);
  </pre>

  <p>If an object with this id is not found in the database, the first
     <code>find()</code> function returns a <code>NULL</code> pointer
     while the second function leaves the passed instance unmodified and
     returns <code>false</code>.</p>

  <p>If we don't know the object id, then we can use queries to
     find the object (or objects) matching some criteria
     (<a href="#4">Chapter 4, "Querying the Database"</a>). Note,
     however, that loading an object's state using its
     identifier can be significantly faster than executing a query.</p>


  <h2><a name="3.10">3.10 Updating Persistent Objects</a></h2>

  <p>If a persistent object has been modified, we can store the updated
     state in the database using the <code>database::update()</code>
     function template. This function has three overloaded versions with
     the following signatures:</p>

  <pre class="cxx">
  template &lt;typename T>
  void
  update (const T&amp; object);

  template &lt;typename T>
  void
  update (const object_traits&lt;T>::const_pointer_type&amp; object);

  template &lt;typename T>
  void
  update (const object_traits&lt;T>::pointer_type&amp; object);
  </pre>

  <p>The first <code>update()</code> function expects an object reference,
     while the other two expect object pointers. If the object passed to
     one of these functions does not exist in the database,
     <code>update()</code> throws the <code>odb::object_not_persistent</code>
     exception (but see a note on optimistic concurrency below).</p>

  <p>Below is an example of the funds transfer that we talked about
     in the earlier section on transactions. It uses the hypothetical
     <code>bank_account</code> persistent class:</p>

  <pre class="cxx">
void
transfer (database&amp; db,
          unsigned long from_acc,
          unsigned long to_acc,
          unsigned int amount)
{
  bank_account from, to;

  transaction t (db.begin ());

  db.load (from_acc, from);

  if (from.balance () &lt; amount)
    throw insufficient_funds ();

  db.load (to_acc, to);

  to.balance (to.balance () + amount);
  from.balance (from.balance () - amount);

  db.update (to);
  db.update (from);

  t.commit ();
}
  </pre>

  <p>The same can be accomplished using dynamically allocated objects
     and the <code>update()</code> function with object pointer argument,
     for example:</p>

  <pre class="cxx">
transaction t (db.begin ());

shared_ptr&lt;bank_account> from (db.load&lt;bank_account> (from_acc));

if (from->balance () &lt; amount)
  throw insufficient_funds ();

shared_ptr&lt;bank_account> to (db.load&lt;bank_account> (to_acc));

to->balance (to->balance () + amount);
from->balance (from->balance () - amount);

db.update (to);
db.update (from);

t.commit ();
  </pre>

  <p>If any of the <code>update()</code> functions are operating on a
     persistent class with the optimistic concurrency model, then they will
     throw the <code>odb::object_changed</code> exception if the state of the
     object in the database has changed since it was last loaded into the
     application memory. Furthermore, for such classes, <code>update()</code>
     no longer throws the <code>object_not_persistent</code> exception if
     there is no such object in the database. Instead, this condition is
     treated as a change of object state and <code>object_changed</code>
     is thrown instead. For a more detailed discussion of optimistic
     concurrency, refer to <a href="#11">Chapter 11, "Optimistic
     Concurrency"</a>.</p>

  <p>In ODB, persistent classes, composite value types, as well as individual
     data members can be declared read-only (see <a href="#12.1.4">Section
     12.1.4, "<code>readonly</code> (object)"</a>, <a href="#12.3.6">Section
     12.3.6, "<code>readonly</code> (composite value)"</a>, and
     <a href="#12.4.12">Section 12.4.12, "<code>readonly</code>
     (data member)"</a>).</p>

  <p>If an individual data member is declared read-only, then
     any changes to this member will be ignored when updating the database
     state of an object using any of the above <code>update()</code>
     functions. A <code>const</code> data member is automatically treated
     as read-only. If a composite value is declared read-only then all its
     data members are treated as read-only.</p>

  <p>If the whole object is declared read-only then the database state of
     this object cannot be changed. Calling any of the above
     <code>update()</code> functions for such an object will result in a
     compile-time error.</p>

  <h2><a name="3.11">3.11 Deleting Persistent Objects</a></h2>

  <p>To delete a persistent object's state from the database we use the
     <code>database::erase()</code> or <code>database::erase_query()</code>
     function templates. If the application still has an instance of the
     erased object, this instance becomes transient. The <code>erase()</code>
     function has the following overloaded versions:</p>

  <pre class="cxx">
  template &lt;typename T>
  void
  erase (const T&amp; object);

  template &lt;typename T>
  void
  erase (const object_traits&lt;T>::const_pointer_type&amp; object);

  template &lt;typename T>
  void
  erase (const object_traits&lt;T>::pointer_type&amp; object);

  template &lt;typename T>
  void
  erase (const typename object_traits&lt;T>::id_type&amp; id);
  </pre>

  <p>The first <code>erase()</code> function uses an object itself, in
     the form of an object reference, to delete its state from the
     database. The next two functions accomplish the same result but using
     object pointers. Note that all three functions leave the passed
     object unchanged. It simply becomes transient. The last function
     uses the object id to identify the object to be deleted. If the
     object does not exist in the database, then all four functions
     throw the <code>odb::object_not_persistent</code> exception
     (but see a note on optimistic concurrency below).</p>

  <p>We have to specify the object type when calling the last
     <code>erase()</code> function. The same is unnecessary for the
     first three functions because the object type will be automatically
     deduced from their arguments. The following example shows how we
     can call these functions:</p>

  <pre class="cxx">
person&amp; john = ...
shared_ptr&lt;jane> jane = ...
unsigned long joe_id = ...

transaction t (db.begin ());

db.erase (john);
db.erase (jane);
db.erase&lt;person> (joe_id);

t.commit ();
  </pre>

  <p>If any of the <code>erase()</code> functions except the last one are
     operating on a persistent class with the optimistic concurrency
     model, then they will throw the <code>odb::object_changed</code> exception
     if the state of the object in the database has changed since it was
     last loaded into the application memory. Furthermore, for such
     classes, <code>erase()</code> no longer throws the
     <code>object_not_persistent</code> exception if there is no such
     object in the database. Instead, this condition is treated as a
     change of object state and <code>object_changed</code> is thrown
     instead. For a more detailed discussion of optimistic concurrency,
     refer to <a href="#11">Chapter 11, "Optimistic Concurrency"</a>.</p>

  <p>The <code>erase_query()</code> function allows us to delete
     the state of multiple objects matching certain criteria. It uses
     the query expression of the <code>database::query()</code> function
     (<a href="#4">Chapter 4, "Querying the Database"</a>) and,
     because the ODB query facility is optional, it is only available
     if the <code>--generate-query</code> ODB compiler option was
     specified. The <code>erase_query()</code> function has the
     following overloaded versions:</p>

  <pre class="cxx">
  template &lt;typename T>
  unsigned long long
  erase_query ();

  template &lt;typename T>
  unsigned long long
  erase_query (const odb::query&lt;T>&amp;);
  </pre>

  <p>The first <code>erase_query()</code> function is used to delete
     the state of all the persistent objects of a given type stored
     in the database. The second function uses the passed query instance
     to only delete the state of objects matching the query criteria.
     Both functions return the number of objects erased. When calling
     the <code>erase_query()</code> function, we have to explicitly
     specify the object type we are erasing. For example:</p>

  <pre class="cxx">
typedef odb::query&lt;person> query;

transaction t (db.begin ());

db.erase_query&lt;person> (query::last == "Doe" &amp;&amp; query::age &lt; 30);

t.commit ();
  </pre>

  <p>Unlike the <code>query()</code> function, when calling
     <code>erase_query()</code> we cannot use members from pointed-to
     objects in the query expression. However, we can still use
     a member corresponding to a pointer as an ordinary object
     member that has the id type of the pointed-to object
     (<a href="#6">Chapter 6, "Relationships"</a>). This allows us
     to compare object ids as well as test the pointer for
     <code>NULL</code>. As an example, the following transaction
     makes sure that all the <code>employee</code> objects that
     reference an <code>employer</code> object that is about to
     be deleted are deleted as well. Here we assume that the
     <code>employee</code> class contains a pointer to the
     <code>employer</code> class. Refer to <a href="#6">Chapter 6,
     "Relationships"</a> for complete definitions of these
     classes.</p>

  <pre class="cxx">
typedef odb::query&lt;employee> query;

transaction t (db.begin ());

employer&amp; e = ... // Employer object to be deleted.

db.erase_query&lt;employee> (query::employer == e.id ());
db.erase (e);

t.commit ();
  </pre>


  <h2><a name="3.12">3.12 Executing Native SQL Statements</a></h2>

  <p>In some situations we may need to execute native SQL statements
     instead of using the object-oriented database API described above.
     For example, we may want to tune the database schema generated
     by the ODB compiler or take advantage of a feature that is
     specific to the database system we are using. The
     <code>database::execute()</code> function, which has three
     overloaded versions, provides this functionality:</p>

  <pre class="cxx">
  unsigned long long
  execute (const char* statement);

  unsigned long long
  execute (const std::string&amp; statement);

  unsigned long long
  execute (const char* statement, std::size_t length)
  </pre>

  <p>The first <code>execute()</code> function expects the SQL statement
     as a zero-terminated C-string. The last version expects the explicit
     statement length as the second argument and the statement itself
     may contain <code>'\0'</code> characters, for example, to represent
     binary data, if the database system supports it. All three functions
     return the number of rows that were affected by the statement. For
     example:</p>

  <pre class="cxx">
transaction t (db.begin ());

db.execute ("DROP TABLE test");
db.execute ("CREATE TABLE test (n INT PRIMARY KEY)");

t.commit ();
  </pre>

  <p>While these functions must always be called within a transaction,
     it may be necessary to execute a native statement outside a
     transaction. This can be done using the
     <code>connection::execute()</code> functions as described in
     <a href="#3.6">Section 3.6, "Connections"</a>.</p>

  <h2><a name="3.13">3.13 Tracing SQL Statement Execution</a></h2>

  <p>Oftentimes it is useful to understand what SQL statements are
     executed as a result of high-level database operations. For
     example, we can use this information to figure out why certain
     transactions don't produce desired results or why they take
     longer than expected.</p>

  <p>While this information can usually be obtained from the database
     logs, ODB provides an application-side SQL statement tracing
     support that is both more convenient and finer-grained.
     For example, in a typical situation that calls for tracing
     we would like to see the SQL statements executed as a result
     of a specific transaction. While it may be difficult to
     extract such a subset of statements from the database logs,
     it is easy to achieve with ODB tracing support:</p>

  <pre class="cxx">
transaction t (db.begin ());
t.tracer (stderr_tracer);

...

t.commit ();
  </pre>

  <p>ODB allows us to specify a tracer on the database, connection,
     and transaction levels. If specified for the database, then
     all the statements executed on this database will be traced.
     On the other hand, if a tracer is specified for the
     connection, then only the SQL statements executed on this
     connection will be traced. Similarly, a tracer specified
     for a transaction will only show statements that are
     executed as part of this transaction. All three classes
     (<code>odb::database</code>, <code>odb::connection</code>,
      and <code>odb::transaction</code>) provide the identical
     tracing API:</p>

  <pre class="cxx">
  void
  tracer (odb::tracer&amp;);

  void
  tracer (odb::tracer*);

  odb::tracer*
  tracer () const;
  </pre>

  <p>The first two <code>tracer()</code> functions allow us to set
     the tracer object with the second one allowing us to clear the
     current tracer by passing a <code>NULL</code> pointer. The
     last <code>tracer()</code> function allows us to get the
     current tracer object. It returns a <code>NULL</code> pointer
     if there is no tracer in effect. Note that the tracing API
     does not manage the lifetime of the tracer object. The tracer
     should be valid for as long as it is being used. Furthermore,
     the tracing API is not thread-safe. Trying to set a tracer
     from multiple threads simultaneously will result in
     undefined behavior.</p>

  <p>The <code>odb::tracer</code> class defines a callback interface
     that can be used to create custom tracer implementations. The
     <code>odb::stderr_tracer</code> is a built-in tracer implementation
     provided by the ODB runtime. It prints each executed SQL statement
     to the standard error stream.</p>

  <p>The <code>odb::tracer</code> class is defined in the
     <code>&lt;odb/tracer.hxx></code> header file which you will need to
     include in order to make this class available in your application.
     The <code>odb::tracer</code> interface provided the following
     callback functions:</p>

  <pre class="cxx">
namespace odb
{
  class tracer
  {
  public:
    virtual void
    prepare (connection&amp;, const statement&amp;);

    virtual void
    execute (connection&amp;, const statement&amp;);

    virtual void
    execute (connection&amp;, const char* statement) = 0;

    virtual void
    deallocate (connection&amp;, const statement&amp;);
  };
}
  </pre>

  <p>The <code>prepare()</code> and <code>deallocate()</code> functions
     are called when a prepared statement is created and destroyed,
     respectively. The first <code>execute()</code> function is called
     when a prepared statement is executed while the second one is called
     when a normal statement is executed. The default implementations
     for the <code>prepare()</code> and <code>deallocate()</code>
     functions do nothing while the first <code>execute()</code> function
     calls the second one passing the statement text as the second
     argument. As a result, if all you are interested in are the
     SQL statements being executed, then you only need to override the
     second <code>execute()</code> function.</p>

  <p>In addition to the common <code>odb::tracer</code> interface,
     each database runtime provides a database-specific version
     as <code>odb::&lt;database>::tracer</code>. It has exactly
     the same interface as the common version except that the
     <code>connection</code> and <code>statement</code> types
     are database-specific, which gives us access to additional,
     database-specific information.</p>

  <p>As an example, consider a more elaborate, PostgreSQL-specific
     tracer implementation. Here we rely on the fact that the PostgreSQL
     ODB runtime uses names to identify prepared statements and this
     information can be obtained from the <code>odb::pgsql::statement</code>
     object:</p>

  <pre class="cxx">
#include &lt;odb/pgsql/tracer.hxx>
#include &lt;odb/pgsql/database.hxx>
#include &lt;odb/pgsql/connection.hxx>
#include &lt;odb/pgsql/statement.hxx>

class pgsql_tracer: public odb::pgsql::tracer
{
  virtual void
  prepare (odb::pgsql::connection&amp; c, const odb::pgsql::statement&amp; s)
  {
    cerr &lt;&lt; c.database ().db () &lt;&lt; ": PREPARE " &lt;&lt; s.name ()
         &lt;&lt; " AS " &lt;&lt; s.text () &lt;&lt; endl;
  }

  virtual void
  execute (odb::pgsql::connection&amp; c, const odb::pgsql::statement&amp; s)
  {
    cerr &lt;&lt; c.database ().db () &lt;&lt; ": EXECUTE " &lt;&lt; s.name () &lt;&lt; endl;
  }

  virtual void
  execute (odb::pgsql::connection&amp; c, const char* statement)
  {
    cerr &lt;&lt; c.database ().db () &lt;&lt; ": " &lt;&lt; statement &lt;&lt; endl;
  }

  virtual void
  deallocate (odb::pgsql::connection&amp; c, const odb::pgsql::statement&amp; s)
  {
    cerr &lt;&lt; c.database ().db () &lt;&lt; ": DEALLOCATE " &lt;&lt; s.name () &lt;&lt; endl;
  }
};
  </pre>

  <p>Note also that you can only set a database-specific tracer object
     using a database-specific database instance, for example:</p>

  <pre class="cxx">
pgsql_tracer tracer;

odb::database&amp; db = ...;
db.tracer (tracer); // Compile error.

odb::pgsql::database&amp; db = ...;
db.tracer (tracer); // Ok.
  </pre>

  <h2><a name="3.14">3.14 ODB Exceptions</a></h2>

  <p>In the previous sections we have already mentioned some of the
     exceptions that can be thrown by the database functions. In this
     section we will discuss the ODB exception hierarchy and document
     all the exceptions that can be thrown by the common ODB
     runtime.</p>

  <p>The root of the ODB exception hierarchy is the abstract
     <code>odb::exception</code> class. This class derives
     from <code>std::exception</code> and has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  struct exception: std::exception
  {
    virtual const char*
    what () const throw () = 0;
  };
}
  </pre>

  <p>Catching this exception guarantees that we will catch all the
     exceptions thrown by ODB. The <code>what()</code> function
     returns a human-readable description of the condition that
     triggered the exception.</p>

  <p>The concrete exceptions that can be thrown by ODB are presented
     in the following listing:</p>

  <pre class="cxx">
namespace odb
{
  struct null_pointer: exception
  {
    virtual const char*
    what () const throw ();
  };

  // Transaction exceptions.
  //
  struct already_in_transaction: exception
  {
    virtual const char*
    what () const throw ();
  };

  struct not_in_transaction: exception
  {
    virtual const char*
    what () const throw ();
  };

  struct transaction_already_finalized: exception
  {
    virtual const char*
    what () const throw ();
  };

  // Session exceptions.
  //
  struct already_in_session: exception
  {
    virtual const char*
    what () const throw ();
  };

  struct not_in_session: exception
  {
    virtual const char*
    what () const throw ();
  };

  struct session_required: exception
  {
    virtual const char*
    what () const throw ();
  };

  // Database operations exceptions.
  //
  struct recoverable: exception
  {
  };

  struct connection_lost: recoverable
  {
    virtual const char*
    what () const throw ();
  };

  struct timeout: recoverable
  {
    virtual const char*
    what () const throw ();
  };

  struct deadlock: recoverable
  {
    virtual const char*
    what () const throw ();
  };

  struct object_not_persistent: exception
  {
    virtual const char*
    what () const throw ();
  };

  struct object_already_persistent: exception
  {
    virtual const char*
    what () const throw ();
  };

  struct object_changed: exception
  {
    virtual const char*
    what () const throw ();
  };

  struct result_not_cached: exception
  {
    virtual const char*
    what () const throw ();
  };

  struct database_exception: exception
  {
  };

  // Polymorphism support exceptions.
  //
  struct abstract_class: exception
  {
    virtual const char*
    what () const throw ();
  };

  struct no_type_info: exception
  {
    virtual const char*
    what () const throw ();
  };

  // Schema catalog exceptions.
  //
  struct unknown_schema: exception
  {
    const std::string&amp;
    name () const;

    virtual const char*
    what () const throw ();
  };
}
  </pre>

  <p>The <code>null_pointer</code> exception is thrown when a
     pointer to a persistent object declared non-<code>NULL</code>
     with the <code>db&nbsp;not_null</code> or
     <code>db&nbsp;value_not_null</code> pragma has the <code>NULL</code>
     value. See <a href="#6">Chapter 6, "Relationships"</a> for details.</p>

  <p>The next three exceptions (<code>already_in_transaction</code>,
     <code>not_in_transaction</code>,
     <code>transaction_already_finalized</code>) are thrown by the
     <code>odb::transaction</code> class and are discussed
     in <a href="#3.5">Section 3.5, "Transactions"</a>.</p>

  <p>The next two exceptions (<code>already_in_session</code>, and
     <code>not_in_session</code>) are thrown by the <code>odb::session</code>
     class and are discussed in <a href="#10">Chapter 10, "Session"</a>.</p>

  <p>The <code>session_required</code> exception is thrown when ODB detects
     that correctly loading a bidirectional object relationship requires a
     session but one is not used. See <a href="#6.2">Section 6.2,
     "Bidirectional Relationships"</a> for more information on this
     exception.</p>

  <p>The <code>recoverable</code> exception serves as a common base
     for all the recoverable exceptions, which are: <code>connection_lost</code>,
     <code>timeout</code>, and <code>deadlock</code>. The
     <code>connection_lost</code> exception is thrown when a connection
     to the database is lost. Similarly, the <code>timeout</code> exception
     is thrown if one of the database operations or the whole transaction
     has timed out. The <code>deadlock</code> exception is thrown when a
     transaction deadlock is detected by the database system. These
     exceptions can be thrown by any database function. See
     <a href="#3.7">Section 3.7, "Error Handling and Recovery"</a>
     for details.</p>

  <p>The <code>object_already_persistent</code> exception is thrown
     by the <code>persist()</code> database function. See
     <a href="#3.8">Section 3.8, "Making Objects Persistent"</a>
     for details.</p>

  <p>The <code>object_not_persistent</code> exception is thrown
     by the <code>load()</code>, <code>update()</code>, and
     <code>erase()</code> database functions. Refer to
     <a href="#3.9">Section 3.9, "Loading Persistent Objects"</a>,
     <a href="#3.10">Section 3.10, "Updating Persistent Objects"</a>, and
     <a href="#3.11">Section 3.11, "Deleting Persistent Objects"</a> for
     more information.</p>

  <p>The <code>object_changed</code> exception is thrown
     by the <code>update()</code> database function and certain
     <code>erase()</code> database functions when
     operating on objects with the optimistic concurrency model. See
     <a href="#11">Chapter 11, "Optimistic Concurrency"</a> for details.</p>

  <p>The <code>result_not_cached</code> exception is thrown by
     the query result class. Refer to <a href="#4.4">Section 4.4,
     "Query Result"</a> for details.</p>

  <p>The <code>database_exception</code> exception is a base class for all
     database system-specific exceptions that are thrown by the
     database system-specific runtime library. Refer to <a href="#II">Part
     II, "Database Systems"</a> for more information.</p>

  <p>The <code>abstract_class</code> exception is thrown by the database
     functions when we attempt to persist, update, load, or erase an
     instance of a polymorphic abstract class. For more information
     on abstract classes, refer to <a href="#12.1.3">Section 12.1.3,
     "<code>abstract</code>"</a>.</p>

  <p>The <code>no_type_info</code> exception is thrown by the database
     functions when we attempt to persist, update, load, or erase an
     instance of a polymorphic class for which no type information
     is present in the application. This normally means that the
     generated database support code for this class has not been
     linked (or dynamically loaded) into the application or the
     discriminator value has not been mapped to a persistent
     class. For more information on polymorphism support, refer to
     <a href="#8.2">Section 8.2, "Polymorphism Inheritance"</a>.</p>

  <p>The <code>unknown_schema</code> exception is thrown by the
     <code>odb::schema_catalog</code> class if a schema with the specified
     name is not found. Refer to <a href="#3.4">Section 3.4, "Database"</a>
     for details.</p>

  <p>The <code>odb::exception</code> class is defined in the
     <code>&lt;odb/exception.hxx></code> header file. All the
     concrete ODB exceptions are defined in
     <code>&lt;odb/exceptions.hxx></code> which also includes
     <code>&lt;odb/exception.hxx></code>. Normally you don't
     need to include either of these two headers because they are
     automatically included by <code>&lt;odb/database.hxx></code>.
     However, if the source file that handles ODB exceptions
     does not include <code>&lt;odb/database.hxx></code>, then
     you will need to explicitly include one of these headers.</p>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="4">4 Querying the Database</a></h1>

  <p>If we don't know the identifiers of the objects that we are looking
     for, we can use queries to search the database for objects matching
     certain criteria. The ODB query facility is optional and we need to
     explicitly request the generation of the necessary database support
     code with the <code>--generate-query</code> ODB compiler option.</p>

  <p>ODB provides a flexible query API that offers two distinct levels of
     abstraction from the database system query language such as SQL.
     At the high level we are presented with an easy to use yet powerful
     object-oriented query language, called ODB Query Language. This
     query language is modeled after and is integrated into C++ allowing
     us to write expressive and safe queries that look and feel like
     ordinary C++. We have already seen examples of these queries in the
     introductory chapters. Below is another, more interesting, example:</p>

  <pre class="cxx">
  typedef odb::query&lt;person> query;
  typedef odb::result&lt;person> result;

  unsigned short age;
  query q (query::first == "John" &amp;&amp; query::age &lt; query::_ref (age));

  for (age = 10; age &lt; 100; age += 10)
  {
    result r (db.query&lt;person> (q));
    ...
  }
  </pre>

  <p>At the low level, queries can be written as predicates using
     the database system-native query language such as the
     <code>WHERE</code> predicate from the SQL <code>SELECT</code>
     statement. This language will be referred to as native query
     language. At this level ODB still takes care of converting
     query parameters from C++ to the database system format. Below
     is the re-implementation of the above example using SQL as
     the native query language:</p>

  <pre class="cxx">
  query q ("first = 'John' AND age = " + query::_ref (age));
  </pre>

  <p>Note that at this level we lose the static typing of
     query expressions. For example, if we wrote something like this:</p>

  <pre class="cxx">
  query q (query::first == 123 &amp;&amp; query::agee &lt; query::_ref (age));
  </pre>

  <p>We would get two errors during the C++ compilation. The first would
     indicate that we cannot compare <code>query::first</code> to an
     integer and the second would pick the misspelling in
     <code>query::agee</code>. On the other hand, if we wrote something
     like this:</p>

  <pre class="cxx">
  query q ("first = 123 AND agee = " + query::_ref (age));
  </pre>

  <p>It would compile fine and would trigger an error only when executed
     by the database system.</p>

  <p>We can also combine the two query languages in a single query, for
     example:</p>

  <pre class="cxx">
  query q ("first = 'John'" + (query::age &lt; query::_ref (age)));
  </pre>

  <h2><a name="4.1">4.1 ODB Query Language</a></h2>

  <p>An ODB query is an expression that tells the database system whether
     any given object matches the desired criteria. As such, a query expression
     always evaluates as <code>true</code> or <code>false</code>. At
     the higher level, an expression consists of other expressions
     combined with logical operators such as <code>&amp;&amp;</code> (AND),
     <code>||</code> (OR), and <code>!</code> (NOT). For example:</p>

  <pre class="cxx">
  typedef odb::query&lt;person> query;

  query q (query::first == "John" || query::age == 31);
  </pre>

  <p>At the core of every query expression lie simple expressions which
     involve one or more object members, values, or parameters. To
     refer to an object member we use an expression such as
     <code>query::first</code> above. The names of members in the
     <code>query</code> class are derived from the names of data members
     in the object class by removing the common member name decorations,
     such as leading and trailing underscores, the <code>m_</code> prefix,
     etc.</p>

  <p>In a simple expression an object member can be compared to a value,
     parameter, or another member using a number of predefined operators
     and functions. The following table gives an overview of the available
     expressions:</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="operators" border="1">
    <tr>
      <th>Operator</th>
      <th>Description</th>
      <th>Example</th>
    </tr>

    <tr>
      <td><code>==</code></td>
      <td>equal</td>
      <td><code>query::age == 31</code></td>
    </tr>

    <tr>
      <td><code>!=</code></td>
      <td>unequal</td>
      <td><code>query::age != 31</code></td>
    </tr>

    <tr>
      <td><code>&lt;</code></td>
      <td>less than</td>
      <td><code>query::age &lt; 31</code></td>
    </tr>

    <tr>
      <td><code>></code></td>
      <td>greater than</td>
      <td><code>query::age > 31</code></td>
    </tr>

    <tr>
      <td><code>&lt;=</code></td>
      <td>less than or equal</td>
      <td><code>query::age &lt;= 31</code></td>
    </tr>

    <tr>
      <td><code>>=</code></td>
      <td>greater than or equal</td>
      <td><code>query::age >= 31</code></td>
    </tr>

    <tr>
      <td><code>in()</code></td>
      <td>one of the values</td>
      <td><code>query::age.in (30, 32, 34)</code></td>
    </tr>

    <tr>
      <td><code>in_range()</code></td>
      <td>one of the values in range</td>
      <td><code>query::age.in_range (begin, end)</code></td>
    </tr>

    <tr>
      <td><code>is_null()</code></td>
      <td>value is NULL</td>
      <td><code>query::age.is_null ()</code></td>
    </tr>

    <tr>
      <td><code>is_not_null()</code></td>
      <td>value is not NULL</td>
      <td><code>query::age.is_not_null ()</code></td>
    </tr>
  </table>

  <p>The <code>in()</code> function accepts a maximum of five arguments.
     Use the <code>in_range()</code> function if you need to compare
     to more than five values. This function accepts a pair of
     standard C++ iterators and compares to all the values from
     the <code>begin</code> position inclusive and until and
     excluding the <code>end</code> position. The following
     code fragment shows how we can use these functions:</p>

  <pre class="cxx">
  std::vector&lt;string> names;

  names.push_back ("John");
  names.push_back ("Jack");
  names.push_back ("Jane");

  query q1 (query::first.in ("John", "Jack", "Jane"));
  query q2 (query::first.in_range (names.begin (), names.end ()));
  </pre>



  <p>The operator precedence in the query expressions are the same
     as for equivalent C++ operators. We can use parentheses to
     make sure the expression is evaluated in the desired order.
     For example:</p>

  <pre class="cxx">
  query q ((query::first == "John" || query::first == "Jane") &amp;&amp;
           query::age &lt; 31);
  </pre>


  <h2><a name="4.2">4.2 Parameter Binding</a></h2>

  <p>An instance of the <code>odb::query</code> class encapsulates two
     parts of information about the query: the query expression and
     the query parameters. Parameters can be bound to C++ variables
     either by value or by reference.</p>

  <p>If a parameter is bound by value, then the value for this parameter
     is copied from the C++ variable to the query instance at the query
     construction time. On the other hand, if a parameter is bound by
     reference, then the query instance stores a reference to the
     bound variable. The actual value of the parameter is only extracted
     at the query execution time. Consider, for example, the following
     two queries:</p>

  <pre class="cxx">
  string name ("John");

  query q1 (query::first == query::_val (name));
  query q2 (query::first == query::_ref (name));

  name = "Jane";

  db.query&lt;person> (q1); // Find John.
  db.query&lt;person> (q2); // Find Jane.
  </pre>

  <p>The <code>odb::query</code> class provides two special functions,
     <code>_val()</code> and <code>_ref()</code>, that allow us to
     bind the parameter either by value or by reference, respectively.
     In the ODB query language, if the binding is not specified
     explicitly, the value semantic is used by default. In the
     native query language, binding must always be specified
     explicitly. For example:</p>

  <pre class="cxx">
  query q1 (query::age &lt; age);                // By value.
  query q2 (query::age &lt; query::_val (age));  // By value.
  query q3 (query::age &lt; query::_ref (age));  // By reference.

  query q4 ("age &lt; " + age);                  // Error.
  query q5 ("age &lt; " + query::_val (age));    // By value.
  query q6 ("age &lt; " + query::_ref (age));    // By reference.
  </pre>

  <p>A query that only has by-value parameters does not depend on any
     other variables and is self-sufficient once constructed. A query
     that has one or more by-reference parameters depends on the
     bound variables until the query is executed. If one such variable
     goes out of scope and we execute the query, the behavior is
     undefined.</p>

  <h2><a name="4.3">4.3 Executing a Query</a></h2>

  <p>Once we have the query instance ready and by-reference parameters
     initialized, we can execute the query using the
     <code>database::query()</code> function template. It has two
     overloaded versions:</p>

  <pre class="cxx">
  template &lt;typename T>
  result&lt;T>
  query (bool cache = true);

  template &lt;typename T>
  result&lt;T>
  query (const odb::query&lt;T>&amp;, bool cache = true);
  </pre>

  <p>The first <code>query()</code> function is used to return all the
     persistent objects of a given type stored in the database.
     The second function uses the passed query instance to only return
     objects matching the query criteria. The <code>cache</code> argument
     determines whether the objects' states should be cached in the
     application's memory or if they should be returned by the database
     system one by one as the iteration over the result progresses. The
     result caching is discussed in detail in the next section.</p>

  <p>When calling the <code>query()</code> function, we have to
     explicitly specify the object type we are querying. For example:</p>

  <pre class="cxx">
  typedef odb::query&lt;person> query;
  typedef odb::result&lt;person> result;

  result all (db.query&lt;person> ());
  result johns (db.query&lt;person> (query::first == "John"));
  </pre>

  <p>Note that it is not required to explicitly create a named
     query variable before executing it. For example, the following
     two queries are equivalent:</p>

  <pre class="cxx">
  query q (query::first == "John");

  result r1 (db.query&lt;person> (q));
  result r1 (db.query&lt;person> (query::first == "John"));
  </pre>

  <p>Normally, we would create a named query instance if we are
     planning to run the same query multiple times and would use the
     in-line version for those that are executed only once. A named
     query instance that does not have any by-reference parameters is
     immutable and can be shared between multiple threads without
     synchronization. On the other hand, a query instance with
     by-reference parameters is modified every time it is executed.
     If such a query is shared among multiple threads, then access
     to this query instance must be synchronized from the execution
     point and until the completion of the iteration over the result.</p>

  <p>It is also possible to create queries from other queries by
     combining them using logical operators. For example:</p>

  <pre class="cxx">
result
find_minors (database&amp; db, const query&amp; name_query)
{
  return db.query&lt;person> (name_query &amp;&amp; query::age &lt; 18);
}

result r (find_minors (db, query::first == "John"));
  </pre>

  <h2><a name="4.4">4.4 Query Result</a></h2>

  <p>The result of executing a query is zero, one, or more objects
     matching the query criteria. The result is returned as an instance
     of the <code>odb::result</code> class template, for example:</p>

  <pre class="cxx">
  typedef odb::query&lt;person> query;
  typedef odb::result&lt;person> result;

  result johns (db.query&lt;person> (query::first == "John"));
  </pre>

  <p>It is best to view an instance of <code>odb::result</code>
     as a handle to a stream, such as a file stream. While we can
     make a copy of a result or assign one result to another, the
     two instances will refer to the same result stream. Advancing
     the current position in one instance will also advance it in
     another. The result instance is only usable within the transaction
     it was created in. Trying to manipulate the result after the
     transaction has terminated leads to undefined behavior.</p>

  <p>The <code>odb::result</code> class template conforms to the
     standard C++ sequence requirements and has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  template &lt;typename T>
  class result
  {
  public:
    typedef odb::result_iterator&lt;T> iterator;

  public:
    result ();

    result (const result&amp;);

    result&amp;
    operator= (const result&amp;);

    void
    swap (result&amp;)

  public:
    iterator
    begin ();

    iterator
    end ();

  public:
    void
    cache ();

    bool
    empty () const;

    std::size_t
    size () const;
  };
}
  </pre>

  <p>The default constructor creates an empty result set. The
    <code>cache()</code> function caches the returned objects'
    state in the application's memory. We have already mentioned
    result caching when we talked about query execution. As you
    may remember the <code>database::query()</code> function
    caches the result unless instructed not to by the caller.
    The <code>cache()</code> function allows us to
    cache the result at a later stage if it wasn't already
    cached during query execution.</p>

  <p>If the result is cached, the database state of all the returned
     objects is stored in the application's memory. Note that
     the actual objects are still only instantiated on demand
     during result iteration. It is the raw database state that
     is cached in memory. In contrast, for uncached results
     the object's state is sent by the database system one object
     at a time as the iteration progresses.</p>

  <p>Uncached results can improve the performance of both the application
     and the database system in situations where we have a large
     number of objects in the result or if we will only examine
     a small portion of the returned objects. However, uncached
     results have a number of limitations. There can only be one
     uncached result in a transaction. Creating another result
     (cached or uncached) by calling <code>database::query()</code>
     will invalidate the existing uncached result. Furthermore,
     calling any other database functions, such as <code>update()</code>
     or <code>erase()</code> will also invalidate the uncached result.</p>

  <p>The <code>empty()</code> function returns <code>true</code> if
     there are no objects in the result and <code>false</code> otherwise.
     The <code>size()</code> function can only be called for cached results.
     It returns the number of objects in the result. If we call this
     function on an uncached result, the <code>odb::result_not_cached</code>
     exception is thrown.</p>

  <p>To iterate over the objects in a result we use the
     <code>begin()</code> and <code>end()</code> functions
     together with the <code>odb::result&lt;T>::iterator</code>
     type, for example:</p>

  <pre class="cxx">
  result r (db.query&lt;person> (query::first == "John"));

  for (result::iterator i (r.begin ()); i != r.end (); ++i)
  {
    ...
  }
  </pre>

  <p>In C++11 we can use the <code>auto</code>-typed variabe instead
     of spelling the iterator type explicitly, for example:</p>

  <pre class="cxx">
  for (auto i (r.begin ()); i != r.end (); ++i)
  {
    ...
  }
  </pre>

  <p>The C++11 range-based <code>for</code>-loop can be used to further
     simplify the iteration:</p>

  <pre class="cxx">
  for (person&amp; p: r)
  {
    ...
  }
  </pre>

  <p>The result iterator is an input iterator which means that the
     only two position operations that it supports are to move to the
     next object and to determine whether the end of the result stream
     has been reached. In fact, the result iterator can only be in two
     states: the current position and the end position. If we have
     two iterators pointing to the current position and then we
     advance one of them, the other will advance as well. This,
     for example, means that it doesn't make sense to store an
     iterator that points to some object of interest in the result
     stream with the intent of dereferencing it after the iteration
     is over. Instead, we would need to store the object itself.</p>

  <p>The result iterator has the following dereference functions
     that can be used to access the pointed-to object:</p>

  <pre class="cxx">
namespace odb
{
  template &lt;typename T>
  class result_iterator
  {
  public:
    T*
    operator-> () const;

    T&amp;
    operator* () const;

    typename object_traits&lt;T>::pointer_type
    load ();

    void
    load (T&amp; x);

    typename object_traits&lt;T>::id_type
    id ();
  };
}
  </pre>

  <p>When we call the <code>*</code> or <code>-></code> operator,
     the iterator will allocate a new instance of the object class
     in the dynamic memory, load its state from the database
     state, and return a reference or pointer to the new instance. The
     iterator maintains the ownership of the returned object and will
     return the same pointer for subsequent calls to either of these
     operators until it is advanced to the next object or we call
     the first <code>load()</code> function (see below). For example:</p>

  <pre class="cxx">
  result r (db.query&lt;person> (query::first == "John"));

  for (result::iterator i (r.begin ()); i != r.end ();)
  {
    cout &lt;&lt; i->last () &lt;&lt; endl; // Create an object.
    person&amp; p (*i);             // Reference to the same object.
    cout &lt;&lt; p.age () &lt;&lt; endl;
    ++i;                        // Free the object.
  }
  </pre>

  <p>The overloaded <code>result_iterator::load()</code> functions are
     similar to <code>database::load()</code>. The first function
     returns a dynamically allocated instance of the current
     object. As an optimization, if the iterator already owns an object
     as a result of an earlier
     call to the <code>*</code> or <code>-></code> operator, then it
     relinquishes the ownership of this object and returns it instead.
     This allows us to write code like this without worrying about
     a double allocation:</p>

  <pre class="cxx">
  result r (db.query&lt;person> (query::first == "John"));

  for (result::iterator i (r.begin ()); i != r.end (); ++i)
  {
    if (i->last == "Doe")
    {
      auto_ptr p (i.load ());
      ...
    }
  }
  </pre>

  <p>Note, however, that because of this optimization, a subsequent
     to <code>load()</code> call to the <code>*</code> or <code>-></code>
     operator results in the allocation of a new object.</p>

  <p>The second <code>load()</code> function allows
     us to load the current object's state into an existing instance.
     For example:</p>

  <pre class="cxx">
  result r (db.query&lt;person> (query::first == "John"));

  person p;
  for (result::iterator i (r.begin ()); i != r.end (); ++i)
  {
    i.load (p);
    cout &lt;&lt; p.last () &lt;&lt; endl;
    cout &lt;&lt; i.age () &lt;&lt; endl;
  }
  </pre>

  <p>The <code>id()</code> function return the object id of the current
     object. While we can achieve the same by loading the object and getting
     its id, this function is more efficient since it doesn't actually
     create the object. This can be useful when all we need is the object's
     identifier. For example:</p>

  <pre class="cxx">
  std::set&lt;unsigned long> set = ...; // Persons of interest.

  result r (db.query&lt;person> (query::first == "John"));

  for (result::iterator i (r.begin ()); i != r.end (); ++i)
  {
    if (set.find (i.id ()) != set.end ()) // No object loaded.
    {
      cout &lt;&lt; i->first () &lt;&lt; endl; // Object loaded.
    }
  }
  </pre>

  <!-- CHAPTER -->

  <hr class="page-break"/>
  <h1><a name="5">5 Containers</a></h1>

  <p>The ODB runtime library provides built-in persistence support for all the
     commonly used standard C++98 containers, namely,
     <code>std::vector</code>, <code>std::list</code>, <code>std::set</code>,
     <code>std::multiset</code>, <code>std::map</code>, and
     <code>std::multimap</code> as well as C++11 <code>std::array</code>,
     <code>std::forward_list</code>, <code>std::unordered_set</code>,
     <code>std::unordered_multiset</code>, <code>std::unordered_map</code>,
     and <code>std::unordered_multimap</code>.
     Plus, ODB profile libraries, that are
     available for commonly used frameworks and libraries (such as Boost and
     Qt), provide persistence support for containers found in these frameworks
     and libraries (<a href="#III">Part III, "Profiles"</a>).  It is also easy
     to persist custom container types as discussed later
     in <a href="#5.4">Section 5.4, "Using Custom Containers"</a>.</p>

  <p>We don't need to do anything special to declare a member of a
     container type in a persistent class. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
private:
  std::vector&lt;std::string> nicknames_;
  ...
};
  </pre>

  <p>The complete version of the above code fragment and the other code
     samples presented in this chapter can be found in the <code>container</code>
     example in the <code>odb-examples</code> package.</p>

  <p>A data member in a persistent class that is of a container type
     behaves like a value type. That is, when an object is made persistent,
     the elements of the container are stored in the database. Similarly,
     when a persistent object is loaded from the database, the contents
     of the container are automatically loaded as well. A data member
     of a container type can also use a smart pointer, as discussed
     in <a href="#7.3">Section 7.3, "Pointers and <code>NULL</code>
     Value Semantics"</a>.</p>

  <p>While an ordinary member is mapped to one or more columns in the
     object's table, a member of a container type is mapped to a separate
     table. The exact schema of such a table depends on the kind of
     container. ODB defines the following container kinds: ordered,
     set, multiset, map, and multimap. The container kinds and the
     contents of the tables to which they are mapped are discussed
     in detail in the following sections.</p>

  <p>Containers in ODB can contain simple value types (<a href="#7.1">Section
     7.1, "Simple Value Types"</a>), composite value types
     (<a href="#7.2">Section 7.2, "Composite Value Types"</a>), and pointers
     to objects (<a href="#6">Chapter 6, "Relationships"</a>). Containers of
     containers, either directly or indirectly via a composite value
     type, are not allowed. A key in a map or multimap container can
     be a simple or composite value type but not a pointer to an object.
     An index in the ordered container should be a simple integer value
     type.</p>

  <p>The value type in the ordered, set, and map containers as well as
     the key type in the map containers should be default-constructible.
     The default constructor in these types can be made private in which
     case the <code>odb::access</code> class should be made a friend of
     the value or key type. For example:</p>

  <pre class="cxx">
#pragma db value
class name
{
public:
  name (const std::string&amp;, const std::string&amp;);
  ...
private:
  friend class odb::access;
  name ();
  ...
};

#pragma db object
class person
{
  ...
private:
  std::vector&lt;name> aliases_;
  ...
};
  </pre>


  <h2><a name="5.1">5.1 Ordered Containers</a></h2>

  <p>In ODB an ordered container is any container that maintains (explicitly
     or implicitly) an order of its elements in the form of an integer index.
     Standard C++ containers that are ordered include <code>std::vector</code>
     and <code>std::list</code> as well as C++11 <code>std::array</code> and
     <code>std::forward_list</code>. While elements in <code>std::set</code>
     are also kept in a specific order, this order is not based on an
     integer index but rather on the relationship between elements. As
     a result, <code>std::set</code> is not considered an ordered
     container for the purpose of persistence.</p>

  <p>The database table for an ordered container consists of at least
     three columns. The first column contains the object id of a
     persistent class instance of which the container is a member.
     The second column contains the element index within a container.
     And the last column contains the element value. If the object
     id or element value are composite, then, instead of a single
     column, they can occupy multiple columns. For an ordered
     container table the ODB compiler also defines two indexes:
     one for the object id column(s) and the other for the index
     column. Refer to <a href="#12.6">Section 12.6, "Index Definition
     Pragmas"</a> for more information on how to customize these
     indexes.</p>

  <p>Consider the following persistent object as an example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
private:
  #pragma db id auto
  unsigned long id_;

  std::vector&lt;std::string> nicknames_;
  ...
};
  </pre>

  <p>The resulting database table (called <code>person_nicknames</code>) will
     contain the object id column of type <code>unsigned&nbsp;long</code>
     (called <code>object_id</code>), the index column of an integer type
     (called <code>index</code>), and the value column of type
     <code>std::string</code> (called <code>value</code>).</p>

  <p>A number of ODB pragmas allow us to customize the table name, column
     names, and native database types of an ordered container both, on
     the per-container and per-member basis. For more information on
     these pragmas, refer to <a href="#12">Chapter 12, "ODB Pragma
     Language"</a>. The following example shows some of the possible
     customizations:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
private:
  #pragma db table("nicknames")              \
             id_column("person_id")          \
             index_type("SMALLINT UNSIGNED") \
             index_column("nickname_number") \
             value_type("VARCHAR(255)")      \
             value_column("nickname")
  std::vector&lt;std::string> nicknames_;
  ...
};
  </pre>

  <p>While the C++ container used in a persistent class may be ordered,
     sometimes we may wish to store such a container in the database without
     the order information. In the example above, for instance, the order
     of person's nicknames is probably not important. To instruct the ODB
     compiler to ignore the order in ordered containers we can use the
     <code>db&nbsp;unordered</code> pragma (<a href="#12.3.9">Section 12.3.9,
     "<code>unordered</code>"</a>, <a href="#12.4.18">Section 12.4.18,
     "<code>unordered</code>"</a>). For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
private:
  #pragma db unordered
  std::vector&lt;std::string> nicknames_;
  ...
};
  </pre>

  <p>The table for an ordered container that is marked unordered won't
     have the index column and the order in which elements are retrieved
     from the database may not be the same as the order in which they
     were stored.</p>

  <h2><a name="5.2">5.2 Set and Multiset Containers</a></h2>

  <p>In ODB set and multiset containers (referred to as just set
     containers) are associative containers that contain elements
     based on some relationship between them. A set container may
     or may not guarantee a particular order of the elements that
     it stores. Standard C++ containers that are considered set
     containers for the purpose of persistence include
     <code>std::set</code> and <code>std::multiset</code> as well
     as C++11 <code>std::unordered_set</code> and
     <code>std::unordered_multiset</code>.</p>

  <p>The database table for a set container consists of at least
     two columns. The first column contains the object id of a
     persistent class instance of which the container is a member.
     And the second column contains the element value. If the object
     id or element value are composite, then, instead of a single
     column, they can occupy multiple columns. ODB compiler also
     defines an index on a set container table for the object id
     column(s). Refer to <a href="#12.6">Section 12.6, "Index Definition
     Pragmas"</a> for more information on how to customize this
     index.</p>

  <p>Consider the following persistent object as an example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
private:
  #pragma db id auto
  unsigned long id_;

  std::set&lt;std::string> emails_;
  ...
};
  </pre>

  <p>The resulting database table (called <code>person_emails</code>) will
     contain the object id column of type <code>unsigned&nbsp;long</code>
     (called <code>object_id</code>) and the value column of type
     <code>std::string</code> (called <code>value</code>).</p>

  <p>A number of ODB pragmas allow us to customize the table name,
     column names, and native database types of a set container, both on
     the per-container and per-member basis. For more information on
     these pragmas, refer to <a href="#12">Chapter 12, "ODB Pragma
     Language"</a>. The following example shows some of the possible
     customizations:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
private:
  #pragma db table("emails")            \
             id_column("person_id")     \
             value_type("VARCHAR(255)") \
             value_column("email")
  std::set&lt;std::string> emails_;
  ...
};
  </pre>

  <h2><a name="5.3">5.3 Map and Multimap Containers</a></h2>

  <p>In ODB map and multimap containers (referred to as just map
     containers) are associative containers that contain key-value
     elements based on some relationship between keys. A map container
     may or may not guarantee a particular order of the elements that
     it stores. Standard C++ containers that are considered map
     containers for the purpose of persistence include
     <code>std::map</code> and <code>std::multimap</code> as well
     as C++11 <code>std::unordered_map</code> and
     <code>std::unordered_multimap</code>.</p>

  <p>The database table for a map container consists of at least
     three columns. The first column contains the object id of a
     persistent class instance of which the container is a member.
     The second column contains the element key. And the last column
     contains the element value. If the object id, element key, or
     element value are composite, then instead of a single column
     they can occupy multiple columns. ODB compiler also
     defines an index on a map container table for the object id
     column(s). Refer to <a href="#12.6">Section 12.6, "Index Definition
     Pragmas"</a> for more information on how to customize this
     index.</p>

  <p>Consider the following persistent object as an example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
private:
  #pragma db id auto
  unsigned long id_;

  std::map&lt;unsigned short, float> age_weight_map_;
  ...
};
  </pre>

  <p>The resulting database table (called <code>person_age_weight_map</code>)
     will contain the object id column of type <code>unsigned&nbsp;long</code>
     (called <code>object_id</code>), the key column of type
     <code>unsigned short</code> (called <code>key</code>), and the value
     column of type <code>float</code> (called <code>value</code>).</p>

  <p>A number of ODB pragmas allow us to customize the table name,
     column names, and native database types of a map container, both on
     the per-container and per-member basis. For more information on
     these pragmas, refer to <a href="#12">Chapter 12, "ODB Pragma
     Language"</a>. The following example shows some of the possible
     customizations:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
private:
  #pragma db table("weight_map")      \
             id_column("person_id")   \
             key_type("INT UNSIGNED") \
             key_column("age")        \
             value_type("DOUBLE")     \
             value_column("weight")
  std::map&lt;unsigned short, float> age_weight_map_;
  ...
};
  </pre>

  <h2><a name="5.4">5.4 Using Custom Containers</a></h2>

  <p>While the ODB runtime and profile libraries provide support for
     a wide range of containers, it is also easy to persist custom
     container types.</p>

  <p>To achieve this you will need to implement the
     <code>container_traits</code> class template specialization for
     your container. First, determine the container kind (ordered, set,
     multiset, map, or multimap) for your container type. Then use a
     specialization for one of the standard C++ containers found in
     the common ODB runtime library (<code>libodb</code>) as a base
     for your own implementation.</p>

  <p>Once the container traits specialization is ready for your container,
     you will need to include it into the ODB compilation process using
     the <code>--odb-epilogue</code> option and into the generated header
     files with the <code>--hxx-prologue</code> option. As an example,
     suppose we have a hash table container for which we have the traits
     specialization implemented in the <code>hashtable-traits.hxx</code>
     file. Then, we can create an ODB compiler options file for this
     container and save it to <code>hashtable.options</code>:</p>

  <pre>
# Options file for the hash table container.
#
--odb-epilogue '#include "hashtable-traits.hxx"'
--hxx-prologue '#include "hashtable-traits.hxx"'
  </pre>

  <p>Now, whenever we compile a header file that uses the hashtable
     container, we can specify the following command line option to
     make sure it is recognized by the ODB compiler as a container
     and the traits file is included in the generated code:</p>

  <pre>
--options-file hashtable.options
  </pre>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="6">6 Relationships</a></h1>

  <p>Relationships between persistent objects are expressed with pointers or
     containers of pointers. The ODB runtime library provides built-in support
     for <code>shared_ptr</code>/<code>weak_ptr</code> (TR1 or C++11),
     <code>std::unique_ptr</code> (C++11),
     <code>std::auto_ptr</code>, and raw pointers. Plus, ODB profile
     libraries, that available for commonly used frameworks and libraries
     (such as Boost and Qt), provide support for smart pointers found in these
     frameworks and libraries (<a href="#III">Part III, "Profiles"</a>). It is
     also easy to add support for a custom smart pointer as discussed later
     in <a href="#6.4"> Section 6.4, "Using Custom Smart Pointers"</a>. Any
     supported smart pointer can be used in a data member as long as it can be
     explicitly constructed from the canonical object pointer
     (<a href="#3.3">Section 3.3, "Object and View Pointers"</a>).  For
     example, we can use <code>weak_ptr</code> if the object pointer
     is <code>shared_ptr</code>.</p>

  <p>When an object containing a pointer to another object is loaded,
     the pointed-to object is loaded as well. In some situations this
     eager loading of the relationships is undesirable since it
     can lead to a large number of otherwise unused objects being
     instantiated from the database. To support finer control
     over relationships loading, the ODB runtime and profile
     libraries provide the so-called <em>lazy</em> versions of
     the supported pointers. An object pointed-to by a lazy pointer
     is not loaded automatically when the containing object is loaded.
     Instead, we have to explicitly request the instantiation of the
     pointed-to object. Lazy pointers are discussed in
     detail in <a href="#6.3">Section 6.3, "Lazy Pointers"</a>.</p>

  <p>As a simple example, consider the following employee-employer
     relationship. Code examples presented in this chapter
     will use the <code>shared_ptr</code> and <code>weak_ptr</code>
     smart pointers from the TR1 (<code>std::tr1</code>) namespace.</p>

  <pre class="cxx">
#pragma db object
class employer
{
  ...

  #pragma db id
  std::string name_;
};

#pragma db object
class employee
{
  ...

  #pragma db id
  unsigned long id_;

  std::string first_name_;
  std::string last_name_;

  shared_ptr&lt;employer> employer_;
};
  </pre>

  <p>By default, an object pointer can be <code>NULL</code>. To
     specify that a pointer always points to a valid object we can
     use the <code>not_null</code> pragma (<a href="#12.4.6">Section
     12.4.6, "<code>null</code>/<code>not_null</code>"</a>) for
     single object pointers and the <code>value_not_null</code> pragma
     (<a href="#12.4.23">Section
     12.4.23, "<code>value_null</code>/<code>value_not_null</code>"</a>)
     for containers of object pointers. For example:</p>

  <pre class="cxx">
#pragma db object
class employee
{
  ...

  #pragma db not_null
  shared_ptr&lt;employer> current_employer_;

  #pragma db value_not_null
  std::vector&lt;shared_ptr&lt;employer> > previous_employers_;
};
  </pre>

  <p>In this case, if we perform a database operation on the
     <code>employee</code> object and the <code>current_employer_</code>
     pointer or one of the pointers stored in the
     <code>previous_employers_</code> container is <code>NULL</code>,
     then the <code>odb::null_pointer</code> exception will be thrown.</p>

  <p>We don't need to do anything special to establish or navigate a
     relationship between two persistent objects, as shown in the
     following code fragment:</p>

  <pre class="cxx">
// Create an employer and a few employees.
//
unsigned long john_id, jane_id;
{
  shared_ptr&lt;employer> er (new employer ("Example Inc"));
  shared_ptr&lt;employee> john (new employee ("John", "Doe"));
  shared_ptr&lt;employee> jane (new employee ("Jane", "Doe"));

  john->employer_ = er;
  jane->employer_ = er;

  transaction t (db.begin ());

  db.persist (er);
  john_id = db.persist (john);
  jane_id = db.persist (jane);

  t.commit ();
}

// Load a few employee objects and print their employer.
//
{
  session s;
  transaction t (db.begin ());

  shared_ptr&lt;employee> john (db.load&lt;employee> (john_id));
  shared_ptr&lt;employee> jane (db.load&lt;employee> (jane_id));

  cout &lt;&lt; john->employer_->name_ &lt;&lt; endl;
  cout &lt;&lt; jane->employer_->name_ &lt;&lt; endl;

  t.commit ();
}
  </pre>

  <p>The only notable line in the above code is the creation of a
     session before the second transaction starts. As discussed in
     <a href="#10">Chapter 10, "Session"</a>, a session acts as a cache
     of persistent objects.
     By creating a session before loading the <code>employee</code>
     objects we make sure that their <code>employer_</code> pointers
     point to the same <code>employer</code> object. Without a
     session, each <code>employee</code> would have ended up pointing
     to its own, private instance of the Example Inc employer.</p>

  <p>As a general guideline, you should use a session when loading
     objects that have pointers to other persistent objects. A
     session makes sure that for a given object id, a single instance
     is shared among all other objects that relate to it.</p>

  <p>We can also use data members from pointed-to
     objects in database queries (<a href="#4">Chapter 4, "Querying the
     Database"</a>). For each pointer in a persistent class, the query
     class defines a smart pointer-like member that contains members
     corresponding to the data members in the pointed-to object. We
     can then use the access via a pointer syntax (<code>-></code>)
     to refer to data members in pointed-to objects.
     For example, the query class for the <code>employee</code> object
     contains the <code>employer</code> member (its name is derived from the
     <code>employer_</code> pointer) which in turn contains the
     <code>name</code> member (its name is derived from the
     <code>employer::name_</code> data member of the pointed-to object).
     As a result, we can use the <code>query::employer->name</code>
     expression while querying the database for the <code>employee</code>
     objects. For example, the following transaction finds all the
     employees of Example Inc that have the Doe last name:</p>

  <pre class="cxx">
typedef odb::query&lt;employee> query;
typedef odb::result&lt;employee> result;

session s;
transaction t (db.begin ());

result r (db.query&lt;employee> (
  query::employer->name == "Example Inc" &amp;&amp; query::last == "Doe"));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
  cout &lt;&lt; i->first_ &lt;&lt; " " &lt;&lt; i->last_ &lt;&lt; endl;

t.commit ();
  </pre>

  <p>A query class member corresponding to a non-inverse
     (<a href="#6.2">Section 6.2, "Bidirectional Relationships"</a>) object
     pointer can also be used as a normal member that has the id type
     of the pointed-to object. For example, the following query locates
     all the <code>employee</code> objects that don't have an associated
     <code>employer</code> object:</p>

  <pre class="cxx">
result r (db.query&lt;employee> (query::employer.is_null ()));
  </pre>

  <p>An important concept to keep in mind when working with object
     relationships is the independence of persistent objects. In particular,
     when an object containing a pointer to another object is made persistent
     or is updated, the pointed-to object is not automatically persisted
     or updated. Rather, only a reference to the object (in the form of the
     object id) is stored for the pointed-to object in the database.
     The pointed-to object itself is a separate entity and should
     be made persistent or updated independently.</p>

  <p>When persisting or updating an object containing a pointer to another
     object, the pointed-to object must have a valid object id. This,
     however, may not always be easy to achieve in complex relationships that
     involve objects with automatically assigned identifiers. In such
     cases it may be necessary to first persist an object with a pointer
     set to <code>NULL</code> and then, once the pointed-to object is
     made persistent and its identifier assigned, set the pointer
     to the correct value and update the object in the database.</p>

  <p>Persistent object relationships can be divided into two groups:
     unidirectional and bidirectional. Each group in turn contains
     several configurations that vary depending on the cardinality
     of the sides of the relationship. All possible unidirectional
     and bidirectional configurations are discussed in the following
     sections.</p>

  <h2><a name="6.1">6.1 Unidirectional Relationships</a></h2>

  <p>In unidirectional relationships we are only interested in navigating
     from object to object in one direction. Because there is no interest
     in navigating in the opposite direction, the cardinality of the other
     end of the relationship is unimportant. As a result, there are only
     two possible unidirectional relationships: to-one and to-many. Each
     of these relationships is described in the following sections. For
     sample code that shows how to work with these relationships, refer
     to the <code>relationship</code> example in the <code>odb-examples</code>
     package.</p>

  <h3><a name="6.1.1">6.1.1 To-One Relationships</a></h3>

  <p>An example of a unidirectional to-one relationship is the
     employee-employer relationship (an employee has one employer).
     The following persistent C++ classes model this relationship:</p>

  <pre class="cxx">
#pragma db object
class employer
{
  ...

  #pragma db id
  std::string name_;
};

#pragma db object
class employee
{
  ...

  #pragma db id
  unsigned long id_;

  #pragma db not_null
  shared_ptr&lt;employer> employer_;
};
  </pre>

  <p>The corresponding database tables look like this:</p>

  <pre class="sql">
CREATE TABLE employer (
  name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  employer VARCHAR (255) NOT NULL REFERENCES employer (name));
  </pre>

  <h3><a name="6.1.2">6.1.2 To-Many Relationships</a></h3>

  <p>An example of a unidirectional to-many relationship is the
     employee-project relationship (an employee can be involved
     in multiple projects). The following persistent C++ classes
     model this relationship:</p>

  <pre class="cxx">
#pragma db object
class project
{
  ...

  #pragma db id
  std::string name_;
};

#pragma db object
class employee
{
  ...

  #pragma db id
  unsigned long id_;

  #pragma db value_not_null unordered
  std::vector&lt;shared_ptr&lt;project> > projects_;
};
  </pre>

  <p>The corresponding database tables look like this:</p>

  <pre class="sql">
CREATE TABLE project (
  name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee_projects (
  object_id BIGINT UNSIGNED NOT NULL,
  value VARCHAR (255) NOT NULL REFERENCES project (name));
  </pre>

  <p>To obtain a more canonical database schema, the names of tables
     and columns above can be customized using ODB pragmas
     (<a href="#12">Chapter 12, "ODB Pragma Language"</a>). For example:</p>

  <pre class="cxx">
#pragma db object
class employee
{
  ...

  #pragma db value_not_null unordered \
             id_column("employee_id") value_column("project_name")
  std::vector&lt;shared_ptr&lt;project> > projects_;
};
  </pre>

  <p>The resulting <code>employee_projects</code> table would then
     look like this:</p>

  <pre class="sql">
CREATE TABLE employee_projects (
  employee_id BIGINT UNSIGNED NOT NULL,
  project_name VARCHAR (255) NOT NULL REFERENCES project (name));
  </pre>


  <h2><a name="6.2">6.2 Bidirectional Relationships</a></h2>

  <p>In bidirectional relationships we are interested in navigating
     from object to object in both directions. As a result, each
     object class in a relationship contains a pointer to the other
     object. If smart pointers are used, then a weak pointer should
     be used as one of the pointers to avoid ownership cycles. For
     example:</p>

  <pre class="cxx">
class employee;

#pragma db object
class position
{
  ...

  #pragma db id
  unsigned long id_;

  weak_ptr&lt;employee> employee_;
};

#pragma db object
class employee
{
  ...

  #pragma db id
  unsigned long id_;

  #pragma db not_null
  shared_ptr&lt;position> position_;
};
  </pre>

  <p>Note that when we establish a bidirectional relationship, we
     have to set both pointers consistently. One way to make sure
     that a relationship is always in a consistent state is to
     provide a single function that updates both pointers at the
     same time. For example:</p>

  <pre class="cxx">
#pragma db object
class position: public enable_shared_from_this&lt;position>
{
  ...

  void
  fill (shared_ptr&lt;employee> e)
  {
    employee_ = e;
    e->positions_ = shared_from_this ();
  }

private:
  weak_ptr&lt;employee> employee_;
};

#pragma db object
class employee
{
  ...

private:
  friend class position;

  #pragma db not_null
  shared_ptr&lt;position> position_;
};
  </pre>

  <p>At the beginning of this chapter we examined how to use a session
     to make sure a single object is shared among all other objects pointing
     to it. With bidirectional relationships involving weak pointers the
     use of a session becomes even more crucial. Consider the following
     transaction that tries to load the <code>position</code> object
     from the above example without using a session:</p>

  <pre class="cxx">
transaction t (db.begin ())
shared_ptr&lt;position> p (db.load&lt;position> (1));
...
t.commit ();
  </pre>

  <p>When we load the <code>position</code> object, the <code>employee</code>
     object, which it points to, is also loaded. While <code>employee</code>
     is initially stored as <code>shared_ptr</code>, it is then assigned to
     the <code>employee_</code> member which is <code>weak_ptr</code>. Once
     the assignment is complete, the shared pointer goes out of scope
     and the only pointer that points to the newly loaded
     <code>employee</code> object is the <code>employee_</code> weak
     pointer. And that means the <code>employee</code> object is deleted
     immediately after being loaded. To help avoid such pathological
     situations ODB detects cases where a newly loaded object will
     immediately be deleted and throws the <code>odb::session_required</code>
     exception.</p>

  <p>As the exception name suggests, the easiest way to resolve this
     problem is to use a session:</p>

  <pre class="cxx">
session s;
transaction t (db.begin ())
shared_ptr&lt;position> p (db.load&lt;position> (1));
...
t.commit ();
  </pre>

  <p>In our example, the session will maintain a shared pointer to the
     loaded <code>employee</code> object preventing its immediate
     deletion. Another way to resolve this problem is to avoid
     immediate loading of the pointed-to objects using lazy weak
     pointers. Lazy pointers are discussed in <a href="#6.3">Section 6.3,
     "Lazy Pointers"</a> later in this chapter.</p>

  <p>Above, to model a bidirectional relationship in persistent classes,
     we used two pointers, one in each object. While this is a natural
     representation in C++, it does not translate to a canonical
     relational model. Consider the database schema generated for
     the above two classes:</p>

  <pre class="sql">
CREATE TABLE position (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  employee BIGINT UNSIGNED REFERENCES employee (id));

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  position BIGINT UNSIGNED NOT NULL REFERENCES position (id));
  </pre>

  <p>While this database schema is valid, it is unconventional. We have
     a reference from a row in the <code>position</code> table to a row
     in the <code>employee</code> table. We also have a reference
     from this same row in the <code>employee</code> table back to
     the row in the <code>position</code> table. From the relational
     point of view, one of these references is redundant since
     in SQL we can easily navigate in both directions using just one
     of these references.</p>

  <p>To eliminate redundant database schema references we can use the
     <code>inverse</code> pragma (<a href="#12.4.14">Section 12.4.14,
     "<code>inverse</code>"</a>) which tells the ODB compiler that
     a pointer is the inverse side of a bidirectional relationship.
     Either side of a relationship can be made inverse. For example:</p>

  <pre class="cxx">
#pragma db object
class position
{
  ...

  #pragma db inverse(position_)
  weak_ptr&lt;employee> employee_;
};

#pragma db object
class employee
{
  ...

  #pragma db not_null
  shared_ptr&lt;position> position_;
};
  </pre>

  <p>The resulting database schema looks like this:</p>

  <pre class="sql">
CREATE TABLE position (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  position BIGINT UNSIGNED NOT NULL REFERENCES position (id));
  </pre>

  <p>As you can see, an inverse member does not have a corresponding
     column (or table, in case of an inverse container of pointers)
     and, from the point of view of database operations, is effectively
     read-only. The only way to change a bidirectional relationship
     with an inverse side is to set its direct (non-inverse)
     pointer. Also note that an ordered container (<a href="#5.1">Section
     5.1, "Ordered Containers"</a>) of pointers that is an inverse side
     of a bidirectional relationship is always treated as unordered
     (<a href="#12.4.18">Section 12.4.18, "<code>unordered</code>"</a>)
     because the contents of such a container are implicitly built from
     the direct side of the relationship which does not contain the
     element order (index).</p>

  <p>There are three distinct bidirectional relationships that we
     will cover in the following sections: one-to-one, one-to-many,
     and many-to-many. We will only talk about bidirectional
     relationships with inverse sides since they result in canonical
     database schemas. For sample code that shows how to work with
     these relationships, refer to the <code>inverse</code> example
     in the <code>odb-examples</code> package.</p>

  <h3><a name="6.2.1">6.2.1 One-to-One Relationships</a></h3>

  <p>An example of a bidirectional one-to-one relationship is the
     presented above employee-position relationship (an employee
     fills one position and a position is filled by one employee).
     The following persistent C++ classes model this relationship:</p>

  <pre class="cxx">
class employee;

#pragma db object
class position
{
  ...

  #pragma db id
  unsigned long id_;

  #pragma db inverse(position_)
  weak_ptr&lt;employee> employee_;
};

#pragma db object
class employee
{
  ...

  #pragma db id
  unsigned long id_;

  #pragma db not_null
  shared_ptr&lt;position> position_;
};
  </pre>

  <p>The corresponding database tables look like this:</p>

  <pre class="sql">
CREATE TABLE position (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  position BIGINT UNSIGNED NOT NULL REFERENCES position (id));
  </pre>

  <p>If instead the other side of this relationship is made inverse,
     then the database tables will change as follows:</p>

  <pre class="sql">
CREATE TABLE position (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  employee BIGINT UNSIGNED REFERENCES employee (id));

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY);
  </pre>

  <h3><a name="6.2.2">6.2.2 One-to-Many Relationships</a></h3>

  <p>An example of a bidirectional one-to-many relationship is the
     employer-employee relationship (an employer has multiple
     employees and an employee is employed by one employer).
     The following persistent C++ classes model this relationship:</p>

  <pre class="cxx">
class employee;

#pragma db object
class employer
{
  ...

  #pragma db id
  std::string name_;

  #pragma db value_not_null inverse(employer_)
  std::vector&lt;weak_ptr&lt;employee> > employees_
};

#pragma db object
class employee
{
  ...

  #pragma db id
  unsigned long id_;

  #pragma db not_null
  shared_ptr&lt;employer> employer_;
};
  </pre>

  <p>The corresponding database tables differ significantly depending
     on which side of the relationship is made inverse. If the <em>one</em>
     side (<code>employer</code>) is inverse as in the code
     above, then the resulting database schema looks like this:</p>

  <pre class="sql">
CREATE TABLE employer (
  name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  employer VARCHAR (255) NOT NULL REFERENCES employer (name));
  </pre>

  <p>If instead the <em>many</em> side (<code>employee</code>) of this
     relationship is made inverse, then the database tables will change
     as follows:</p>

  <pre class="sql">
CREATE TABLE employer (
  name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employer_employees (
  object_id VARCHAR (255) NOT NULL,
  value BIGINT UNSIGNED NOT NULL REFERENCES employee (id));

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY);
  </pre>

  <h3><a name="6.2.3">6.2.3 Many-to-Many Relationships</a></h3>

  <p>An example of a bidirectional many-to-many relationship is the
     employee-project relationship (an employee can work on multiple
     projects and a project can have multiple participating employees).
     The following persistent C++ classes model this relationship:</p>

  <pre class="cxx">
class employee;

#pragma db object
class project
{
  ...

  #pragma db id
  std::string name_;

  #pragma db value_not_null inverse(projects_)
  std::vector&lt;weak_ptr&lt;employee> > employees_;
};

#pragma db object
class employee
{
  ...

  #pragma db id
  unsigned long id_;

  #pragma db value_not_null unordered
  std::vector&lt;shared_ptr&lt;project> > projects_;
};
  </pre>

  <p>The corresponding database tables look like this:</p>

  <pre class="sql">
CREATE TABLE project (
  name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY);

CREATE TABLE employee_projects (
  object_id BIGINT UNSIGNED NOT NULL,
  value VARCHAR (255) NOT NULL REFERENCES project (name));
  </pre>

  <p>If instead the other side of this relationship is made inverse,
     then the database tables will change as follows:</p>

  <pre class="sql">
CREATE TABLE project (
  name VARCHAR (255) NOT NULL PRIMARY KEY);

CREATE TABLE project_employees (
  object_id VARCHAR (255) NOT NULL,
  value BIGINT UNSIGNED NOT NULL REFERENCES employee (id));

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY);
  </pre>

  <h2><a name="6.3">6.3 Lazy Pointers</a></h2>

  <p>Consider again the bidirectional, one-to-many employer-employee
     relationship that was presented earlier in this chapter:</p>

  <pre class="cxx">
class employee;

#pragma db object
class employer
{
  ...

  #pragma db id
  std::string name_;

  #pragma db value_not_null inverse(employer_)
  std::vector&lt;weak_ptr&lt;employee> > employees_;
};

#pragma db object
class employee
{
  ...

  #pragma db id
  unsigned long id_;

  #pragma db not_null
  shared_ptr&lt;employer> employer_;
};
  </pre>

  <p>Consider also the following transaction which obtains the employer
     name given the employee id:</p>

  <pre class="cxx">
unsigned long id = ...
string name;

session s;
transaction t (db.begin ());

shared_ptr&lt;employee> e (db.load&lt;employee> (id));
name = e->employer_->name_;

t.commit ();
  </pre>

  <p>While this transaction looks very simple, it actually does a lot more
     than what meets the eye and is necessary. Consider what happens when
     we load the <code>employee</code> object: the <code>employer_</code>
     pointer is also automatically loaded which means the <code>employer</code>
     object corresponding to this employee is also loaded. But the
     <code>employer</code> object in turn contains the list of pointers
     to all the employees, which are also loaded. A a result, when object
     relationships are involved, a simple transaction like the above can
     load many more objects than is necessary.</p>

  <p>To overcome this problem ODB offers finer grained control over
     the relationship loading in the form of lazy pointers. A lazy
     pointer does not automatically load the pointed-to object
     when the containing object is loaded. Instead, we have to
     explicitly load the pointed-to object if and when we need to
     access it.</p>

  <p>The ODB runtime library provides lazy counterparts for all the
     supported pointers, namely:
     <code>odb::lazy_shared_ptr</code>/<code>lazy_weak_ptr</code>
     for C++11 <code>std::shared_ptr</code>/<code>weak_ptr</code>,
     <code>odb::tr1::lazy_shared_ptr</code>/<code>lazy_weak_ptr</code>
     for TR1 <code>std::tr1::shared_ptr</code>/<code>weak_ptr</code>,
     <code>odb::lazy_unique_ptr</code> for C++11 <code>std::unique_ptr</code>,
     <code>odb::lazy_auto_ptr</code> for <code>std::auto_ptr</code>,
     and <code>odb::lazy_ptr</code> for raw pointers. The TR1 lazy
     pointers are defined in the <code>&lt;odb/tr1/lazy-ptr.hxx></code>
     header while all the others &mdash; in
     <code>&lt;odb/lazy-ptr.hxx></code>. The ODB profile
     libraries also provide lazy pointer implementations for smart pointers
     from popular frameworks and libraries (<a href="#III">Part III,
     "Profiles"</a>).</p>

  <p>While we will discuss the interface of lazy pointers in more detail
     shortly, the most commonly used extra function provided by these
     pointers is <code>load()</code>. This function loads the
     pointed-to object if it hasn't already been loaded. After
     the call to this function, the lazy pointer can be used
     in the the same way as its eager counterpart. The <code>load()</code>
     function also returns the eager pointer, in case you need to pass
     it around. For a lazy weak pointer, the
     <code>load()</code> function also locks the pointer.</p>

  <p>The following example shows how we can change our employer-employee
     relationship to use lazy pointers. Here we choose to use lazy pointers
     for both sides of the relationship.</p>

  <pre class="cxx">
class employee;

#pragma db object
class employer
{
  ...

  #pragma db value_not_null inverse(employer_)
  std::vector&lt;lazy_weak_ptr&lt;employee> > employees_;
};

#pragma db object
class employee
{
  ...

  #pragma db not_null
  lazy_shared_ptr&lt;employer> employer_;
};
  </pre>

  <p>And the transaction is changed like this:</p>

  <pre class="cxx">
unsigned long id = ...
string name;

session s;
transaction t (db.begin ());

shared_ptr&lt;employee> e (db.load&lt;employee> (id));
e->employer_.load ();
name = e->employer_->name_;

t.commit ();
  </pre>


  <p>As a general guideline we recommend that you make at least one side
     of a bidirectional relationship lazy, especially for relationships
     with a <em>many</em> side.</p>

  <p>A lazy pointer implementation mimics the interface of its eager
     counterpart which can be used once the pointer is loaded. It also
     adds a number of additional functions that are specific to the
     lazy loading functionality. Overall, the interface of a lazy
     pointer follows this general outline:</p>

  <pre class="cxx">
template &lt;class T>
class lazy_ptr
{
public:
  //
  // The eager pointer interface.
  //

  // Initialization/assignment from an eager pointer.
  //
public:
  template &lt;class Y> lazy_ptr (const eager_ptr&lt;Y>&amp;);
  template &lt;class Y> lazy_ptr&amp; operator= (const eager_ptr&lt;Y>&amp;);

  // Lazy loading interface.
  //
public:
  //  NULL      loaded()
  //
  //  true       true      NULL pointer to transient object
  //  false      true      valid pointer to persistent object
  //  true       false     unloaded pointer to persistent object
  //  false      false     valid pointer to transient object
  //
  bool loaded () const;

  eager_ptr&lt;T> load () const;

  // Unload the pointer. For transient objects this function is
  // equivalent to reset().
  //
  void unload () const;

  // Initialization with a persistent loaded object.
  //
  template &lt;class Y> lazy_ptr (database&amp;, Y*);
  template &lt;class Y> lazy_ptr (database&amp;, const eager_ptr&lt;Y>&amp;);

  template &lt;class Y> void reset (database&amp;, Y*);
  template &lt;class Y> void reset (database&amp;, const eager_ptr&lt;Y>&amp;);

  // Initialization with a persistent unloaded object.
  //
  template &lt;class ID> lazy_ptr (database&amp;, const ID&amp;);

  template &lt;class ID> void reset (database&amp;, const ID&amp;);

  // Query object id and database of a persistent object.
  //
  template &lt;class O /* = T */>
  // C++11: template &lt;class O = T>
  object_traits&lt;O>::id_type object_id () const;

  odb::database&amp; database () const;
};
  </pre>

  <p>In a lazy weak pointer interface, the <code>load()</code> function
     returns the <em>strong</em> (shared) eager pointer. The following
     transaction demonstrates the use of a lazy weak pointer based on
     the <code>employer</code> and <code>employee</code> classes
     presented earlier.</p>

  <pre class="cxx">
typedef std::vector&lt;lazy_weak_ptr&lt;employee> > employees;

session s;
transaction t (db.begin ());

shared_ptr&lt;employer> er (db.load&lt;employer> ("Example Inc"));
employees&amp; es (er->employees ());

for (employees::iterator i (es.begin ()); i != es.end (); ++i)
{
  // We are only interested in employees with object id less than
  // 100.
  //
  lazy_weak_ptr&lt;employee>&amp; lwp (*i);

  if (lwp.object_id&lt;employee> () &lt; 100)
  // C++11: if (lwp.object_id () &lt; 100)
  {
    shared_ptr&lt;employee> e (lwp.load ()); // Load and lock.
    cout &lt;&lt; e->first_ &lt;&lt; " " &lt;&lt; e->last_ &lt;&lt; endl;
  }
}

t.commit ();
  </pre>

  <p>Notice that inside the for-loop we use a reference to the lazy
     weak pointer instead of making a copy. This is not merely to
     avoid a copy. When a lazy pointer is loaded, all other lazy
     pointers that point to the same object do not automatically
     become loaded (though an attempt to load such copies will
     result in them pointing to the same object, provided the
     same session is still in effect). By using a reference
     in the above transaction we make sure that we load the
     pointer that is contained in the <code>employer</code>
     object. This way, if we later need to re-examine this
     <code>employee</code> object, the pointer will already
     be loaded.</p>

  <p>As another example, suppose we want to add an employee
     to Example Inc. The straightforward implementation of this
     transaction is presented below:</p>

  <pre class="cxx">
session s;
transaction t (db.begin ());

shared_ptr&lt;employer> er (db.load&lt;employer> ("Example Inc"));
shared_ptr&lt;employee> e (new employee ("John", "Doe"));

e->employer_ = er;
er->employees ().push_back (e);

db.persist (e);
t.commit ();
  </pre>

  <p>Notice here that we didn't have to update the employer object
     in the database since the <code>employees_</code> list of
     pointers is an inverse side of a bidirectional relationship
     and is effectively read-only, from the persistence point of
     view.</p>

  <p>A faster implementation of this transaction, that avoids loading
     the employer object, relies on the ability to initialize an
     <em>unloaded</em> lazy pointer with the database where the object
     is stored as well as its identifier:</p>

  <pre class="cxx">
lazy_shared_ptr&lt;employer> er (db, std::string ("Example Inc"));
shared_ptr&lt;employee> e (new employee ("John", "Doe"));

e->employer_ = er;

session s;
transaction t (db.begin ());

db.persist (e);

t.commit ();
  </pre>

  <h2><a name="6.4">6.4 Using Custom Smart Pointers</a></h2>

  <p>While the ODB runtime and profile libraries provide support for
     the majority of widely-used pointers, it is also easy to add
     support for a custom smart pointer.</p>

  <p>To achieve this you will need to implement the
     <code>pointer_traits</code> class template specialization for
     your pointer. The first step is to determine the pointer kind
     since the interface of the <code>pointer_traits</code> specialization
     varies depending on the pointer kind. The supported pointer kinds
     are: <em>raw</em> (raw pointer or equivalent, that is, unmanaged),
          <em>unique</em> (smart pointer that doesn't support sharing),
          <em>shared</em> (smart pointer that supports sharing), and
          <em>weak</em> (weak counterpart of the shared pointer). Any of
     these pointers can be lazy, which also affects the
     interface of the <code>pointer_traits</code> specialization.</p>

  <p>Once you have determined the pointer kind for your smart pointer,
     use a specialization for one of the standard pointers found in
     the common ODB runtime library (<code>libodb</code>) as a base
     for your own implementation.</p>

  <p>Once the pointer traits specialization is ready, you will need to
     include it into the ODB compilation process using the
     <code>--odb-epilogue</code> option and into the generated header
     files with the <code>--hxx-prologue</code> option. As an example,
     suppose we have the <code>smart_ptr</code> smart pointer for which
     we have the traits specialization implemented in the
     <code>smart-ptr-traits.hxx</code> file. Then, we can create an ODB
     compiler options file for this pointer and save it to
     <code>smart-ptr.options</code>:</p>

  <pre>
# Options file for smart_ptr.
#
--odb-epilogue '#include "smart-ptr-traits.hxx"'
--hxx-prologue '#include "smart-ptr-traits.hxx"'
  </pre>

  <p>Now, whenever we compile a header file that uses <code>smart_ptr</code>,
     we can specify the following command line option to make sure it is
     recognized by the ODB compiler as a smart pointer and the traits file
     is included in the generated code:</p>

  <pre>
--options-file smart-ptr.options
  </pre>

  <p>It is also possible to implement a lazy counterpart for your
     smart pointer. The ODB runtime library provides a class template
     that encapsulates the object id management and loading
     functionality that is needed to implement a lazy pointer. All
     you need to do is wrap it with an interface that mimics
     your smart pointer. Using one of the existing lazy pointer
     implementations (either from the ODB runtime library or one
     of the profile libraries) as a base for your implementation
     is the easiest way to get started.</p>


  <!-- CHAPTER -->

  <hr class="page-break"/>
  <h1><a name="7">7 Value Types</a></h1>

  <p>In <a href="#3.1">Section 3.1, "Concepts and Terminology"</a> we have
     already discussed the notion of values and value types as well as the
     distinction between simple and composite values. This chapter covers
     simple and composite value types in more detail.</p>

  <h2><a name="7.1">7.1 Simple Value Types</a></h2>

  <p>A simple value type is a fundamental C++ type or a class type that
     is mapped to a single database column. For each supported database
     system the ODB compiler provides a default mapping to suitable
     database types for most fundamental C++ types, such as <code>int</code>
     or <code>float</code> as well as some class types, such as
     <code>std::string</code>. For more information about the default
     mapping for each database system refer to <a href="#II">Part II,
     Database Systems</a>. We can also provide a custom mapping for
     these or our own value types using the <code>db&nbsp;type</code>
     pragma (<a href="#12.3.1">Section 12.3.1, "<code>type</code>"</a>).</p>

  <h2><a name="7.2">7.2 Composite Value Types</a></h2>

  <p>A composite value type is a <code>class</code> or <code>struct</code>
     type that is mapped to more than one database column. To declare
     a composite value type we use the <code>db&nbsp;value</code> pragma,
     for example:</p>

  <pre class="cxx">
#pragma db value
class basic_name
{
  ...

  std::string first_;
  std::string last_;
};
  </pre>

  <p>The complete version of the above code fragment and the other code
     samples presented in this section can be found in the <code>composite</code>
     example in the <code>odb-examples</code> package.</p>

  <p>A composite value type does not have to define a default constructor,
     unless it is used as an element of a container. In this case the
     default constructor can be made private provided we also make the
     <code>odb::access</code> class, defined in the
     <code>&lt;odb/core.hxx></code> header, a friend of this value type.
     For example:</p>

  <pre class="cxx">
#include &lt;odb/core.hxx>

#pragma db value
class basic_name
{
public:
  basic_name (const std::string&amp; first, const std::string&amp; last);

  ...

private:
  friend class odb::access;

  basic_name () {} // Needed for storing basic_name in containers.

  ...
};
  </pre>

  <p>The ODB compiler also needs access to the non-transient
     (<a href="#12.4.11">Section 12.4.11, "<code>transient</code>"</a>)
     data members of a composite value type. It uses the same mechanisms
     as for persistent classes which are discussed in
     <a href="#3.2">Section 3.2, "Declaring Persistent Objects and
     Values"</a>.</p>

  <p>The members of a composite value can be other value types (either
     simple or composite), containers (<a href="#5">Chapter 5,
     "Containers"</a>), and pointers to objects (<a href="#6">Chapter 6,
     "Relationships"</a>).
     Similarly, a composite value type can be used in object members,
     as an element of a container, and as a base for another composite
     value type. In particular, composite value types can be used as
     element types in set containers (<a href="#5.2">Section 5.2, "Set
     and Multiset Containers"</a>) and as key types in map containers
     (<a href="#5.3">Section 5.3, "Map and Multimap Containers"</a>).
     A composite value type that is used as an element of a container
     cannot contain other containers since containers of containers
     are not allowed. The following example illustrates some of the
     possible use cases:</p>

  <pre class="cxx">
#pragma db value
class basic_name
{
  ...

  std::string first_;
  std::string last_;
};

typedef std::vector&lt;basic_name> basic_names;

#pragma db value
class name_extras
{
  ...

  std::string nickname_;
  basic_names aliases_;
};

#pragma db value
class name: public basic_name
{
  ...

  std::string title_;
  name_extras extras_;
};

#pragma db object
class person
{
  ...

  name name_;
};
  </pre>

  <p>A composite value type can also be defined as an instantiation
     of a C++ class template, for example:</p>

  <pre class="cxx">
template &lt;typename T>
struct point
{
  T x;
  T y;
  T z;
};

typedef point&lt;int> int_point;
#pragma db value(int_point)

#pragma db object
class object
{
  ...

  int_point center_;
};
  </pre>

  <p>Note that the database support code for such a composite value type
     is generated when compiling the header containing the
     <code>db&nbsp;value</code> pragma and not the header containing
     the template definition or the <code>typedef</code> name. This
     allows us to use templates defined in other files, such as
     <code>std::pair</code> defined in the <code>utility</code>
     standard header file:</p>

  <pre class="cxx">
#include &lt;utility> // std::pair

typedef std::pair&lt;std::string, std::string> phone_numbers;
#pragma db value(phone_numbers)

#pragma db object
class person
{
  ...

  phone_numbers phone_;
};
  </pre>

  <p>We can also use data members from composite value types
     in database queries (<a href="#4">Chapter 4, "Querying the
     Database"</a>). For each composite value in a persistent class, the
     query class defines a nested member that contains members corresponding
     to the data members in the value type. We can then use the member access
     syntax (.) to refer to data members in value types. For example, the
     query class for the <code>person</code> object presented above
     contains the <code>name</code> member (its name is derived from
     the <code>name_</code> data member) which in turn contains the
     <code>extras</code> member (its name is derived from the
     <code>name::extras_</code> data member of the composite value type).
     This process continues recursively for nested composite value types
     and, as a result, we can use the <code>query::name.extras.nickname</code>
     expression while querying the database for the <code>person</code>
     objects. For example:</p>

  <pre class="cxx">
typedef odb::query&lt;person> query;
typedef odb::result&lt;person> result;

transaction t (db.begin ());

result r (db.query&lt;person> (
  query::name.extras.nickname == "Squeaky"));

...

t.commit ();
  </pre>

  <h3><a name="7.2.1">7.2.1 Composite Object Ids</a></h3>

  <p>An object id can be of a composite value type, for example:</p>

  <pre class="cxx">
#pragma db value
class name
{
  ...

  std::string first_;
  std::string last_;
};

#pragma db object
class person
{
  ...

  #pragma db id
  name name_;
};
  </pre>

  <p>However, a value type that can be used as an object id has a number
     of restrictions. Such a value type cannot have container, object
     pointer, or read-only data members. It also must be
     default-constructible. Furthermore, if the persistent class in which
     this composite value type is used as object id has session support
     enabled (<a href="#10">Chapter 10, "Session"</a>), then it must also
     implement the less-than comparison operator (<code>operator&lt;</code>).</p>

  <h3><a name="7.2.2">7.2.2 Composite Value Column and Table Names</a></h3>

  <p>Customizing a column name for a data member of a simple value
     type is straightforward: we simply specify the desired name with
     the <code>db&nbsp;column</code> pragma (<a href="#12.4.9">Section
     12.4.9, "<code>column</code>"</a>). For composite value
     types things are slightly more complex since they are mapped to
     multiple columns. Consider the following example:</p>

  <pre class="cxx">
#pragma db value
class name
{
  ...

  std::string first_;
  std::string last_;
};

#pragma db object
class person
{
  ...

  #pragma db id auto
  unsigned long id_;

  name name_;
};
  </pre>

  <p>The column names for the <code>first_</code> and <code>last_</code>
     members are constructed by using the sanitized name of the
     <code>person::name_</code> member as a prefix and the names of the
     members in the value type (<code>first_</code> and <code>last_</code>)
     as suffixes. As a result, the database schema for the above classes
     will look like this:</p>

  <pre class="sql">
CREATE TABLE person (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  name_first TEXT NOT NULL,
  name_last TEXT NOT NULL);
  </pre>

 <p>We can customize both the prefix and the suffix using the
    <code>db&nbsp;column</code> pragma as shown in the following
    example:</p>

  <pre class="cxx">
#pragma db value
class name
{
  ...

  #pragma db column("first_name")
  std::string first_;

  #pragma db column("last_name")
  std::string last_;
};

#pragma db object
class person
{
  ...

  #pragma db column("person_")
  name name_;
};
  </pre>

  <p>The database schema changes as follows:</p>

  <pre class="sql">
CREATE TABLE person (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  person_first_name TEXT NOT NULL,
  person_last_name TEXT NOT NULL);
  </pre>

  <p>We can also make the column prefix empty, for example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db column("")
  name name_;
};
  </pre>

  <p>This will result in the following schema:</p>

  <pre class="sql">
CREATE TABLE person (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  first_name TEXT NOT NULL,
  last_name TEXT NOT NULL);
  </pre>

  <p>The same principle applies when a composite value type is used
     as an element of a container, except that instead of
     <code>db&nbsp;column</code>, either the <code>db&nbsp;value_column</code>
     (<a href="#12.4.31">Section 12.4.31, "<code>value_column</code>"</a>) or
     <code>db&nbsp;key_column</code>
     (<a href="#12.4.30">Section 12.4.30, "<code>key_column</code>"</a>)
     pragmas are used to specify the column prefix.</p>

  <p>When a composite value type contains a container, an extra table
     is used to store its elements (<a href="#5">Chapter 5, "Containers"</a>).
     The names of such tables are constructed in a way similar to the
     column names, except that by default both the object name and the
     member name are used as a prefix. For example:</p>

  <pre class="cxx">
#pragma db value
class name
{
  ...

  std::string first_;
  std::string last_;
  std::vector&lt;std::string> nicknames_;
};

#pragma db object
class person
{
  ...

  name name_;
};
  </pre>

  <p>The corresponding database schema will look like this:</p>

  <pre class="sql">
CREATE TABLE person_name_nicknames (
  object_id BIGINT UNSIGNED NOT NULL,
  index BIGINT UNSIGNED NOT NULL,
  value TEXT NOT NULL)

CREATE TABLE person (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  name_first TEXT NOT NULL,
  name_last TEXT NOT NULL);
  </pre>

  <p>To customize the container table name we can use the
     <code>db&nbsp;table</code> pragma (<a href="#12.4.19">Section
     12.4.19, "<code>table</code>"</a>), for example:</p>

  <pre class="cxx">
#pragma db value
class name
{
  ...

  #pragma db table("nickname")
  std::vector&lt;std::string> nicknames_;
};

#pragma db object
class person
{
  ...

  #pragma db table("person_")
  name name_;
};
  </pre>

  <p>This will result in the following schema changes:</p>

  <pre class="sql">
CREATE TABLE person_nickname (
  object_id BIGINT UNSIGNED NOT NULL,
  index BIGINT UNSIGNED NOT NULL,
  value TEXT NOT NULL)
  </pre>

  <p>Similar to columns, we can make the table prefix empty.</p>


  <h2><a name="7.3">7.3 Pointers and <code>NULL</code> Value Semantics</a></h2>

  <p>Relational database systems have a notion of the special
     <code>NULL</code> value that is used to indicate the absence
     of a valid value in a column. While by default ODB maps
     values to columns that do not allow <code>NULL</code> values,
     it is possible to change that with the <code>db&nbsp;null</code>
     pragma (<a href="#12.4.6">Section 12.4.6,
     "<code>null</code>/<code>not_null</code>"</a>).</p>

  <p>To properly support the <code>NULL</code> semantics, the
     C++ value type must have a notion of a <code>NULL</code>
     value or a similar special state concept. Most basic
     C++ types, such as <code>int</code> or <code>std::string</code>,
     do not have this notion and therefore cannot be used directly
     for <code>NULL</code>-enabled data members (in the case of a
     <code>NULL</code> value being loaded from the database,
     such data members will be default-initialized).</p>

  <p>To allow the easy conversion of value types that do not support
     the <code>NULL</code> semantics into the ones that do, ODB
     provides the <code>odb::nullable</code> class template. It
     allows us to wrap an existing C++ type into a container-like
     class that can either be <code>NULL</code> or contain a
     value of the wrapped type. ODB also automatically enables
     the <code>NULL</code> values for data members of the
     <code>odb::nullable</code> type. For example:</p>

  <pre class="cxx">
#include &lt;odb/nullable.hxx>

#pragma db object
class person
{
  ...

  std::string first_;                    // TEXT NOT NULL
  odb::nullable&lt;std::string> middle_;    // TEXT NULL
  std::string last_;                     // TEXT NOT NULL
};
  </pre>

  <p>The <code>odb::nullable</code> class template is defined
     in the <code>&lt;odb/nullable.hxx></code> header file and
     has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  template &lt;typename T>
  class nullable
  {
  public:
    typedef T value_type;

    nullable ();
    nullable (const T&amp;);
    nullable (const nullable&amp;);
    template &lt;typename Y> explicit nullable (const nullable&lt;Y>&amp;);

    nullable&amp; operator= (const T&amp;);
    nullable&amp; operator= (const nullable&amp;);
    template &lt;typename Y> nullable&amp; operator= (const nullable&lt;Y>&amp;);

    void swap (nullable&amp;);

    // Accessor interface.
    //
    bool null () const;

    T&amp;       get ();
    const T&amp; get () const;

    // Pointer interface.
    //
    operator bool_convertible () const;

    T*       operator-> ();
    const T* operator-> () const;

    T&amp;       operator* ();
    const T&amp; operator* () const;

    // Reset to the NULL state.
    //
    void reset ();
  };
}
  </pre>

  <p>The following example shows how we can use this interface:</p>

  <pre class="cxx">
  nullable&lt;string> ns;

  // Using the accessor interface.
  //
  if (ns.null ())
  {
    s = "abc";
  }
  else
  {
    string s (ns.get ());
    ns.reset ();
  }

  // The same using the pointer interface.
  //
  if (ns)
  {
    s = "abc";
  }
  else
  {
    string s (*ns);
    ns.reset ();
  }
  </pre>


  <p>The <code>odb::nullable</code> class template requires the wrapped
     type to have public default and copy constructors as well as the
     copy assignment operator. Note also that the <code>odb::nullable</code>
     implementation is not the most efficient in that it always contains
     a fully constructed value of the wrapped type. This is normally
     not a concern for simple types such as the C++ fundamental
     types or <code>std::string</code>. However, it may become
     an issue for more complex types. In such cases you may want to
     consider using a more efficient implementation of the
     <em>optional value</em> concept such as the
     <code>optional</code> class template from Boost
     (<a href="#19.4">Section 19.4, "Optional Library"</a>).</p>

  <p>Another common C++ representation of a value that can be
     <code>NULL</code> is a pointer. ODB will automatically
     handle data members that are pointers to values, however,
     it will not automatically enable <code>NULL</code> values
     for such data members, as is the case for <code>odb::nullable</code>.
     Instead, if the <code>NULL</code> value is desired, we will
     need to enable it explicitly using the <code>db&nbsp;null</code>
     pragma. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  std::string first_;

  #pragma db null
  std::auto_ptr&lt;std::string> middle_;

  std::string last_;
};
  </pre>

  <p>The ODB compiler includes built-in support for using
     <code>std::auto_ptr</code>, <code>std::unique_ptr</code> (C++11),
     and <code>shared_ptr</code> (TR1 or C++11) as pointers to values.
     Plus, ODB profile libraries, that are
     available for commonly used frameworks and libraries (such as Boost and
     Qt), provide support for smart pointers found in these frameworks
     and libraries (<a href="#III">Part III, "Profiles"</a>).</p>

  <p>ODB also supports the <code>NULL</code> semantics for composite
     values. In the relational database the <code>NULL</code> composite
     value is translated to <code>NULL</code> values for all the simple
     data members of this composite value. For example:</p>

  <pre class="cxx">
#pragma db value
struct name
{
  std::string first_;
  odb::nullable&lt;std::string> middle_;
  std::string last_;
};

#pragma db object
class person
{
  ...
  odb::nullable&lt;name> name_;
};
  </pre>

  <p>ODB does not support the <code>NULL</code> semantics for containers.
     This also means that a composite value that contains a container
     cannot be <code>NULL</code>. With this limitation in mind, we can
     still use smart pointers in data members of container types. The
     only restriction is that these pointers must not be <code>NULL</code>.
     For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  std::auto_ptr&lt;std::vector&lt;std::string> > aliases_;
};
  </pre>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="8">8 Inheritance</a></h1>

  <p>In C++ inheritance can be used to achieve two different goals.
     We can employ inheritance to reuse common data and functionality
     in multiple classes. For example:</p>

  <pre class="cxx">
class person
{
public:
  const std::string&amp; first () const;
  const std::string&amp; last () const;

private:
  std::string first_;
  std::string last_;
};

class employee: public person
{
  ...
};

class contractor: public person
{
  ...
};
  </pre>

 <p>In the above example both the <code>employee</code> and
    <code>contractor</code> classes inherit the <code>first_</code>
    and <code>last_</code> data members as well as the <code>first()</code>
    and <code>last()</code> accessors from the <code>person</code> base
    class.</p>

 <p>A common trait of this inheritance style, referred to as <em>reuse
    inheritance</em> from now on, is the lack of virtual functions and
    a virtual destructor in the base class. Also with this style the
    application code is normally written in terms of the derived classes
    instead of the base.</p>

 <p>The second way to utilize inheritance in C++ is to provide polymorphic
    behavior through a common interface. In this case the base class
    defines a number of virtual functions and, normally, a virtual
    destructor while the derived classes provide specific
    implementations of these virtual functions. For example:</p>

  <pre class="cxx">
class person
{
public:
  enum employment_status
  {
    unemployed,
    temporary,
    permanent,
    self_employed
  };

  virtual employment_status
  employment () const = 0;

  virtual
  ~person ();
};

class employee: public person
{
public:
  virtual employment_status
  employment () const
  {
    return temporary_ ? temporary : permanent;
  }

private:
  bool temporary_;
};

class contractor: public person
{
public:
  virtual employment_status
  employment () const
  {
    return self_employed;
  }
};
  </pre>

  <p>With this inheritance style, which we will call <em>polymorphism
     inheritance</em>, the application code normally works with derived
     classes via the base class interface. Note also that it is very common
     to mix both styles in the same hierarchy. For example, the above two
     code fragments can be combined so that the <code>person</code> base
     class provides the common data members and functions as well as
     defines the polymorphic interface.</p>

  <p>The following sections describe the available strategies for
     mapping reuse and polymorphism inheritance styles to a relational
     data model. Note also that the distinction between the two styles is
     conceptual rather than formal. For example, it is possible to treat
     a class hierarchy that defines virtual functions as a case of reuse
     inheritance if this results in the desired database mapping and
     semantics.</p>

  <p>Generally, classes that employ reuse inheritance are mapped to
     completely independent entities in the database. They use different
     object id spaces and should always be passed to and returned from
     the database operations as pointers or references to derived types.
     In other words, from the persistence point of view, such classes
     behave as if the data members from the base classes were copied
     verbatim into the derived ones.</p>

  <p>In contrast, classes that employ polymorphism inheritance share
     the object id space and can be passed to and returned from the
     database operations <em>polymorphically</em> as pointers or
     references to the base class.</p>

  <p>For both inheritance styles it is sometimes desirable to prevent
     instances of a base class from being stored in the database.
     To achieve this a persistent
     class can be declared abstract using the <code>db&nbsp;abstract</code>
     pragma (<a href="#12.1.3">Section 12.1.3, "<code>abstract</code>"</a>).
     Note that a <em>C++-abstract</em> class, or a class that
     has one or more pure virtual functions and therefore cannot be
     instantiated, is also <em>database-abstract</em>. However, a
     database-abstract class is not necessarily C++-abstract. The
     ODB compiler automatically treats C++-abstract classes as
     database-abstract.</p>

  <h2><a name="8.1">8.1 Reuse Inheritance</a></h2>

  <p>Each non-abstract class from the reuse inheritance hierarchy is
     mapped to a separate database table that contains all its data
     members, including those inherited from base classes. An abstract
     persistent class does not have to define an object id, nor a default
     constructor, and it does not have a corresponding database table.
     An abstract class cannot be a pointed-to object in a relationship.
     Multiple inheritance is supported as long as each base
     class is only inherited once. The following example shows a
     persistent class hierarchy employing reuse inheritance:</p>

  <pre class="cxx">
// Abstract person class. Note that it does not declare the
// object id.
//
#pragma db object abstract
class person
{
  ...

  std::string first_;
  std::string last_;
};

// Abstract employee class. It derives from the person class and
// declares the object id for all the concrete employee types.
//
#pragma db object abstract
class employee: public person
{
  ...

  #pragma db id auto
  unsigned long id_;
};

// Concrete permanent_employee class. Note that it doesn't define
// any data members of its own.
//
#pragma db object
class permanent_employee: public employee
{
  ...
};

// Concrete temporary_employee class. It adds the employment
// duration in months.
//
#pragma db object
class temporary_employee: public employee
{
  ...

  unsigned long duration_;
};

// Concrete contractor class. It derives from the person class
// (and not employee; an independent contractor is not considered
// an employee). We use the contractor's external email address
// as the object id.
//
#pragma db object
class contractor: public person
{
  ...

  #pragma db id
  std::string email_;
};
  </pre>

  <p>The sample database schema for this hierarchy is shown below.</p>

  <pre class="sql">
CREATE TABLE permanent_employee (
  first TEXT NOT NULL,
  last TEXT NOT NULL,
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT);

CREATE TABLE temporary_employee (
  first TEXT NOT NULL,
  last TEXT NOT NULL,
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
  duration BIGINT UNSIGNED NOT NULL);

CREATE TABLE contractor (
  first TEXT NOT NULL,
  last TEXT NOT NULL,
  email VARCHAR (255) NOT NULL PRIMARY KEY);
  </pre>

  <p>The complete version of the code presented in this section is
     available in the <code>inheritance/reuse</code> example in the
     <code>odb-examples</code> package.</p>

  <h2><a name="8.2">8.2 Polymorphism Inheritance</a></h2>

  <p>There are three general approaches to mapping a polymorphic
     class hierarchy to a relational database. These are
     <em>table-per-hierarchy</em>, <em>table-per-difference</em>,
     and <em>table-per-class</em>. With the table-per-hierarchy
     mapping, all the classes in a hierarchy are stored in a single,
     "wide" table. <code>NULL</code> values are stored in columns
     corresponding to data members of derived classes that are
     not present in any particular instance.</p>

  <p>In the table-per-difference mapping, each class is mapped
     to a separate table. For a derived class, this table contains
     only columns corresponding to the data members added by this
     derived class.</p>

  <p>Finally, in the table-per-class mapping, each class is mapped
     to a separate table. For a derived class, this table contains
     columns corresponding to all the data members, from this derived
     class all the way down to the root of the hierarchy.</p>

  <p>The table-per-difference mapping is generally considered as
     having the best balance of flexibility, performance, and space
     efficiency. It also results in a more canonical relational
     database model compared to the other two approaches. As a
     result, this is the mapping currently implemented in ODB.
     Other mappings may be supported in the future.</p>

  <p>A pointer or reference to an ordinary, non-polymorphic object
     has just one type &mdash; the class type of that object. When we
     start working with polymorphic objects, there are two types
     to consider: the <em>static type</em>, or the declaration type
     of a reference or pointer, and the object's actual or <em>dynamic
     type</em>. An example will help illustrate the difference:</p>

  <pre class="cxx">
class person {...};
class employee: public person {...};

person p;
employee e;

person&amp; r1 (p);
person&amp; r2 (e);

auto_ptr&lt;person> p1 (new employee);
  </pre>

  <p>In the above example, the <code>r1</code> reference's both static
     and dynamic types are <code>person</code>.
     In contrast, the <code>r2</code> reference's static type is
     <code>person</code> while its dynamic type (the actual object
     that it refers to) is <code>employee</code>. Similarly,
     <code>p1</code> points to the object of the <code>person</code>
     static type but <code>employee</code> dynamic type.</p>

  <p>In C++, the primary mechanisms for working with polymorphic objects
     are virtual functions. We call a virtual function only knowing the
     object's static type, but the version corresponding to the object's
     dynamic type is automatically executed. This is the essence of
     runtime polymorphism support in C++: we can operate in terms of a base
     class interface but get the derived class' behavior. Similarly, the
     essence of the runtime polymorphism support in ODB is to allow us to
     persist, load, update, and query in terms of the base class interface
     but have the derived class actually stored in the database.</p>

  <p>To declare a persistent class as polymorphic we use the
     <code>db&nbsp;polymorphic</code> pragma. We only need to
     declare the root class of a hierarchy as polymorphic; ODB will
     treat all the derived classes as polymorphic automatically. For
     example:</p>

  <pre class="cxx">
#pragma db object polymorphic
class person
{
  ...

  virtual
  ~person () = 0; // Automatically abstract.

  #pragma db id auto
  unsigned long id_;

  std::string first_;
  std::string last_;
};

#pragma db object
class employee: public person
{
  ...

  bool temporary_;
};

#pragma db object
class contractor: public person
{

  std::string email_;
};
  </pre>

  <p>A persistent class hierarchy declared polymorphic must also be
     polymorphic in the C++ sense, that is, the root class must
     declare or inherit at least one virtual function. It is
     recommended that the root class also declares a virtual destructor.
     The root class of the polymorphic hierarchy must contain
     the data member designated as object id (a persistent class
     without an object id cannot be polymorphic). Note also that,
     unlike reuse inheritance, abstract polymorphic classes have
     a table in the database, just like non-abstract classes.</p>

  <p>Persistent classes in the same polymorphic hierarchy must use the
     same kind of object pointer (<a href="#3.3">Section 3.3,
     "Object and View Pointers"</a>). If the object pointer
     for the root class is specified as a template or using the
     special raw pointer syntax (<code>*</code>), then the ODB
     compiler will automatically use the same object pointer
     for all the derived classes. For example:</p>

  <pre class="cxx">
#pragma db object polymorphic pointer(std::shared_ptr)
class person
{
  ...
};

#pragma db object // Object pointer is std::shared_ptr&lt;employee>.
class employee: public person
{
  ...
};

#pragma db object // Object pointer is std::shared_ptr&lt;contractor>.
class contractor: public person
{
  ...
};
  </pre>

  <p>Similarly, if we enable or disable session support
     (<a href="#10">Chapter 10, "Session"</a>) for the root class, then
     the ODB compiler will automatically enable or disable it for all
     the derived classes.</p>

  <p>For polymorphic persistent classes, all the database operations can
     be performed on objects with different static and dynamic types.
     Similarly, operations that load persistent objects from the
     database (<code>load()</code>, <code>query()</code>, etc.), can
     return objects with different static and dynamic types. For
     example:</p>

  <pre class="cxx">
unsigned long id1, id2;

// Persist.
//
{
  shared_ptr&lt;person> p1 (new employee (...));
  shared_ptr&lt;person> p2 (new contractor (...));

  transaction t (db.begin ());
  id1 = db.persist (p1); // Stores employee.
  id2 = db.persist (p2); // Stores contractor.
  t.commit ();
}

// Load.
//
{
  shared_ptr&lt;person> p;

  transaction t (db.begin ());
  p = db.load&lt;person> (id1); // Loads employee.
  p = db.load&lt;person> (id2); // Loads contractor.
  t.commit ();
}

// Query.
//
{
  typedef odb::query&lt;person> query;
  typedef odb::result&lt;person> result;

  transaction t (db.begin ());

  result r (db.query&lt;person> (query::last == "Doe"));

  for (result::iterator i (r.begin ()); i != r.end (); ++i)
  {
    person&amp; p (*i); // Can be employee or contractor.
  }

  t.commit ();
}

// Update.
//
{
  shared_ptr&lt;person> p;
  shared_ptr&lt;employee> e;

  transaction t (db.begin ());

  e = db.load&lt;employee> (id1);
  e->temporary (false);
  p = e;
  db.update (p); // Updates employee.

  t.commit ();
}

// Erase.
//
{
  shared_ptr&lt;person> p;

  transaction t (db.begin ());
  p = db.load&lt;person> (id1); // Loads employee.
  db.erase (p);              // Erases employee.
  db.erase&lt;person> (id2);    // Erases contractor.
  t.commit ();
}
  </pre>


  <p>The table-per-difference mapping, as supported by ODB, requires
     two extra columns, in addition to those corresponding to the
     data members. The first, called <em>discriminator</em>, is added
     to the table corresponding to the root class of the hierarchy.
     This column is used to determine the dynamic type of each
     object. The second column is added to tables corresponding
     to the derived classes and contains the object id. This
     column is used to form a foreign key constraint referencing
     the root class table.</p>

  <p>When querying the database for polymorphic objects, it is
     possible to obtain the discriminator value without
     instantiating the object. For example:</p>

  <pre class="cxx">
typedef odb::query&lt;person> query;
typedef odb::result&lt;person> result;

transaction t (db.begin ());

result r (db.query&lt;person> (query::last == "Doe"));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
{
  std::string d (i.discriminator ());
  ...
}

t.commit ();
  </pre>

  <p>In the current implementation, ODB has limited support for
     customizing names, types, and values of the extra columns.
     Currently, the discriminator column is always called
     <code>typeid</code> and contains a namespace-qualified class
     name (for example, <code>"employee"</code> or
     <code>"hr::employee"</code>). The id column in the derived
     class table has the same name as the object id column in
     the root class table. Future versions of ODB will add support
     for customizing these extra columns.</p>

  <p>The sample database schema for the above polymorphic hierarchy
     is shown below.</p>

  <pre class="sql">
CREATE TABLE person (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
  typeid VARCHAR(255) NOT NULL,
  first TEXT NOT NULL,
  last TEXT NOT NULL);

CREATE TABLE employee (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  temporary TINYINT(1) NOT NULL,

  CONSTRAINT employee_id_fk
    FOREIGN KEY (id)
    REFERENCES person (id)
    ON DELETE CASCADE);

CREATE TABLE contractor (
  id BIGINT UNSIGNED NOT NULL PRIMARY KEY,
  email TEXT NOT NULL,

  CONSTRAINT contractor_id_fk
    FOREIGN KEY (id)
    REFERENCES person (id)
    ON DELETE CASCADE);
  </pre>

  <p>The complete version of the code presented in this section is
     available in the <code>inheritance/polymorphism</code> example
     in the <code>odb-examples</code> package.</p>

  <h3><a name="8.2.1">8.2.1 Performance and Limitations</a></h3>

  <p>A database operation on a non-polymorphic object normally translates
     to a single database statement execution (objects with containers
     and eager object pointers can be the exception). Because polymorphic
     objects have their data members
     stored in multiple tables, some database operations on such objects
     may result in multiple database statements being executed while others
     may require more complex statements. There is also some functionality
     that is not available to polymorphic objects.</p>

  <p>The first part of this section discusses the performance implications
     to keep in mind when designing and working with polymorphic hierarchies.
     The second part talks about limitations of polymorphic objects.</p>

  <p>The most important aspect of a polymorphic hierarchy that
     affects database performance is its depth. The distance between
     the root of the hierarchy and the derived class translates
     directly to the number of database statements that will have to
     be executed in order to persist, update, or erase this derived class.
     It also translates directly to the number of SQL <code>JOIN</code>
     clauses that will be needed to load or query the database for this
     derived class. As a result, to achieve best performance, we should
     try to keep our polymorphic hierarchies as flat as possible.</p>

  <p>When loading an object or querying the database for objects,
     ODB will need to execute two statements if this object's static
     and dynamic types are different but only one statement if
     they are the same. This example will help illustrate the
     difference:</p>

  <pre class="cxx">
unsigned long id;

{
  employee e (...);

  transaction t (db.begin ());
  id = db.persist (e);
  t.commit ();
}

{
  shared_ptr&lt;person> p;

  transaction t (db.begin ());
  p = db.load&lt;person> (id);   // Requires two statement.
  p = db.load&lt;employee> (id); // Requires only one statement.
  t.commit ();
}
  </pre>

  <p>As a result, we should try to load and query using the most
     derived class possible.</p>

  <p>Finally, for polymorphic objects, erasing via the object instance
     is faster than erasing via its object id. In the former case the
     object's dynamic type can be determined locally in the application
     while in the latter case an extra statement has to be executed to
     achieve the same result. For example:</p>

  <pre class="cxx">
shared_ptr&lt;person> p = ...;

transaction t (db.begin ());
db.erase&lt;person> (p.id ()); // Slower (executes extra statement).
db.erase (p);               // Faster.
t.commit ();
  </pre>

  <p>Polymorphic objects can use all the mechanisms that are available
     to ordinary objects. These include containers (<a href="#5">Chapter 5,
     "Containers"</a>), object relationships, including to polymorphic
     objects (<a href="#6">Chapter 6, "Relationships"</a>), views
     (<a href="#9">Chapter 9, "Views"</a>), session (<a href="#10">Chapter
     10, "Session"</a>), and optimistic concurrency (<a href="#11">Chapter
     11, "Optimistic Concurrency"</a>). There are, however, a few
     limitations, mainly due to the underlying use of SQL to access the
     data.</p>

  <p>When a polymorphic object is "joined" in a view, and the join
     condition (either in the form of an object pointer or a custom
     condition) comes from the object itself (as opposed to one of
     the objects joined previously), then this condition must only
     use data members from the derived class. For example, consider
     the following polymorphic object hierarchy and a view:</p>


  <pre class="cxx">
#pragma db object polymorphic
class employee
{
  ...
};

#pragma db object
class permanent_employee: public employee
{
  ...
};

#pragma db object
class temporary_employee: public employee
{
  ...

  shared_ptr&lt;permanent_employee> manager_;
};

#pragma db object
class contractor: public temporary_employee
{
  shared_ptr&lt;permanent_employee> manager_;
};

#pragma db view object(permanent_employee) \
                object(contractor: contractor::manager_)
struct contractor_manager
{
  ...
};
  </pre>

  <p>This view will not function correctly because the join condition
     (<code>manager_</code>) comes from the base class
     (<code>temporary_employee</code>) instead of the derived
     (<code>contractor</code>). The reason for this limitation is the
     <code>JOIN</code> clause order in the underlying SQL <code>SELECT</code>
     statement. In the view presented above, the table corresponding
     to the base class (<code>temporary_employee</code>) will have to
     be joined first which will result in this view matching both
     the <code>temporary_employee</code> and <code>contractor</code>
     objects instead of just <code>contractor</code>. It is usually
     possible to resolve this issue by reordering the objects in the
     view. Our example, for instance, can be fixed by swapping the
     two objects:</p>

  <pre class="cxx">
#pragma db view object(contractor) \
                object(permanent_employee: contractor::manager_)
struct contractor_manager
{
  ...
};
  </pre>

  <p>The <code>erase_query()</code> database function (<a href="#3.11">Section
     3.11, "Deleting Persistent Objects"</a>) also has limited functionality
     when used on polymorphic objects. Because many database implementations
     do not support <code>JOIN</code> clauses in the SQL <code>DELETE</code>
     statement, only data members from the derived class being erased can
     be used in the query condition. For example:</p>

  <pre class="cxx">
typedef odb::query&lt;employee> query;

transaction t (db.begin ());
db.erase_query&lt;employee> (query::permanent);     // Ok.
db.erase_query&lt;employee> (query::last == "Doe"); // Error.
t.commit ();
  </pre>

  <h2><a name="8.3">8.3 Mixed Inheritance</a></h2>

  <p>It is possible to mix the reuse and polymorphism inheritance
     styles in the same hierarchy. In this case, the reuse inheritance
     must be used for the "bottom" (base) part of the hierarchy while
     the polymorphism inheritance &mdash; for the "top" (derived) part.
     For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
};

#pragma db object polymorphic
class employee: public person // Reuse inheritance.
{
  ...
};

#pragma db object
class temporary_employee: public employee // Polymorphism inheritance.
{
  ...
};

#pragma db object
class permanent_employee: public employee // Polymorphism inheritance.
{
  ...
};
  </pre>

  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="9">9 Views</a></h1>

  <p>An ODB view is a C++ <code>class</code> or <code>struct</code> type
     that embodies a light-weight, read-only projection of one or more
     persistent objects or database tables or the result of a native SQL
     query execution.</p>

  <p>Some of the common applications of views include loading a subset
     of data members from objects or columns from database tables, executing
     and handling results of arbitrary SQL queries, including aggregate
     queries, as well as joining multiple objects and/or database tables
     using object relationships or custom join conditions.</p>

  <p>Many relational databases also define the concept of views. Note,
     however, that ODB views are not mapped to database views. Rather,
     by default, an ODB view is mapped to an SQL <code>SELECT</code>
     query. However, if desired, it is easy to create an ODB view
     that is based on a database view.</p>

  <p>Usually, views are defined in terms of other persistent entities,
     such as persistent objects, database tables, sequences, etc.
     Therefore, before we can examine our first view, we need to
     define a few persistent objects and a database table. We will
     use this model in examples throughout this chapter. Here we
     assume that you are familiar with ODB object relationship
     support (<a href="#6">Chapter 6, "Relationships"</a>).</p>

  <pre class="cxx">
#pragma db object
class country
{
  ...

  #pragma db id
  std::string code_; // ISO 2-letter country code.

  std::string name_;
};

#pragma db object
class employer
{
  ...

  #pragma db id
  unsigned long id_;

  std::string name_;
};

#pragma db object
class employee
{
  ...

  #pragma db id
  unsigned long id_;

  std::string first_;
  std::string last_;

  unsigned short age_;

  shared_ptr&lt;country> residence_;
  shared_ptr&lt;country> nationality_;

  shared_ptr&lt;employer> employed_by_;
};
  </pre>

  <p>Besides these objects, we also have the legacy
     <code>employee_extra</code> table that is not mapped to any persistent
     class. It has the following definition:</p>

  <pre class="sql">
CREATE TABLE employee_extra(
  employee_id INTEGER NOT NULL,
  vacation_days INTEGER NOT NULL,
  previous_employer_id INTEGER)
  </pre>

  <p>The above persistent objects and database table as well as many of
     the views shown in this chapter are based on the
     <code>view</code> example which can be found in the
     <code>odb-examples</code> package of the ODB distribution.</p>

  <p>To declare a view we use the <code>db&nbsp;view</code> pragma,
     for example:</p>

  <pre class="cxx">
#pragma db view object(employee)
struct employee_name
{
  std::string first;
  std::string last;
};
  </pre>

  <p>The above example shows one of the simplest views that we can create.
     It has a single associated object (<code>employee</code>) and its
     purpose is to extract the employee's first and last names without
     loading any other data, such as the referenced <code>country</code>
     and <code>employer</code> objects.</p>

  <p>Views use the same query facility (<a href="#4">Chapter 4, "Querying
     the Database"</a>) as persistent objects. Because support for queries
     is optional and views cannot be used without this support, you need
     to compile any header that defines a view with the
     <code>--generate-query</code> ODB compiler option.</p>

  <p>To query the database for a view we use the <code>database::query()</code>
     function in exactly the same way as we would use it to query the
     database for an object. For example, the following code fragment
     shows how we can find the names of all the employees that are
     younger than 31:</p>

  <pre class="cxx">
typedef odb::query&lt;employee_name> query;
typedef odb::result&lt;employee_name> result;

transaction t (db.begin ());

result r (db.query&lt;employee_name> (query::age &lt; 31));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
{
  const employee_name&amp; en (*i);
  cout &lt;&lt; en.first &lt;&lt; " " &lt;&lt; en.last &lt;&lt; endl;
}

t.commit ();
  </pre>

  <p>A view can be defined as a projection of one or more objects, one
     or more tables, a combination of objects and tables, or it can be
     the result of a custom SQL query. The following sections discuss each
     of these kinds of view in more detail.</p>

  <h2><a name="9.1">9.1 Object Views</a></h2>

  <p>To associate one or more objects with a view we use the
     <code>db&nbsp;object</code> pragma (<a href="#12.2.1">Section
     12.2.1, "<code>object</code>"</a>). We have already seen
     a simple, single-object view in the introduction to this chapter.
     To associate the second and subsequent objects we repeat the
     <code>db&nbsp;object</code> pragma for each additional object,
     for example:</p>

  <pre class="cxx">
#pragma db view object(employee) object(employer)
struct employee_employer
{
  std::string first;
  std::string last;
  std::string name;
};
  </pre>

  <p>The complete syntax of the <code>db&nbsp;object</code> pragma is
     shown below:</p>

  <p><code><b>object(</b><i>name</i>
                     [<b>=</b> <i>alias</i>]
                     [<b>:</b> <i>join-condition</i>]<b>)</b></code></p>

  <p>The <i>name</i> part is a potentially qualified persistent class
     name that has been defined previously. The optional <i>alias</i>
     part gives this object an alias. If provided, the alias is used
     in several contexts instead of the object's unqualified name. We
     will discuss aliases further as we cover each of these contexts
     below. The optional <i>join-condition</i> part provides the
     criteria which should be used to associate this object with any
     of the previously associated objects or, as we will see in
     <a href="#9.3">Section 9.3, "Mixed Views"</a>, tables. Note that
     while the first associated object can have an alias, it cannot
     have a join condition.</p>

  <p>For each subsequent associated object the ODB compiler needs
     a join condition and there are several ways to specify
     it. The easiest way is to omit it altogether and let the ODB
     compiler try to come up with a join condition automatically.
     To do this the ODB compiler will examine each previously
     associated object for object relationships
     (<a href="#6">Chapter 6, "Relationships"</a>) that
     may exist between these objects and the object being associated.
     If such a relationship exists and is unambiguous, that is
     there is only one such relationship, then the ODB compiler
     will automatically use it to come up with the join condition for
     this object. This is exactly what happens in the previous
     example: there is a single relationship
     (<code>employee::employed_by</code>) between the
     <code>employee</code> and <code>employer</code> objects.</p>

  <p>On the other hand, consider this view:</p>

  <pre class="cxx">
#pragma db view object(employee) object(country)
struct employee_residence
{
  std::string first;
  std::string last;
  std::string name;
};
  </pre>

  <p>While there is a relationship between <code>country</code> and
     <code>employee</code>, it is ambiguous. It can be
     <code>employee::residence_</code> (which is what we want) or
     it can be <code>employee::nationality_</code> (which we don't
     want). As result, when compiling the above view, the ODB
     compiler will issue an error indicating an ambiguous object
     relationship. To resolve this ambiguity, we can explicitly
     specify the object relationship that should be used to create
     the join condition as the name of the corresponding data member.
     Here is how we can fix the <code>employee_residence</code>
     view:</p>

  <pre class="cxx">
#pragma db view object(employee) object(country: employee::residence_)
struct employee_residence
{
  std::string first;
  std::string last;
  std::string name;
};
  </pre>

  <p>It is possible to associate the same object with a single view
     more than once using different join conditions. However, in
     this case, we have to use aliases to assign different names
     for each association. For example:</p>

  <pre class="cxx">
#pragma db view object(employee) \
  object(country = res_country: employee::residence_) \
  object(country = nat_country: employee::nationality_)
struct employee_country
{
  ...
};
  </pre>

  <p>Note that correctly defining data members in this view requires
     the use of a mechanism that we haven't yet covered. We will
     see how to do this shortly.</p>

  <p>If we assign an alias to an object and refer to a data member of
     this object in one of the join conditions, we have to use the
     unqualified alias name instead of the potentially qualified
     object name. For example:</p>

  <pre class="cxx">
#pragma db view object(employee = ee) object(country: ee::residence_)
struct employee_residence
{
  ...
};
  </pre>

  <p>The last way to specify a join condition is to provide a custom
     query expression. This method is primarily useful if you would
     like to associate an object using a condition that does not
     involve an object relationship. Consider, for example, a
     modified <code>employee</code> object from the beginning of
     the chapter with an added country of birth member. For one
     reason or another we have decided not to use a relationship to
     the <code>country</code> object, as we have done with
     residence and nationality.</p>

  <pre class="cxx">
#pragma db object
class employee
{
  ...

  std::string birth_place_; // Country name.
};
  </pre>

  <p>If we now want to create a view that returns the birth country code
     for an employee, then we have to use a custom join condition when
     associating the <code>country</code> object. For example:</p>

  <pre class="cxx">
#pragma db view object(employee) \
  object(country: employee::birth_place_ == country::name_)
struct employee_birth_code
{
  std::string first;
  std::string last;
  std::string code;
};
  </pre>

  <p>The syntax of the query expression in custom join conditions
     is the same as in the query facility used to query the database
     for objects (<a href="#4">Chapter 4, "Querying the Database"</a>)
     except that for query members, instead of using
     <code>odb::query&lt;object>::member</code> names, we refer directly
     to object members.</p>

  <p>Looking at the views we have defined so far, you may be wondering
     how the ODB compiler knows which view data members correspond to which
     object data members. While the names are similar, they are not exactly
     the same, for example <code>employee_name::first</code> and
     <code>employee::first_</code>.</p>

  <p>As with join conditions, when it comes to associating data members,
     the ODB compiler tries to do this automatically. It first searches
     all the associated objects for an exact name match. If no match is
     found, then the ODB compiler compares the so-called public names.
     A public name of a member is obtained by removing the common member
     name decorations, such as leading and trailing underscores, the
     <code>m_</code> prefix, etc. In both of these searches the ODB
     compiler also makes sure that the types of the two members are the
     same or compatible.</p>

  <p>If one of the above searches returned a match and it is unambiguous, that
     is there is only one match, then the ODB compiler will automatically
     associate the two members. On the other hand, if no match is found
     or the match is ambiguous, the ODB compiler will issue an error.
     To associate two differently-named members or to resolve an ambiguity,
     we can explicitly specify the member association using the
     <code>db&nbsp;column</code> pragma (<a href="#12.4.9">Section 12.4.9,
     "<code>column</code>"</a>). For example:</p>

  <pre class="cxx">
#pragma db view object(employee) object(employer)
struct employee_employer
{
  std::string first;
  std::string last;

  #pragma db column(employer::name_)
  std::string employer_name;
};
  </pre>

  <p>If an object data member specifies the SQL type with
     the <code>db&nbsp;type</code> pragma (<a href="#12.4.3">Section
     12.4.3, "<code>type</code>"</a>), then this type is also used for
     the associated view data members.</p>

  <p>Note also that similar to join conditions, if we assign an alias to
     an object and refer to a data member of this object in one of the
     <code>db&nbsp;column</code> pragmas, then we have to use the
     unqualified alias name instead of the potentially qualified
     object name. For example:</p>

  <pre class="cxx">
#pragma db view object(employee) \
  object(country = res_country: employee::residence_) \
  object(country = nat_country: employee::nationality_)
struct employee_country
{
  std::string first;
  std::string last;

  #pragma db column(res_country::name_)
  std::string res_country_name;

  #pragma db column(nat_country::name_)
  std::string nat_country_name;
};
  </pre>

  <p>Besides specifying just the object member, we can also specify a
     <em>+-expression</em> in the <code>db&nbsp;column</code> pragma. A
     +-expression consists of string literals and object
     member references connected using the <code>+</code> operator.
     It is primarily useful for defining aggregate views based on
     SQL aggregate functions, for example:</p>

  <pre class="cxx">
#pragma db view object(employee)
struct employee_count
{
  #pragma db column("count(" + employee::id_ + ")")
  std::size_t count;
};
  </pre>

  <p>When querying the database for a view, we may want to provide
     additional query criteria based on the objects associated with
     this view. To support this a view defines query members for all
     the associated objects which allows us to refer to such objects'
     members using the <code>odb::query&lt;view>::member</code> expressions.
     This is similar to how we can refer to object members using the
     <code>odb::query&lt;object>::member</code> expressions when
     querying the database for an object. For example:</p>

  <pre class="cxx">
typedef odb::result&lt;employee_count> result;
typedef odb::query&lt;employee_count> query;

transaction t (db.begin ());

// Find the number of employees with the Doe last name.
//
result r (db.query&lt;employee_count> (query::last == "Doe"));

// Result of this aggregate query contains only one element.
//
cout &lt;&lt; r.begin ()->count &lt;&lt; endl;

t.commit ();
  </pre>

  <p>In the above query we used the last name data member from the associated
     <code>employee</code> object to only count employees with the specific
     name.</p>

  <p>When a view has only one associated object, the query members
     corresponding to this object are defined directly in the
     <code>odb::query&lt;view></code> scope. For instance,
     in the above example, we referred to the last name member as
     <code>odb::query&lt;employee_count>::last</code>. However, if
     a view has multiple associated objects, then query members
     corresponding to each such object are defined in a nested
     scope named after the object. As an example, consider
     the <code>employee_employer</code> view again:</p>

  <pre class="cxx">
#pragma db view object(employee) object(employer)
struct employee_employer
{
  std::string first;
  std::string last;

  #pragma db column(employer::name_)
  std::string employer_name;
};
  </pre>

  <p>Now, to refer to the last name data member from the <code>employee</code>
     object we use the
     <code>odb::query&lt;...>::employee::last</code> expression.
     Similarly, to refer to the employer name, we use the
     <code>odb::query&lt;...>::employer::name</code> expression.
     For example:</p>

  <pre class="cxx">
typedef odb::result&lt;employee_employer> result;
typedef odb::query&lt;employee_employer> query;

transaction t (db.begin ());

result r (db.query&lt;employee_employer> (
  query::employee::last == "Doe" &amp;&amp;
  query::employer::name == "Simple Tech Ltd"));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
  cout &lt;&lt; i->first &lt;&lt; " " &lt;&lt; i->last &lt;&lt;  " " &lt;&lt; i->employer_name &lt;&lt; endl;

t.commit ();
  </pre>

  <p>If we assign an alias to an object, then this alias is used to
     name the query members scope instead of the object name. As an
     example, consider the <code>employee_country</code> view again:</p>

  <pre class="cxx">
#pragma db view object(employee) \
  object(country = res_country: employee::residence_) \
  object(country = nat_country: employee::nationality_)
struct employee_country
{
  ...
};
  </pre>

  <p>And a query which returns all the employees that have the same
     country of residence and nationality:</p>

  <pre class="cxx">
typedef odb::query&lt;employee_country> query;
typedef odb::result&lt;employee_country> result;

transaction t (db.begin ());

result r (db.query&lt;employee_country> (
  query::res_country::name == query::nat_country::name));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
  cout &lt;&lt; i->first &lt;&lt; " " &lt;&lt; i->last &lt;&lt; " " &lt;&lt; i->res_country_name &lt;&lt; endl;

t.commit ();
  </pre>

  <p>Note also that unlike object query members, view query members do
     no support referencing members in related objects. For example,
     the following query is invalid:</p>

  <pre class="cxx">
typedef odb::query&lt;employee_name> query;
typedef odb::result&lt;employee_name> result;

transaction t (db.begin ());

result r (db.query&lt;employee_name> (
  query::employed_by->name == "Simple Tech Ltd"));

t.commit ();
  </pre>

  <p>To get this behavior, we would instead need to associate the
     <code>employer</code> object with this view and then use the
     <code>query::employer::name</code> expression instead of
     <code>query::employed_by->name</code>.</p>

  <p>As we have discussed above, if specified, an object alias is
     used instead of the object name in the join condition, data
     member references in the <code>db&nbsp;column</code> pragma,
     as well as to name the query members scope. The object alias
     is also used as a table name alias in the underlying
     <code>SELECT</code> statement generated by the ODB compiler.
     Normally, you would not use the table alias directly with
     object views. However, if for some reason you need to refer
     to a table column directly, for example, as part of a native
     query expression, and you need to qualify the column with
     the table, then you will need to use the table alias instead.</p>

  <h2><a name="9.2">9.2 Table Views</a></h2>

  <p>A table view is similar to an object view except that it is
     based on one or more database tables instead of persistent
     objects. Table views are primarily useful when dealing with
     ad-hoc tables that are not mapped to persistent classes.</p>

  <p>To associate one or more tables with a view we use the
     <code>db&nbsp;table</code> pragma (<a href="#12.2.2">Section 12.2.2,
     "<code>table</code>"</a>). To associate the second and subsequent
     tables we repeat the <code>db&nbsp;table</code> pragma for each
     additional table. For example, the following view is based on the
     <code>employee_extra</code> legacy table we have defined at the
     beginning of the chapter.</p>

  <pre class="cxx">
#pragma db view table("employee_extra")
struct employee_vacation
{
  #pragma db column("employee_id") type("INTEGER")
  unsigned long employee_id;

  #pragma db column("vacation_days") type("INTEGER")
  unsigned short vacation_days;
};
  </pre>

  <p>Besides the table name in the <code>db&nbsp;table</code> pragma
     we also have to specify the column name for each view data
     member. Note that unlike for object views, the ODB compiler
     does not try to automatically come up with column names for
     table views. Furthermore, we cannot use references to object
     members either, since there are no associated objects in table
     views. Instead, the actual column name or column expression
     must be specified as a string literal. The column name can
     also be qualified with a table name either in the
     <code>"table.column"</code> form or, if either a table
     or a column name contains a period, in the
     <code>"table"."column"</code> form. The following example
     illustrates the use of a column expression:</p>

  <pre class="cxx">
#pragma db view table("employee_extra")
struct employee_max_vacation
{
  #pragma db column("max(vacation_days)") type("INTEGER")
  unsigned short max_vacation_days;
};
  </pre>

  <p>Both the asociated table names and the column names can be qualified
     with a database schema, for example:</p>

  <pre class="cxx">
#pragma db view table("hr.employee_extra")
struct employee_max_vacation
{
  #pragma db column("hr.employee_extra.vacation_days") type("INTEGER")
  unsigned short vacation_days;
};
  </pre>

  <p>For more information on database schemas and the format of the
     qualified names, refer to <a href="#12.1.8">Section 12.1.8,
     "<code>schema</code>"</a>.</p>

  <p>Note also that in the above examples we specified the SQL type
     for each of the columns to make sure that the ODB compiler
     has knowledge of the actual types as specified in the database
     schema. This is required to obtain correct and optimal
     generated code.</p>


  <p>The complete syntax of the <code>db&nbsp;table</code> pragma
     is similar to the <code>db&nbsp;object</code> pragma and is shown
     below:</p>

  <p><code><b>table("</b><i>name</i><b>"</b>
                    [<b>=</b> <b>"</b><i>alias</i><b>"</b>]
                    [<b>:</b> <i>join-condition</i>]<b>)</b></code></p>

  <p>The <i>name</i> part is a database table name. The optional
     <i>alias</i> part gives this table an alias. If provided, the
     alias must be used instead of the table whenever a reference
     to a table is used. Contexts where such a reference may
     be needed include the join condition (discussed below),
     column names, and query expressions. The optional <i>join-condition</i>
     part provides the criteria which should be used to associate this
     table with any of the previously associated tables or, as we will see in
     <a href="#9.3">Section 9.3, "Mixed Views"</a>, objects. Note that
     while the first associated table can have an alias, it cannot have
     a join condition.</p>

  <p>Similar to object views, for each subsequent associated table the
     ODB compiler needs a join condition. However, unlike for object views,
     for table views the ODB compiler does not try to come up with one
     automatically. Furthermore, we cannot use references to object
     members corresponding to object relationships either, since there
     are no associated objects in table views. Instead, for each
     subsequent associated table, a join condition must be
     specified as a custom query expression. While the syntax of the
     query expression is the same as in the query facility used to query
     the database for objects (<a href="#4">Chapter 4, "Querying the
     Database"</a>), a join condition for a table is normally specified
     as a single string literal containing a native SQL query expression.</p>

  <p>As an example of a multi-table view, consider the
     <code>employee_health</code> table that we define in addition
     to <code>employee_extra</code>:</p>

  <pre class="sql">
CREATE TABLE employee_health(
  employee_id INTEGER NOT NULL,
  sick_leave_days INTEGER NOT NULL)
  </pre>

  <p>Given these two tables we can now define a view that returns both
     the vacation and sick leave information for each employee:</p>

  <pre class="cxx">
#pragma db view table("employee_extra" = "extra") \
  table("employee_health" = "health": \
        "extra.employee_id = health.employee_id")
struct employee_leave
{
  #pragma db column("extra.employee_id") type("INTEGER")
  unsigned long employee_id;

  #pragma db column("vacation_days") type("INTEGER")
  unsigned short vacation_days;

  #pragma db column("sick_leave_days") type("INTEGER")
  unsigned short sick_leave_days;
};
  </pre>

  <p>Querying the database for a table view is the same as for an
     object view except that we can only use native query expressions.
     For example:</p>

  <pre class="cxx">
typedef odb::query&lt;employee_leave> query;
typedef odb::result&lt;employee_leave> result;

transaction t (db.begin ());

unsigned short v_min = ...
unsigned short l_min = ...

result r (db.query&lt;employee_leave> (
  "vacation_days > " + query::_val(v_min) + "AND"
  "sick_leave_days > " + query::_val(l_min)));

t.commit ();
  </pre>


  <h2><a name="9.3">9.3 Mixed Views</a></h2>

  <p>A mixed view has both associated objects and tables. As a first
     example of a mixed view, let us improve <code>employee_vacation</code>
     from the previous section to return the employee's first
     and last names instead of the employee id. To achieve this we
     have to associate both the <code>employee</code> object and
     the <code>employee_extra</code> table with the view:</p>

  <pre class="cxx">
#pragma db view object(employee) \
  table("employee_extra" = "extra": "extra.employee_id = " + employee::id_)
struct employee_vacation
{
  std::string first;
  std::string last;

  #pragma db column("extra.vacation_days") type("INTEGER")
  unsigned short vacation_days;
};
  </pre>

  <p>When querying the database for a mixed view, we can use query members
     for the parts of the query expression that involves object members
     but have to fall back to using the native syntax for the parts that
     involve table columns. For example:</p>

  <pre class="cxx">
typedef odb::query&lt;employee_vacation> query;
typedef odb::result&lt;employee_vacation> result;

transaction t (db.begin ());

result r (db.query&lt;employee_vacation> (
  (query::last == "Doe") + "AND extra.vacation_days &lt;> 0"));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
  cout &lt;&lt; i->first &lt;&lt; " " &lt;&lt; i->last &lt;&lt; " " &lt;&lt; i->vacation_days &lt;&lt; endl;

t.commit ();
  </pre>

  <p>As another example, consider a more advanced view that associates
     two objects via a legacy table. This view allows us to find the
     previous employer name for each employee:</p>

  <pre class="cxx">
#pragma db view object(employee) \
  table("employee_extra" = "extra": "extra.employee_id = " + employee::id_) \
  object(employer: "extra.previous_employer_id = " + employer::id_)
struct employee_prev_employer
{
  std::string first;
  std::string last;

  // If previous_employer_id is NULL, then the name will be NULL as well.
  // We use the odb::nullable wrapper to handle this.
  //
  #pragma db column(employer::name_)
  odb::nullable&lt;std::string> prev_employer_name;
};
  </pre>

  <h2><a name="9.4">9.4 View Query Conditions</a></h2>

  <p>Object, table, and mixed views can also specify an optional query
     condition that should be used whenever the database is queried for
     this view. To specify a query condition we use the
     <code>db&nbsp;query</code> pragma (<a href="#12.2.3">Section 12.2.3,
     "<code>query</code>"</a>).</p>

  <p>As an example, consider a view that returns some information about
     all the employees that are over a predefined retirement age.
     One way to implement this would be to define a standard object
     view as we have done in the previous sections and then use a
     query like this:</p>

  <pre class="cxx">
result r (db.query&lt;employee_retirement> (query::age > 50));
  </pre>

  <p>The problem with the above approach is that we have to keep
     repeating the <code>query::age > 50</code> expression every
     time we execute the query, even though this expression always
     stays the same. View query conditions allow us to solve this
     problem. For example:</p>

  <pre class="cxx">
#pragma db view object(employee) query(employee::age > 50)
struct employee_retirement
{
  std::string first;
  std::string last;
  unsigned short age;
};
  </pre>

  <p>With this improvement we can rewrite our query like this:</p>

  <pre class="cxx">
result r (db.query&lt;employee_retirement> ());
  </pre>

   <p>But what if we may also need to restrict the result set based on
      some varying criteria, such as the employee's last name? Or, in other
      words, we may need to combine a constant query expression specified
      in the <code>db&nbsp;query</code> pragma with the varying expression
      specified at the query execution time. To allow this, the
      <code>db&nbsp;query</code> pragma syntax supports the use of the special
      <code>(?)</code> placeholder that indicates the position in the
      constant query expression where the runtime expression should be
      inserted. For example:</p>

  <pre class="cxx">
#pragma db view object(employee) query(employee::age > 50 &amp;&amp; (?))
struct employee_retirement
{
  std::string first;
  std::string last;
  unsigned short name;
};
  </pre>

  <p>With this change we can now use additional query criteria in our
     view:</p>

  <pre class="cxx">
result r (db.query&lt;employee_retirement> (query::last == "Doe"));
  </pre>

  <p>The syntax of the expression in a query condition is the same as in
     the query facility used to query the database for objects
     (<a href="#4">Chapter 4, "Querying the Database"</a>) except for
     two differences. Firstly, for query members, instead of
     using <code>odb::query&lt;object>::member</code> names, we refer
     directly to object members, using the object alias instead of the
     object name if an alias was assigned. Secondly, query conditions
     support the special <code>(?)</code> placeholder which can be used
     both in the C++-integrated query expressions as was shown above
     and in native SQL expressions specified as string literals. The
     following view is an example of the latter case:</p>

  <pre class="cxx">
#pragma db view table("employee_extra") \
  query("vacation_days &lt;> 0 AND (?)")
struct employee_vacation
{
  ...
};
  </pre>

  <p>Another common use case for query conditions are views with the
     <code>ORDER BY</code> or <code>GROUP BY</code> clause. Such
     clauses are normally present in the same form in every query
     involving such views. As an example, consider an aggregate
     view which calculate the minimum and maximum ages of employees
     for each employer:</p>

  <pre class="cxx">
#pragma db view object(employee) object(employer) \
  query ((?) + "GROUP BY" + employer::name_)
struct employer_age
{
  #pragma db column(employer::name_)
  std::string employer_name;

  #pragma db column("min(" + employee::age_ + ")")
  unsigned short min_age;

  #pragma db column("max(" + employee::age_ + ")")
  unsigned short max_age;
};
  </pre>

  <h2><a name="9.5">9.5 Native Views</a></h2>

  <p>The last kind of view supported by ODB is a native view. Native
     views are a low-level mechanism for capturing results of native
     SQL queries. Native views don't have associated tables or objects.
     Instead, we use the <code>db&nbsp;query</code> pragma to specify
     the native SQL query, which must at a minimum include the
     select-list and, if applicable, the from-list. For example, here
     is how we can re-implement the <code>employee_vacation</code> table
     view from Section 9.2 above as a native view:</p>

  <pre class="cxx">
#pragma db view query("SELECT employee_id, vacation_days " \
                      "FROM employee_extra")
struct employee_vacation
{
  #pragma db type("INTEGER")
  unsigned long employee_id;

  #pragma db type("INTEGER")
  unsigned short vacation_days;
};
  </pre>

  <p>In native views the columns in the query select-list are
     associated with the view data members in the order specified.
     That is, the first column is stored in the first member, the
     second column &mdash; in the second member, and so on. The ODB compiler
     does not perform any error checking in this association. As a result
     you must make sure that the number and order of columns in the
     query select-list match the number and order of data members
     in the view. This is also the reason why we are not
     required to provide the column name for each data member in native
     views, as is the case for object and table views.</p>

  <p>Note also that while it is always possible to implement a table
     view as a native view, the table views must be preferred since
     they are safer. In a native view, if you add, remove, or
     rearrange data members without updating the column list in the
     query, or vice versa, at best, this will result in a runtime
     error. In contrast, in a table view such changes will result
     in the query being automatically updated.</p>

  <p>Similar to object and table views, the query specified for
     a native view can contain the special <code>(?)</code>
     placeholder which is replaced with the query expression
     specified at the query execution time.
     If the native query does not contain a placeholder, as in
     the example above, then any query expression specified at
     the query execution time is appended to the query text
     along with the <code>WHERE</code> keyword, if required.
     The following example shows the usage of the placeholder:</p>

  <pre class="cxx">
#pragma db view query("SELECT employee_id, vacation_days " \
                      "FROM employee_extra " \
                      "WHERE vacation_days &lt;> 0 AND (?)")
struct employee_vacation
{
  ...
};
  </pre>

  <p>As another example, consider a view that returns the next
     value of a database sequence:</p>

  <pre class="cxx">
#pragma db view query("SELECT nextval('my_seq')")
struct sequence_value
{
  unsigned long long value;
};
  </pre>

  <p>While this implementation can be acceptable in some cases, it has
     a number of drawbacks. Firstly, the name of the sequence is
     fixed in the view, which means if we have a second sequence, we
     will have to define another, almost identical view. Similarly,
     the operation that we perform on the sequence is also fixed.
     In some situations, instead of returning the next value, we may
     need the last value.</p>

  <p>Note that we cannot use the placeholder mechanism to resolve
     these problems since placeholders can only be used in the
     <code>WHERE</code>, <code>GROUP BY</code>, and similar
     clauses. In other words, the following won't work:</p>

  <pre class="cxx">
#pragma db view query("SELECT nextval('(?)')")
struct sequence_value
{
  unsigned long long value;
};

result r (db.query&lt;sequence_value> ("my_seq"));
  </pre>

  <p>To support these kinds of use cases, ODB allows us to specify the
     complete query for a native view at runtime rather than at the view
     definition. To indicate that a native view has a runtime query,
     we can either specify the empty <code>db&nbsp;query</code>
     pragma or omit the pragma altogether. For example:</p>

  <pre class="cxx">
#pragma db view
struct sequence_value
{
  unsigned long long value;
};
  </pre>

  <p>Given this view, we can perform the following queries:</p>

  <pre class="cxx">
typedef odb::query&lt;sequence_value> query;
typedef odb::result&lt;sequence_value> result;

string seq_name = ...

result l (db.query&lt;sequence_value> (
  "SELECT lastval('" + seq_name + "')"));

result n (db.query&lt;sequence_value> (
  "SELECT nextval('" + seq_name + "')"));
  </pre>


  <h2><a name="9.6">9.6 Other View Features and Limitations</a></h2>

  <p>Views cannot be derived from other views. However, you can derive
     a view from a transient C++ class. View data members cannot be
     object pointers. If you need to access data from a pointed-to
     object, then you will need to associate such an object with
     the view. Similarly, view data members cannot be containers.
     These two limitations also apply to composite value types that
     contain object pointers or containers. Such composite values
     cannot be used as view data members.</p>

  <p>On the other hand, composite values that do not contain object
     pointers or containers can be used in views. As an example,
     consider a modified version of the <code>employee</code> persistent
     class that stores a person's name as a composite value:</p>

  <pre class="cxx">
#pragma db value
class person_name
{
  std::string first_;
  std::string last_;
};

#pragma db object
class employee
{
  ...

  person_name name_;

  ...
};
  </pre>

  <p>Given this change, we can re-implement the <code>employee_name</code>
     view like this:</p>

  <pre class="cxx">
#pragma db view object(employee)
struct employee_name
{
  person_name name;
};
  </pre>

  <p>It is also possible to extract some or all of the nested members
     of a composite value into individual view data members. Here is
     how we could have defined the <code>employee_name</code> view
     if we wanted to keep its original structure:</p>

  <pre class="cxx">
#pragma db view object(employee)
struct employee_name
{
  #pragma db column(employee::name.first_)
  std::string first;

  #pragma db column(employee::name.last_)
  std::string last;
};
  </pre>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="10">10 Session</a></h1>

  <p>A session is an application's unit of work that may encompass several
     database transactions. In this version of ODB a session is just an
     object cache. In future versions it will provide additional
     functionality, such as automatic object state change tracking.</p>

  <p>Session support is optional and can be enabled or disabled on the
     per object basis using the <code>db&nbsp;session</code> pragma, for
     example:</p>

  <pre class="cxx">
#pragma db object session
class person
{
  ...
};
  </pre>

  <p>We can also enable or disable session support for a group of
     objects at the namespace level:</p>

  <pre class="cxx">
#pragma db namespace session
namespace accounting
{
  #pragma db object                // Session support is enabled.
  class employee
  {
    ...
  };

  #pragma db object session(false) // Session support is disabled.
  class employer
  {
    ...
  };
}
  </pre>

  <p>Finally, we can pass the <code>--generate-session</code> ODB compiler
     option to enable session support by default. With this option session
     support will be enabled for all the persistent classes except those
     for which it was explicitly disabled using the
     <code>db&nbsp;session</code>. An alternative to this method with the
     same effect is to enable session support for the global namespace:</p>

  <pre class="cxx">
#pragma db namespace() session
  </pre>

  <p>Each thread of execution in an application can have only one active
     session at a time. A session is started by creating an instance of
     the <code>odb::session</code> class and is automatically terminated
     when this instance is destroyed. You will need to include the
     <code>&lt;odb/session.hxx></code> header file to make this class
     available in your application. For example:</p>

  <pre class="cxx">
#include &lt;odb/database.hxx>
#include &lt;odb/session.hxx>
#include &lt;odb/transaction.hxx>

using namespace odb::core;

{
  session s;

  // First transaction.
  //
  {
    transaction t (db.begin ());
    ...
    t.commit ();
  }

  // Second transaction.
  //
  {
    transaction t (db.begin ());
    ...
    t.commit ();
  }

  // Session 's' is terminated here.
}
  </pre>

  <p>The <code>session</code> class has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  class session
  {
  public:
    session (bool make_current = true);
    ~session ();

    // Copying or assignment of sessions is not supported.
    //
  private:
    session (const session&amp;);
    session&amp; operator= (const session&amp;);

    // Current session interface.
    //
  public:
    static session&amp;
    current ();

    static bool
    has_current ();

    static void
    current (session&amp;);

    static void
    reset_current ();

    // Object cache interface.
    //
  public:
    typedef odb::database database_type;

    template &lt;typename T>
    void
    insert (database_type&amp;,
            const object_traits&lt;T>::id_type&amp;,
            const object_traits&lt;T>::pointer_type&amp;);

    template &lt;typename T>
    object_traits&lt;T>::pointer_type
    find (database_type&amp;, const object_traits&lt;T>::id_type&amp;) const;

    template &lt;typename T>
    void
    erase (database_type&amp;, const object_traits&lt;T>::id_type&amp;);
  };
}
  </pre>

  <p>The session constructor creates a new session and, if the
     <code>make_current</code> argument is <code>true</code>, sets it as a
     current session for this thread. If we try to make a session current
     while there is already another session in effect for this thread,
     then the constructor throws the <code>odb::already_in_session</code>
     exception. The destructor clears the current session for this
     thread if this session is the current one.</p>

  <p>The static <code>current()</code> accessor returns the currently active
     session for this thread. If there is no active session, this function
     throws the <code>odb::not_in_session</code> exception. We can check
     whether there is a session in effect in this thread using the
     <code>has_current()</code> static function.</p>

  <p>The static <code>current()</code> modifier allows us to set the
     current session for this thread. The <code>reset_current()</code>
     static function clears the current session. These two functions
     allow for more advanced use cases, such as multiplexing
     two or more sessions on the same thread.</p>

  <p>We normally don't use the object cache interface directly. However,
     it could be useful in some cases, for example, to find out whether
     an object has already been loaded.</p>

  <h2><a name="10.1">10.1 Object Cache</a></h2>

  <p>A session is an object cache. Every time a session-enabled object is
     made persistent by calling the <code>database::persist()</code> function
     (<a href="#3.8">Section 3.8, "Making Objects Persistent"</a>), loaded
     by calling the <code>database::load()</code> or <code>database::find()</code>
     function (<a href="#3.9">Section 3.9, "Loading Persistent Objects"</a>),
     or loaded by iterating over a query result (<a href="#4.4">Section 4.4,
     "Query Result"</a>), the pointer to the persistent object, in the form
     of the canonical object pointer (<a href="#3.3">Section 3.3, "Object
     and View Pointers"</a>), is stored in the session. For as long as the
     session is in effect, any subsequent calls to load the same object will
     return the cached instance. When an object's state is deleted from the
     database with the <code>database::erase()</code> function
     (<a href="#3.11">Section 3.11, "Deleting Persistent Objects"</a>), the
     cached object pointer is removed from the session. For example:</p>

  <pre class="cxx">
shared_ptr&lt;person> p (new person ("John", "Doe"));

session s;
transaction t (db.begin ());

unsigned long id (db.persist (p));            // p is cached in s.
shared_ptr&lt;person> p1 (db.load&lt;person> (id)); // p1 same as p.

t.commit ();
  </pre>


  <p>The per-object caching policies depend on the object pointer kind
     (<a href="#6.4">Section 6.4, "Using Custom Smart Pointers"</a>).
     Objects with a unique pointer, such as <code>std::auto_ptr</code>
     or <code>std::unique_ptr</code>, as an object pointer are never
     cached since it is not possible to have two such pointers pointing
     to the same object. When an object is persisted via a pointer or
     loaded as a dynamically allocated instance, objects with both raw
     and shared pointers as object pointers are cached. If an object is
     persisted as a reference or loaded into a pre-allocated instance,
     the object is only cached if its object pointer is a raw pointer.</p>

  <p>Also note that when we persist an object as a constant reference
     or constant pointer, the session caches such an object as
     unrestricted (non-<code>const</code>). This can lead to undefined
     behavior if the object being persisted was actually created as
     <code>const</code> and is later found in the session cache and
     used as non-<code>const</code>. As a result, when using sessions,
     it is recommended that all persistent objects be created as
     non-<code>const</code> instances. The following code fragment
     illustrates this point:</p>

  <pre class="cxx">
void save (database&amp; db, shared_ptr&lt;const person> p)
{
  transaction t (db.begin ());
  db.persist (p); // Persisted as const pointer.
  t.commit ();
}

session s;

shared_ptr&lt;const person> p1 (new const person ("John", "Doe"));
unsigned long id1 (save (db, p1)); // p1 is cached in s as non-const.

{
  transaction t (db.begin ());
  shared_ptr&lt;person> p (db.load&lt;person> (id1)); // p == p1
  p->age (30); // Undefined behavior since p1 was created const.
  t.commit ();
}

shared_ptr&lt;const person> p2 (new person ("Jane", "Doe"));
unsigned long id2 (save (db, p2)); // p2 is cached in s as non-const.

{
  transaction t (db.begin ());
  shared_ptr&lt;person> p (db.load&lt;person> (id2)); // p == p2
  p->age (30); // Ok, since p2 was not created const.
  t.commit ();
}
  </pre>

  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="11">11 Optimistic Concurrency</a></h1>

  <p>The ODB transaction model (<a href="#3.5">Section 3.5,
     "Transactions"</a>) guarantees consistency as long as we perform all the
     database operations corresponding to a specific application transaction
     in a single database transaction. That is, if we load an object within a
     database transaction and update it in the same transaction, then we are
     guaranteed that the object state that we are updating in the database is
     exactly the same as the state we have loaded. In other words, it is
     impossible for another process or thread to modify the object state
     in the database between these load and update operations.</p>

  <p>In this chapter we use the term <em>application transaction</em>
     to refer to a set of operations on persistent objects that an
     application needs to perform in order to implement some
     application-specific functionality. The term <em>database
     transaction</em> refers to the set of database operations
     performed between the ODB <code>begin()</code> and <code>commit()</code>
     calls. Up until now we have treated application transactions and
     database transactions as essentially the same thing.</p>

  <p>While this model is easy to understand and straightforward to use,
     it may not be suitable for applications that have long application
     transactions. The canonical example of such a situation is an
     application transaction that requires user input between loading
     an object and updating it. Such an operation may take an arbitrary
     long time to complete and performing it within a single database
     transaction will consume database resources as well as prevent
     other processes/threads from updating the object for too long.</p>

  <p>The solution to this problem is to break up the long-lived
     application transaction into several short-lived database
     transactions. In our example that would mean loading the object
     in one database transaction, waiting for user input, and then
     updating the object in another database transaction. For example:</p>

  <pre class="cxx">
unsigned long id = ...;
person p;

{
  transaction t (db.begin ());
  db.load (id, p);
  t.commit ();
}

cerr &lt;&lt; "enter age for " &lt;&lt; p.first () &lt;&lt; " " &lt;&lt; p.last () &lt;&lt; endl;
unsigned short age;
cin >> age;
p.age (age);

{
  transaction t (db.begin ());
  db.update (p);
  t.commit ();
}
  </pre>

  <p>This approach works well if we only have one process/thread that can ever
     update the object. However, if we have multiple processes/threads
     modifying the same object, then this approach does not guarantee
     consistency anymore. Consider what happens in the above example if
     another process updates the person's last name while we are waiting for
     the user input. Since we loaded the object before this change occured,
     our version of the person's data will still have the old name. Once we
     receive the input from the user, we go ahead and update the object,
     overwriting both the old age with the new one (correct) and the new name
     with the old one (incorrect).</p>

  <p>While there is no way to restore the consistency guarantee in
     an application transaction that consists of multiple database
     transactions, ODB provides a mechanism, called optimistic
     concurrency, that allows applications to detect and potentially
     recover from such inconsistencies.</p>

  <p>In essence, the optimistic concurrency model detects mismatches
     between the current object state in the database and the state
     when it was loaded into the application memory. Such a mismatch
     would mean that the object was changed by another process or
     thread. There are several ways to implement such state mismatch
     detection. Currently, ODB uses object versioning while other
     methods, such as timestamps, may be supported in the future.</p>

  <p>To declare a persistent class with the optimistic concurrency model we
     use the <code>optimistic</code> pragma (<a href="#12.1.5">Section 12.1.5,
     "<code>optimistic</code>"</a>). We also use the <code>version</code>
     pragma (<a href="#12.4.15">Section 12.4.15, "<code>version</code>"</a>)
     to specify which data member will store the object version. For
     example:</p>

  <pre class="cxx">
#pragma db object optimistic
class person
{
  ...

  #pragma db version
  unsigned long version_;
};
  </pre>

  <p>The version data member is managed by ODB. It is initialized to
     <code>1</code> when the object is made persistent and incremented
     by <code>1</code> with each update. The <code>0</code> version value
     is not used by ODB and the application can use it as a special value,
     for example, to indicate that the object is transient. Note that
     for optimistic concurrency to function properly, the application
     should not modify the version member after making the object persistent
     or loading it from the database and until deleting the state of this
     object from the database. To avoid any accidental modifications
     to the version member, we can declare it <code>const</code>, for
     example:</p>

  <pre class="cxx">
#pragma db object optimistic
class person
{
  ...

  #pragma db version
  const unsigned long version_;
};
  </pre>

  <p>When we call the <code>database::update()</code> function
     (<a href="#3.10">Section 3.10, "Updating Persistent Objects"</a>) and pass
     an object that has an outdated state, the <code>odb::object_changed</code>
     exception is thrown. At this point the application has two
     recovery options: it can abort and potentially restart the
     application transaction or it can reload the new object
     state from the database, re-apply or merge the changes, and call
     <code>update()</code> again. Note that aborting an application
     transaction that performs updates in multiple database transactions
     may require reverting changes that have already been committed to
     the database. As a result, this strategy works best if all the
     updates are performed in the last database transaction of the
     application transaction. This way the changes can be reverted
     by simply rolling back this last database transaction.</p>

  <p>The following example shows how we can reimplement the above
     transaction using the second recovery option:</p>

  <pre class="cxx">
unsigned long id = ...;
person p;

{
  transaction t (db.begin ());
  db.load (id, p);
  t.commit ();
}

cerr &lt;&lt; "enter age for " &lt;&lt; p.first () &lt;&lt; " " &lt;&lt; p.last () &lt;&lt; endl;
unsigned short age;
cin >> age;
p.age (age);

{
  transaction t (db.begin ());

  try
  {
    db.update (p);
  }
  catch (const object_changed&amp;)
  {
    db.reload (p);
    p.age (age);
    db.update (p);
  }

  t.commit ();
}
  </pre>

  <p>An important point to note in the above code fragment is that the second
     <code>update()</code> call cannot throw the <code>object_changed</code>
     exception because we are reloading the state of the object
     and updating it within the same database transaction.</p>

  <p>Depending on the recovery strategy employed by the application,
     an application transaction with a failed update can be significantly
     more expensive than a successful one. As a result, optimistic
     concurrency works best for situations with low to medium contention
     levels where the majority of the application transactions complete
     without update conflicts. This is also the reason why this concurrency
     model is called optimistic.</p>

  <p>In addition to updates, ODB also performs state mismatch detection
     when we are deleting an object from the database
     (<a href="#3.11">Section 3.11, "Deleting Persistent Objects"</a>).
     To understand why this can be important, consider the following
     application transaction:</p>

  <pre class="cxx">
unsigned long id = ...;
person p;

{
  transaction t (db.begin ());
  db.load (id, p);
  t.commit ();
}

string answer;
cerr &lt;&lt; "age is " &lt;&lt; p.age () &lt;&lt; ", delete?" &lt;&lt; endl;
getline (cin, answer);

if (answer == "yes")
{
  transaction t (db.begin ());
  db.erase (p);
  t.commit ();
}
  </pre>

  <p>Consider again what happens if another process or thread updates
     the object by changing the person's age while we are waiting for
     the user input. In this case, the user makes the decision based on
     a certain age while we may delete (or not delete) an object that has
     a completely different age. Here is how we can  fix this problem
     using optimistic concurrency:</p>

  <pre class="cxx">
unsigned long id = ...;
person p;

{
  transaction t (db.begin ());
  db.load (id, p);
  t.commit ();
}

string answer;
for (bool done (false); !done; )
{
  if (answer.empty ())
    cerr &lt;&lt; "age is " &lt;&lt; p.age () &lt;&lt; ", delete?" &lt;&lt; endl;
  else
    cerr &lt;&lt; "age changed to " &lt;&lt; p.age () &lt;&lt; ", still delete?" &lt;&lt; endl;

  getline (cin, answer);

  if (answer == "yes")
  {
    transaction t (db.begin ());

    try
    {
      db.erase (p);
      done = true;
    }
    catch (const object_changed&amp;)
    {
      db.reload (p);
    }

    t.commit ();
  }
  else
    done = true;
}
  </pre>

  <p>Note that state mismatch detection is performed only if we delete
     an object by passing the object instance to the <code>erase()</code>
     function. If we want to delete an object with the optimistic concurrency
     model regardless of its state, then we need to use the <code>erase()</code>
     function that deletes an object given its id, for example:</p>

  <pre class="cxx">
{
  transaction t (db.begin ());
  db.erase (p.id ());
  t.commit ();
}
  </pre>

  <p>Finally, note that for persistent classes with the optimistic concurrency
     model both the <code>update()</code> function as well as the
     <code>erase()</code> function that accepts an object instance as its
     argument no longer throw the <code>object_not_persistent</code>
     exception if there is no such object in the database. Instead,
     this condition is treated as a change of object state and the
     <code>object_changed</code> exception is thrown instead.</p>

  <p>For complete sample code that shows how to use optimistic
     concurrency, refer to the <code>optimistic</code> example in
     the <code>odb-examples</code> package.</p>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="12">12 ODB Pragma Language</a></h1>

  <p>As we have already seen in previous chapters, ODB uses a pragma-based
     language to capture database-specific information about C++ types.
     This chapter describes the ODB pragma language in more detail. It
     can be read together with other chapters in the manual to get a
     sense of what kind of configurations and mapping fine-tuning are
     possible. You can also use this chapter as a reference at a later
     stage.</p>

  <p>An ODB pragma has the following syntax:</p>

  <p><code>#pragma db <i>qualifier</i> [<i>specifier</i> <i>specifier</i> ...]</code></p>

  <p>The <em>qualifier</em> tells the ODB compiler what kind of C++ construct
     this pragma describes. Valid qualifiers are <code>object</code>,
     <code>view</code>, <code>value</code>, <code>member</code>,
     <code>namespace</code>, <code>index</code>, and <code>map</code>.
     A pragma with the <code>object</code> qualifier describes a persistent
     object type. It tells the ODB compiler that the C++ class it describes
     is a persistent class. Similarly, pragmas with the <code>view</code>
     qualifier describe view types, the <code>value</code> qualifier
     describes value types and the <code>member</code> qualifier is used
     to describe data members of persistent object, view, and value types.
     The <code>namespace</code> qualifier is used to describe common
     properties of objects, views, and value types that belong to
     a C++ namespace. The <code>index</code> qualifier defines a
     database index. And, finally, the <code>map</code> qualifier
     describes a mapping between additional database types and types
     for which ODB provides built-in support.</p>

  <p>The <em>specifier</em> informs the ODB compiler about a particular
     database-related property of the C++ declaration. For example, the
     <code>id</code> member specifier tells the ODB compiler that this
     member contains this object's identifier. Below is the declaration
     of the <code>person</code> class that shows how we can use ODB
     pragmas:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
private:
  #pragma db member id
  unsigned long id_;
  ...
};
  </pre>

  <p>In the above example we don't explicitly specify which C++ class or
     data member the pragma belongs to. Rather, the pragma applies to
     a C++ declaration that immediately follows the pragma. Such pragmas
     are called <em>positioned pragmas</em>. In positioned pragmas that
     apply to data members, the <code>member</code> qualifier can be
     omitted for brevity, for example:</p>

  <pre class="cxx">
  #pragma db id
  unsigned long id_;
  </pre>

  <p>Note also that if the C++ declaration immediately following a
     position pragma is incompatible with the pragma qualifier, an
     error will be issued. For example:</p>

  <pre class="cxx">
  #pragma db object  // Error: expected class instead of data member.
  unsigned long id_;
  </pre>

  <p>While keeping the C++ declarations and database declarations close
     together eases maintenance and increases readability, we can also
     place them in different parts of the same header file or even
     factor them to a separate file. To achieve this we use the so called
     <em>named pragmas</em>. Unlike positioned pragmas, named pragmas
     explicitly specify the C++ declaration to which they apply by
     adding the declaration name after the pragma qualifier. For example:</p>

  <pre class="cxx">
class person
{
  ...
private:
  unsigned long id_;
  ...
};

#pragma db object(person)
#pragma db member(person::id_) id
  </pre>

  <p>Note that in the named pragmas for data members the <code>member</code>
     qualifier is no longer optional. The C++ declaration name in the
     named pragmas is resolved using the standard C++ name resolution
     rules, for example:</p>

  <pre class="cxx">
namespace db
{
  class person
  {
    ...
  private:
    unsigned long id_;
    ...
  };
}

namespace db
{
  #pragma db object(person)  // Resolves db::person.
}

#pragma db member(db::person::id_) id
  </pre>

  <p>As another example, the following code fragment shows how to use the
     named value type pragma to map a C++ type to a native database type:</p>

  <pre class="cxx">
#pragma db value(bool) type("INT")

#pragma db object
class person
{
  ...
private:
  bool married_; // Mapped to INT NOT NULL database type.
  ...
};
  </pre>

  <p>If we would like to factor the ODB pragmas into a separate file,
     we can include this file into the original header file (the one
     that defines the persistent types) using the <code>#include</code>
     directive, for example:</p>

  <pre class="cxx">
// person.hxx

class person
{
  ...
};

#ifdef ODB_COMPILER
#  include "person-pragmas.hxx"
#endif
  </pre>

  <p>Alternatively, instead of using the <code>#include</code> directive,
     we can use the <code>--odb-epilogue</code> option to make the pragmas
     known to the ODB compiler when compiling the original header file,
     for example:</p>

  <pre class="terminal">
--odb-epilogue  '#include "person-pragmas.hxx"'
  </pre>

  <p>The following sections cover the specifiers applicable to all the
     qualifiers mentioned above.</p>

  <p>The C++ header file that defines our persistent classes and
     normally contains one or more ODB pragmas is compiled by both
     the ODB compiler to generate the database support code and
     the C++ compiler to build the application. Some C++ compilers
     issue warnings about pragmas that they do not recognize. There
     are several ways to deal with this problem which are covered
     at the end of this chapter in <a href="#12.8">Section 12.8,
     "C++ Compiler Warnings"</a>.</p>

  <h2><a name="12.1">12.1 Object Type Pragmas</a></h2>

  <p>A pragma with the <code>object</code> qualifier declares a C++ class
     as a persistent object type. The qualifier can be optionally followed,
     in any order, by one or more specifiers summarized in the table below:</p>

  <!-- border="1" is necessary for html2ps -->
  <table class="specifiers" border="1">
    <tr>
      <th>Specifier</th>
      <th>Summary</th>
      <th>Section</th>
    </tr>

    <tr>
      <td><code>table</code></td>
      <td>table name for a persistent class</td>
      <td><a href="#12.1.1">12.1.1</a></td>
    </tr>

    <tr>
      <td><code>pointer</code></td>
      <td>pointer type for a persistent class</td>
      <td><a href="#12.1.2">12.1.2</a></td>
    </tr>

    <tr>
      <td><code>abstract</code></td>
      <td>persistent class is abstract</td>
      <td><a href="#12.1.3">12.1.3</a></td>
    </tr>

    <tr>
      <td><code>readonly</code></td>
      <td>persistent class is read-only</td>
      <td><a href="#12.1.4">12.1.4</a></td>
    </tr>

    <tr>
      <td><code>optimistic</code></td>
      <td>persistent class with the optimistic concurrency model</td>
      <td><a href="#12.1.5">12.1.5</a></td>
    </tr>

    <tr>
      <td><code>no_id</code></td>
      <td>persistent class has no object id</td>
      <td><a href="#12.1.6">12.1.6</a></td>
    </tr>

    <tr>
      <td><code>callback</code></td>
      <td>database operations callback</td>
      <td><a href="#12.1.7">12.1.7</a></td>
    </tr>

    <tr>
      <td><code>schema</code></td>
      <td>database schema for a persistent class</td>
      <td><a href="#12.1.8">12.1.8</a></td>
    </tr>

    <tr>
      <td><code>polymorphic</code></td>
      <td>persistent class is polymorphic</td>
      <td><a href="#12.1.9">12.1.9</a></td>
    </tr>

    <tr>
      <td><code>session</code></td>
      <td>enable/disable session support for a persistent class</td>
      <td><a href="#12.1.10">12.1.10</a></td>
    </tr>

    <tr>
      <td><code>definition</code></td>
      <td>definition location for a persistent class</td>
      <td><a href="#12.1.11">12.1.11</a></td>
    </tr>

    <tr>
      <td><code>transient</code></td>
      <td>all non-virtual data members in a persistent class are transient</td>
      <td><a href="#12.1.12">12.1.12</a></td>
    </tr>

  </table>

  <h3><a name="12.1.1">12.1.1 <code>table</code></a></h3>

  <p>The <code>table</code> specifier specifies the table name that should
     be used to store objects of the persistent class in a relational
     database. For example:</p>

  <pre class="cxx">
#pragma db object table("people")
class person
{
  ...
};
  </pre>

  <p>If the table name is not specified, the class name is used as the
     table name. The table name can be qualified with a database
     schema, for example:</p>

  <pre class="cxx">
#pragma db object table("census.people")
class person
{
  ...
};
  </pre>

  <p>For more information on database schemas and the format of the
     qualified names, refer to <a href="#12.1.8">Section 12.1.8,
     "<code>schema</code>"</a>.</p>

  <h3><a name="12.1.2">12.1.2 <code>pointer</code></a></h3>

  <p>The <code>pointer</code> specifier specifies the object pointer type
     for the persistent class. The object pointer type is used to return,
     pass, and cache dynamically allocated instances of a persistent
     class. For example:</p>

  <pre class="cxx">
#pragma db object pointer(std::tr1::shared_ptr&lt;person>)
class person
{
  ...
};
  </pre>

  <p>There are several ways to specify an object pointer with the
     <code>pointer</code> specifier. We can use a complete pointer
     type as shown in the example above. Alternatively, we can
     specify only the template name of a smart pointer in which
     case the ODB compiler will automatically append the class
     name as a template argument. The following example is therefore
     equivalent to the one above:</p>

  <pre class="cxx">
#pragma db object pointer(std::tr1::shared_ptr)
class person
{
  ...
};
  </pre>

  <p>If you would like to use the raw pointer as an object pointer,
     you can use <code>*</code> as a shortcut:</p>

  <pre class="cxx">
#pragma db object pointer(*) // Same as pointer(person*)
class person
{
  ...
};
  </pre>

  <p>If a pointer type is not explicitly specified, the default pointer,
     specified at the namespace level (<a href="#12.5.1">Section 12.5.1,
     "<code>pointer</code>"</a>) or with the <code>--default-pointer</code>
     ODB compiler option, is used. If neither of these two mechanisms is
     used to specify the pointer, then the raw pointer is used by default.</p>

  <p>For a more detailed discussion of object pointers, refer to
     <a href="#3.3">Section 3.3, "Object and View Pointers"</a>.</p>

  <h3><a name="12.1.3">12.1.3 <code>abstract</code></a></h3>

  <p>The <code>abstract</code> specifier specifies that the persistent class
     is abstract. An instance of an abstract class cannot be stored in
     the database and is normally used as a base for other persistent
     classes. For example:</p>

  <pre class="cxx">
#pragma db object abstract
class person
{
  ...
};

#pragma db object
class employee: public person
{
  ...
};

#pragma db object
class contractor: public person
{
  ...
};
  </pre>

  <p>Persistent classes with pure virtual functions are automatically
     treated as abstract by the ODB compiler. For a more detailed
     discussion of persistent class inheritance, refer to
     <a href="#8">Chapter 8, "Inheritance"</a>.</p>

  <h3><a name="12.1.4">12.1.4 <code>readonly</code></a></h3>

  <p>The <code>readonly</code> specifier specifies that the persistent class
     is read-only. The database state of read-only objects cannot be
     updated. In particular, this means that you cannot call the
     <code>database::update()</code> function (<a href="#3.10">Section 3.10,
     "Updating Persistent Objects"</a>) for such objects. For example:</p>

  <pre class="cxx">
#pragma db object readonly
class person
{
  ...
};
  </pre>

  <p>Read-only and read-write objects can derive from each other without
     any restrictions. When a read-only object derives from a read-write
     object, the resulting whole object is read-only, including the part
     corresponding to the read-write base. On the other hand, when a
     read-write object derives from a read-only object, all the data
     members that correspond to the read-only base are treated as
     read-only while the rest is treated as read-write.</p>

  <p>Note that it is also possible to declare individual data members
    (<a href="#12.4.12">Section 12.4.12, "<code>readonly</code>"</a>)
     as well as composite value types (<a href="#12.3.6">Section 12.3.6,
     "<code>readonly</code>"</a>) as read-only.</p>

  <h3><a name="12.1.5">12.1.5 <code>optimistic</code></a></h3>

  <p>The <code>optimistic</code> specifier specifies that the persistent class
     has the optimistic concurrency model. A class with the optimistic
     concurrency model must also specify the data member that is used to
     store the object version using the <code>version</code> pragma
     (<a href="#12.4.15">Section 12.4.15, "<code>version</code>"</a>).
     For example:</p>

  <pre class="cxx">
#pragma db object optimistic
class person
{
  ...

  #pragma db version
  unsigned long version_;
};
  </pre>

  <p>If a base class has the optimistic concurrency model, then all its derived
     classes will automatically have the optimistic concurrency model. The
     current implementation also requires that in any given inheritance
     hierarchy the object id and the version data members reside in the
     same class.</p>

  <p>For a more detailed discussion of optimistic concurrency, refer to
     <a href="#11">Chapter 11, "Optimistic Concurrency"</a>.</p>

  <h3><a name="12.1.6">12.1.6 <code>no_id</code></a></h3>

  <p>The <code>no_id</code> specifier specifies that the persistent class
     has no object id. For example:</p>

  <pre class="cxx">
#pragma db object no_id
class person
{
  ...
};
  </pre>

  <p>A persistent class without an object id has limited functionality.
     Such a class cannot be loaded with the <code>database::load()</code>
     or <code>database::find()</code> functions (<a href="#3.9">Section 3.9,
     "Loading Persistent Objects"</a>), updated with the
     <code>database::update()</code> function (<a href="#3.10">Section 3.10,
     "Updating Persistent Objects"</a>), or deleted with the
     <code>database::erase()</code> function (<a href="#3.11">Section 3.11,
     "Deleting Persistent Objects"</a>). To load and delete
     objects without ids you can use the <code>database::query()</code>
     (<a href="#4">Chapter 4, "Querying the Database"</a>) and
     <code>database::erase_query()</code> (<a href="#3.11">Section 3.11,
     "Deleting Persistent Objects"</a>) functions, respectively.
     There is no way to update such objects except by using native SQL
     statements (<a href="#3.12">Section 3.12, "Executing Native SQL
     Statements"</a>).</p>

  <p>Furthermore, persistent classes without object ids cannot have container
     data members nor can they be used in object relationships. Such objects
     are not entered into the session object cache
     (<a href="#10.1">Section 10.1, "Object Cache"</a>) either.</p>

  <p>To declare a persistent class with an object id, use the data member
     <code>id</code> specifier (<a href="#12.4.1">Section 12.4.1,
     "<code>id</code>"</a>).</p>

  <h3><a name="12.1.7">12.1.7 <code>callback</code></a></h3>

  <p>The <code>callback</code> specifier specifies the persist class
     member function that should be called before and after a
     database operation is performed on an object of this class.
     For example:</p>

  <pre class="cxx">
#include &lt;odb/callback.hxx>

#pragma db object callback(init)
class person
{
  ...

  void
  init (odb::callback_event, odb::database&amp;);
};
 </pre>

  <p>The callback function has the following signature and can be
     overloaded for constant objects:</p>

  <pre class="cxx">
void
name (odb::callback_event, odb::database&amp;);

void
name (odb::callback_event, odb::database&amp;) const;
  </pre>

  <p>The first argument to the callback function is the event that
     triggered this call. The <code>odb::callback_event</code>
     enum-like type is defined in the <code>&lt;odb/callback.hxx></code>
     header file and has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  struct callback_event
  {
    enum value
    {
      pre_persist,
      post_persist,
      pre_load,
      post_load,
      pre_update,
      post_update,
      pre_erase,
      post_erase
    };

    callback_event (value v);
    operator value () const;
  };
}
  </pre>

  <p>The second argument to the callback function is the database
     on which the operation is about to be performed or has just
     been performed. A callback function can be inline or virtual.</p>

  <p>The callback function for the <code>*_persist</code>,
     <code>*_update</code>, and <code>*_erase</code> events is always
     called on the constant object reference while for the <code>*_load</code>
     events &mdash; always on the unrestricted reference.</p>

  <p>If only the non-<code>const</code> version of the callback function
     is provided, then only the <code>*_load</code> events will be delivered.
     If only the <code>const</code> version is provided, then all the
     events will be delivered to this function. Finally, if both versions
     are provided, then the <code>*_load</code> events will be delivered
     to the non-<code>const</code> version while all others &mdash; to the
     <code>const</code> version. If you need to modify the object in one
     of the "<code>const</code>" events, then you can safely cast away
     <code>const</code>-ness using the <code>const_cast</code> operator if
     you know that none of the objects will be created const. Alternatively,
     if you cannot make this assumption, then you can declare the data
     members you wish to modify as <code>mutable</code>.</p>

  <p>A database operations callback can be used to implement object-specific
     pre and post initializations, registrations, and cleanups. As an example,
     the following code fragment outlines an implementation of a
     <code>person</code> class that maintains the transient <code>age</code>
     data member in addition to the persistent date of birth. A callback
     is used to calculate the value of the former from the latter every
     time a <code>person</code> object is loaded from the database.</p>

  <pre class="cxx">
#include &lt;odb/core.hxx>
#include &lt;odb/callback.hxx>

#pragma db object callback(init)
class person
{
  ...

private:
  friend class odb::access;

  date born_;

  #pragma db transient
  unsigned short age_;

  void
  init (odb::callback_event e, odb::database&amp;)
  {
    switch (e)
    {
    case odb::callback_event::post_load:
    {
      // Calculate age from the date of birth.
      ...
      break;
    }
    default:
      break;
    }
  }
};
 </pre>

  <h3><a name="12.1.8">12.1.8 <code>schema</code></a></h3>

  <p>The <code>schema</code> specifier specifies a database schema
     that should be used for the persistent class.</p>

  <p>In relational databases the term schema can refer to two related
     but ultimately different concepts. Normally it means a collection
     of tables, indexes, sequences, etc., that are created in the
     database or the actual DDL statements that create these
     database objects. Some database implementations support what
     would be more accurately called a <em>database namespace</em>
     but is also called a schema. In this sense, a schema is a
     separate namespace in which tables, indexes, sequences, etc.,
     can be created. For example, two tables that have the same
     name can coexist in the same database if they belong to
     different schemas. In this section when we talk about a
     schema, we refer to the <em>database namespace</em> meaning
     of this term. </p>

  <p>When schemas are in use, a database object name is qualified
     with a schema. For example:</p>

  <pre class="sql">
CREATE TABLE accounting.employee (...)

SELECT ... FROM accounting.employee WHERE ...
  </pre>

  <p>In the above example <code>accounting</code> is the schema
     and the <code>employee</code> table belongs to this
     schema.</p>

  <p>Not all database implementations support schemas. Some
     implementation that don't support schemas (for example,
     MySQL, SQLite) allow the use of the above syntax to specify
     the database name. Yet others may support several levels
     of qualification. For example, Microsoft SQL Server has
     three levels starting with the linked database server,
     followed by the database, and then followed by
     the schema:
     <code>server1.company1.accounting.employee</code>.
     While the actual meaning of the qualifier in a qualified name
     vary from one database implementation to another, here we
     refer to all of them collectively as a schema.</p>

  <p>In ODB, a schema for a table of a persistent class can be
     specified at the class level, C++ namespace level, or the
     file level. To assign a schema to a specific persistent class
     we can use the <code>schema</code> specifier, for example:</p>

  <pre class="cxx">
#pragma db object schema("accounting")
class employee
{
  ...
};
  </pre>

  <p>If we are also assigning a table name, then we can use
     a shorter notation by specifying both the schema and
     the table name in the <code>table</code> specifier:</p>

  <pre class="cxx">
#pragma db object table("accounting.employee")
class employee
{
  ...
};
  </pre>

  <p>If we want to assign a schema to all the persistent classes
     in a C++ namespace, then, instead of specifying the schema
     for each class, we can specify it once at the C++ namespace level.
     For example:</p>

  <pre class="cxx">
#pragma db namespace schema("accounting")
namespace accounting
{
  #pragma db object
  class employee
  {
    ...
  };

  #pragma db object
  class employer
  {
    ...
  };
}
  </pre>

  <p>If we want to assign a schema to all the persistent classes in
     a file, then we can use the <code>--schema</code> ODB compiler
     option. For example:</p>

  <pre class="terminal">
odb ... --schema accounting ...
  </pre>

  <p>An alternative to this approach with the same effect is to
     assign a schema to the global namespace:</p>

  <pre class="cxx">
#pragma db namespace() schema("accounting")
  </pre>

  <p>By default schema qualifications are accumulated starting from
     the persistent class, continuing with the namespace hierarchy
     to which this class belongs, and finishing with the schema
     specified with the <code>--schema</code> option. For
     example:</p>

  <pre class="cxx">
#pragma db namespace schema("audit_db")
namespace audit
{
  #pragma db namespace schema("accounting")
  namespace accounting
  {
    #pragma db object
    class employee
    {
      ...
    };
  }
}
  </pre>

  <p>If we compile the above code fragment with the
     <code>--schema&nbsp;server1</code> option, then the
     <code>employee</code> table will have the
     <code>server1.audit_db.accounting.employee</code> qualified
     name.</p>

  <p>In some situations we may want to prevent such accumulation
     of the qualifications. To accomplish this we can use the
     so-called fully-qualified names, which have the empty leading
     name component. This is analogous to the C++ fully-qualified
     names in the <code>::accounting::employee</code> form. For
     example:</p>

  <pre class="cxx">
#pragma db namespace schema("accounting")
namespace accounting
{
  #pragma db object schema(".hr")
  class employee
  {
    ...
  };

  #pragma db object
  class employer
  {
    ...
  };
}
  </pre>

  <p>In the above code fragment, the <code>employee</code> table will
     have the <code>hr.employee</code> qualified name while the
     <code>employer</code> &mdash; <code>accounting.employer</code>.
     Note also that the empty leading name component is a special
     ODB syntax and is not propagated to the actual database names
     (using a name like <code>.hr.employee</code> to refer to a table
     will most likely result in an error).</p>

  <p>Auxiliary database objects for a persistent class, such as indexes,
     sequences, triggers, etc., are all created in the same schema
     as the class table. By default, this is also true for the
     container tables. However, if you need to store a container
     table in a different schema, then you can provide a qualified
     name using the <code>table</code> specifier, for example:</p>

  <pre class="cxx">
#pragma db object table("accounting.employee")
class employee
{
  ...

  #pragma db object table("operations.projects")
  std::vector&lt;std::string> projects_;
};
  </pre>

  <p>The standard syntax for qualified names used in the
     <code>schema</code> and <code>table</code> specifiers as well
     as the view <code>column</code> specifier (<a href="#12.4.10">Section
     12.4.10, "<code>column</code> (view)"</a>) has the
     <code>"</code><i>name</i><code>.</code><i>name</i>...<code>"</code>
     form where, as discussed above, the leading name component
     can be empty to denote a fully qualified name. This form, however,
     doesn't work if one of the name components contains periods. To
     support such cases the alternative form is available:
     <code>"</code><i>name</i><code>"."</code><i>name</i><code>"</code>...
     For example:</p>

  <pre class="cxx">
#pragma db object table("accounting_1.2"."employee")
class employee
{
  ...
};
  </pre>

  <p>Finally, to specify an unqualified name that contains periods
     we can use the following special syntax:</p>

  <pre class="cxx">
#pragma db object schema(."accounting_1.2") table("employee")
class employee
{
  ...
};
  </pre>

  <p>Table prefixes (<a href="#12.5.2">Section 12.5.2, "<code>table</code>"</a>)
     can be used as an alternative to database schemas if the target
     database system does not support schemas.</p>

  <h3><a name="12.1.9">12.1.9 <code>polymorphic</code></a></h3>

  <p>The <code>polymorphic</code> specifier specifies that the persistent
     class is polymorphic. For more information on polymorphism support,
     refer to <a href="#8">Chapter 8, "Inheritance"</a>.</p>

  <h3><a name="12.1.10">12.1.10 <code>session</code></a></h3>

  <p>The <code>session</code> specifier specifies whether to enable
     session support for the persistent class. For example:</p>

  <pre class="cxx">
#pragma db object session        // Enable.
class person
{
  ...
};

#pragma db object session(true)  // Enable.
class employee
{
  ...
};

#pragma db object session(false) // Disable.
class employer
{
  ...
};
  </pre>

  <p>Session support is disabled by default unless the
     <code>--generate-session</code> ODB compiler option is specified
     or session support is enabled at the namespace level
     (<a href="#12.5.4">Section 12.5.4, "<code>session</code>"</a>).
     For more information on sessions, refer to <a href="#10">Chapter
     10, "Session"</a>.</p>

  <h3><a name="12.1.11">12.1.11 <code>definition</code></a></h3>

  <p>The <code>definition</code> specifier specifies an alternative
     <em>definition location</em> for the persistent class. By
     default, the ODB compiler generates the database support code for
     a persistent class when we compile the header file that
     defines this class. However, if the  <code>definition</code>
     specifier is used, then the ODB compiler will instead generate
     the database support code when we compile the header file
     containing this pragma.</p>

  <p>For more information on this functionality, refer to
     <a href="#12.3.7">Section 12.3.7, "<code>definition</code>"</a>.</p>

  <h3><a name="12.1.12">12.1.12 <code>transient</code></a></h3>

  <p>The <code>transient</code> specifier instructs the ODB compiler to
     treat all non-virtual data members in the persistent class as transient
     (<a href="#12.4.1">Section 12.4.1, "<code>transient</code>"</a>).
     This specifier is primarily useful when declaring virtual data
     members, as discussed in <a href="#12.4.13">Section 12.4.13,
     "<code>virtual</code>"</a>.</p>

  <h2><a name="12.2">12.2 View Type Pragmas</a></h2>

  <p>A pragma with the <code>view</code> qualifier declares a C++ class
     as a view type. The qualifier can be optionally followed,
     in any order, by one or more specifiers summarized in the
     table below:</p>

  <!-- border="1" is necessary for html2ps -->
  <table class="specifiers" border="1">
    <tr>
      <th>Specifier</th>
      <th>Summary</th>
      <th>Section</th>
    </tr>

    <tr>
      <td><code>object</code></td>
      <td>object associated with a view</td>
      <td><a href="#12.2.1">12.2.1</a></td>
    </tr>

    <tr>
      <td><code>table</code></td>
      <td>table associated with a view</td>
      <td><a href="#12.2.2">12.2.2</a></td>
    </tr>

    <tr>
      <td><code>query</code></td>
      <td>view query condition</td>
      <td><a href="#12.2.3">12.2.3</a></td>
    </tr>

    <tr>
      <td><code>pointer</code></td>
      <td>pointer type for a view</td>
      <td><a href="#12.2.4">12.2.4</a></td>
    </tr>

    <tr>
      <td><code>callback</code></td>
      <td>database operations callback</td>
      <td><a href="#12.2.5">12.2.5</a></td>
    </tr>

    <tr>
      <td><code>definition</code></td>
      <td>definition location for a view</td>
      <td><a href="#12.2.6">12.2.6</a></td>
    </tr>

    <tr>
      <td><code>transient</code></td>
      <td>all non-virtual data members in a view are transient</td>
      <td><a href="#12.2.7">12.2.7</a></td>
    </tr>

  </table>

  <p>For more information on view types refer to <a href="#9"> Chapter 9,
     "Views"</a>.</p>

  <h3><a name="12.2.1">12.2.1 <code>object</code></a></h3>

  <p>The <code>object</code> specifier specifies a persistent class
     that should be associated with the view. For more information
     on object associations refer to <a href="#9.1">Section 9.1, "Object
     Views"</a>.</p>

  <h3><a name="12.2.2">12.2.2 <code>table</code></a></h3>

  <p>The <code>table</code> specifier specifies a database table
     that should be associated with the view. For more information
     on table associations refer to <a href="#9.2">Section 9.2, "Table
     Views"</a>.</p>

  <h3><a name="12.2.3">12.2.3 <code>query</code></a></h3>

  <p>The <code>query</code> specifier specifies a query condition
     for an object or table view or a native SQL query for a native
     view. An empty <code>query</code> specifier indicates that a
     native SQL query is provided at runtime. For more information
     on query conditions refer to <a href="#9.4">Section 9.4, "View
     Query Conditions"</a>. For more information on native SQL queries,
     refer to <a href="#9.5">Section 9.5, "Native Views"</a>.</p>

  <h3><a name="12.2.4">12.2.4 <code>pointer</code></a></h3>

  <p>The <code>pointer</code> specifier specifies the view pointer type
     for the view class. Similar to objects, the view pointer type is used
     to return dynamically allocated instances of a view class. The
     semantics of the <code>pointer</code> specifier for a view are the
     same as those of the <code>pointer</code> specifier for an object
     (<a href="#12.1.2">Section 12.1.2, "<code>pointer</code>"</a>).</p>

  <h3><a name="12.2.5">12.2.5 <code>callback</code></a></h3>

  <p>The <code>callback</code> specifier specifies the view class
     member function that should be called before and after an
     instance of this view class is created as part of the query
     result iteration. The semantics of the <code>callback</code>
     specifier for a view are similar to those of the
     <code>callback</code> specifier for an object
     (<a href="#12.1.7">Section 12.1.7, "<code>callback</code>"</a>)
     except that the only events that can trigger a callback
     call in the case of a view are <code>pre_load</code> and
     <code>post_load</code>.</p>

  <h3><a name="12.2.6">12.2.6 <code>definition</code></a></h3>

  <p>The <code>definition</code> specifier specifies an alternative
     <em>definition location</em> for the view class. By
     default, the ODB compiler generates the database support code for
     a view class when we compile the header file that
     defines this class. However, if the  <code>definition</code>
     specifier is used, then the ODB compiler will instead generate
     the database support code when we compile the header file
     containing this pragma.</p>

  <p>For more information on this functionality, refer to
     <a href="#12.3.7">Section 12.3.7, "<code>definition</code>"</a>.</p>

  <h3><a name="12.2.7">12.2.7 <code>transient</code></a></h3>

  <p>The <code>transient</code> specifier instructs the ODB compiler
     to treat all non-virtual data members in the view class as transient
     (<a href="#12.4.1">Section 12.4.1, "<code>transient</code>"</a>).
     This specifier is primarily useful when declaring virtual data
     members, as discussed in <a href="#12.4.13">Section 12.4.13,
     "<code>virtual</code>"</a>.</p>

  <h2><a name="12.3">12.3 Value Type Pragmas</a></h2>

  <p>A pragma with the <code>value</code> qualifier describes a value
     type. It can be optionally followed, in any order, by one or more
     specifiers summarized in the table below:</p>

  <!-- border="1" is necessary for html2ps -->
  <table class="specifiers" border="1">
    <tr>
      <th>Specifier</th>
      <th>Summary</th>
      <th>Section</th>
    </tr>

    <tr>
      <td><code>type</code></td>
      <td>database type for a value type</td>
      <td><a href="#12.3.1">12.3.1</a></td>
    </tr>

    <tr>
      <td><code>id_type</code></td>
      <td>database type for a value type when used as an object id</td>
      <td><a href="#12.3.2">12.3.2</a></td>
    </tr>

    <tr>
      <td><code>null</code>/<code>not_null</code></td>
      <td>type can/cannot be <code>NULL</code></td>
      <td><a href="#12.3.3">12.3.3</a></td>
    </tr>

    <tr>
      <td><code>default</code></td>
      <td>default value for a value type</td>
      <td><a href="#12.3.4">12.3.4</a></td>
    </tr>

    <tr>
      <td><code>options</code></td>
      <td>database options for a value type</td>
      <td><a href="#12.3.5">12.3.5</a></td>
    </tr>

    <tr>
      <td><code>readonly</code></td>
      <td>composite value type is read-only</td>
      <td><a href="#12.3.6">12.3.6</a></td>
    </tr>

    <tr>
      <td><code>definition</code></td>
      <td>definition location for a composite value type</td>
      <td><a href="#12.3.7">12.3.7</a></td>
    </tr>

    <tr>
      <td><code>transient</code></td>
      <td>all non-virtual data members in a composite value are transient</td>
      <td><a href="#12.3.8">12.3.8</a></td>
    </tr>

    <tr>
      <td><code>unordered</code></td>
      <td>ordered container should be stored unordered</td>
      <td><a href="#12.3.9">12.3.9</a></td>
    </tr>

    <tr>
      <td><code>index_type</code></td>
      <td>database type for a container's index type</td>
      <td><a href="#12.3.10">12.3.10</a></td>
    </tr>

    <tr>
      <td><code>key_type</code></td>
      <td>database type for a container's key type</td>
      <td><a href="#12.3.11">12.3.11</a></td>
    </tr>

    <tr>
      <td><code>value_type</code></td>
      <td>database type for a container's value type</td>
      <td><a href="#12.3.12">12.3.12</a></td>
    </tr>

    <tr>
      <td><code>value_null</code>/<code>value_not_null</code></td>
      <td>container's value can/cannot be <code>NULL</code></td>
      <td><a href="#12.3.13">12.3.13</a></td>
    </tr>

    <tr>
      <td><code>id_options</code></td>
      <td>database options for a container's id column</td>
      <td><a href="#12.3.14">12.3.14</a></td>
    </tr>

    <tr>
      <td><code>index_options</code></td>
      <td>database options for a container's index column</td>
      <td><a href="#12.3.15">12.3.15</a></td>
    </tr>

    <tr>
      <td><code>key_options</code></td>
      <td>database options for a container's key column</td>
      <td><a href="#12.3.16">12.3.16</a></td>
    </tr>

    <tr>
      <td><code>value_options</code></td>
      <td>database options for a container's value column</td>
      <td><a href="#12.3.17">12.3.17</a></td>
    </tr>

    <tr>
      <td><code>id_column</code></td>
      <td>column name for a container's object id</td>
      <td><a href="#12.3.18">12.3.18</a></td>
    </tr>

    <tr>
      <td><code>index_column</code></td>
      <td>column name for a container's index</td>
      <td><a href="#12.3.19">12.3.19</a></td>
    </tr>

    <tr>
      <td><code>key_column</code></td>
      <td>column name for a container's key</td>
      <td><a href="#12.3.20">12.3.20</a></td>
    </tr>

    <tr>
      <td><code>value_column</code></td>
      <td>column name for a container's value</td>
      <td><a href="#12.3.21">12.3.21</a></td>
    </tr>

  </table>

  <p>Many of the value type specifiers have corresponding member type
     specifiers with the same names (<a href="#12.4">Section 12.4,
     "Data Member Pragmas"</a>). The behavior of such specifiers
     for members is similar to that for value types. The only difference
     is the scope. A particular value type specifier applies to all the
     members of this value type that don't have a pre-member version
     of the specifier, while the member specifier always applies only
     to a single member. Also, with a few exceptions, member specifiers
     take precedence over and override parameters specified with value
     specifiers.</p>

  <h3><a name="12.3.1">12.3.1 <code>type</code></a></h3>

  <p>The <code>type</code> specifier specifies the native database type
     that should be used for data members of this type. For example:</p>

  <pre class="cxx">
#pragma db value(bool) type("INT")

#pragma db object
class person
{
  ...

  bool married_; // Mapped to INT NOT NULL database type.
};
  </pre>

  <p>The ODB compiler provides the default mapping between common C++
     types, such as <code>bool</code>, <code>int</code>, and
     <code>std::string</code> and the database types for each supported
     database system. For more information on the default mapping,
     refer to <a href="#II">Part II, "Database Systems"</a>. The
     <code>null</code> and <code>not_null</code> (<a href="#12.3.3">Section
     12.3.3, "<code>null</code>/<code>not_null</code>"</a>) specifiers
     can be used to control the NULL semantics of a type.</p>

  <p>In the above example we changed the mapping for the <code>bool</code>
     type which is now mapped to the <code>INT</code> database type. In
     this case, the <code>value</code> pragma is all that is necessary
     since the ODB compiler will be able to figure out how to store
     a boolean value as an integer in the database. However, there
     could be situations where the ODB compiler will not know how to
     handle the conversion between the C++ and database representations
     of a value. Consider, as an example, a situation where the
     boolean value is stored in the database as a string:</p>

  <pre class="cxx">
#pragma db value(bool) type("VARCHAR(5)")
  </pre>

  <p>The possible database values for the C++ <code>true</code> value could
     be <code>"true"</code>, or <code>"TRUE"</code>, or <code>"True"</code>.
     Or, maybe, all of the above could be valid. The ODB compiler has no way
     of knowing how your application wants to convert <code>bool</code>
     to a string and back. To support such custom value type mappings,
     ODB allows you to provide your own database conversion functions
     by specializing the <code>value_traits</code> class template. The
     <code>mapping</code> example in the <code>odb-examples</code>
     package shows how to do this for all the supported database systems.</p>

  <h3><a name="12.3.2">12.3.2 <code>id_type</code></a></h3>

  <p>The <code>id_type</code> specifier specifies the native database type
     that should be used for data members of this type that are designated as
     object identifiers (<a href="#12.4.1">Section 12.4.1,
     "<code>id</code>"</a>). In combination with the <code>type</code>
     specifier (<a href="#12.3.1">Section 12.3.1, "<code>type</code>"</a>)
     <code>id_type</code> allows you to map a C++ type differently depending
     on whether it is used in an ordinary member or an object id. For
     example:</p>

  <pre class="cxx">
#pragma db value(std::string) type("TEXT") id_type("VARCHAR(128)")

#pragma db object
class person
{
  ...

  #pragma db id
  std::string email_; // Mapped to VARCHAR(128) NOT NULL.

  std::string name_;  // Mapped to TEXT NOT NULL.
};
  </pre>

  <p>Note that there is no corresponding member type specifier for
     <code>id_type</code> since the desired result can be achieved
     with just the <code>type</code> specifier, for example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db id type("VARCHAR(128)")
  std::string email_;
};
  </pre>

  <h3><a name="12.3.3">12.3.3 <code>null</code>/<code>not_null</code></a></h3>

  <p>The <code>null</code> and <code>not_null</code> specifiers specify that
     a value type or object pointer can or cannot be <code>NULL</code>,
     respectively. By default, value types are assumed not to allow
     <code>NULL</code> values while object pointers are assumed to
     allow <code>NULL</code> values. Data members of types that allow
     <code>NULL</code> values are mapped in a relational database to
     columns that allow <code>NULL</code> values. For example:</p>

  <pre class="cxx">
using std::tr1::shared_ptr;

typedef shared_ptr&lt;std::string> string_ptr;
#pragma db value(string_ptr) type("TEXT") null

#pragma db object
class person
{
  ...

  string_ptr name_; // Mapped to TEXT NULL.
};

typedef shared_ptr&lt;person> person_ptr;
#pragma db value(person_ptr) not_null
  </pre>

  <p>The <code>NULL</code> semantics can also be specified on the
     per-member basis (<a href="#12.4.6">Section 12.4.6,
     "<code>null</code>/<code>not_null</code>"</a>). If both a type and
     a member have <code>null</code>/<code>not_null</code> specifiers,
     then the member specifier takes precedence. If a member specifier
     relaxes the <code>NULL</code> semantics (that is, if a member has
     the <code>null</code> specifier and the type has the explicit
     <code>not_null</code> specifier), then a warning is issued.</p>

  <p>It is also possible to override a previously specified
     <code>null</code>/<code>not_null</code> specifier. This is
     primarily useful if a third-party type, for example,
     one provided by a profile library (<a href="#III">Part III,
     "Profiles"</a>), allows <code>NULL</code> values but in your
     object model data members of this type should never be
     <code>NULL</code>. In this case you can use the <code>not_null</code>
     specifier to disable <code>NULL</code> values for this type for the
     entire translation unit. For example:</p>

  <pre class="cxx">
// By default, null_string allows NULL values.
//
#include &lt;null-string.hxx>

// Disable NULL values for all the null_string data members.
//
#pragma db value(null_string) not_null
  </pre>

  <p>For a more detailed discussion of the <code>NULL</code> semantics
     for values, refer to <a href="#7.3">Section 7.3, "Pointers and
     <code>NULL</code> Value Semantics"</a>. For a more detailed
     discussion of the <code>NULL</code> semantics for object pointers,
     refer to <a href="#6">Chapter 6, "Relationships"</a>.</p>

  <h3><a name="12.3.4">12.3.4 <code>default</code></a></h3>

  <p>The <code>default</code> specifier specifies the database default value
     that should be used for data members of this type. For example:</p>

  <pre class="cxx">
#pragma db value(std::string) default("")

#pragma db object
class person
{
  ...

  std::string name_; // Mapped to TEXT NOT NULL DEFAULT ''.
};
  </pre>

  <p>The semantics of the <code>default</code> specifier for a value type
     are similar to those of the <code>default</code> specifier for a
     data member (<a href="#12.4.7">Section 12.4.7,
     "<code>default</code>"</a>).</p>

  <h3><a name="12.3.5">12.3.5 <code>options</code></a></h3>

  <p>The <code>options</code> specifier specifies additional column
     definition options that should be used for data members of this
     type. For example:</p>

  <pre class="cxx">
#pragma db value(std::string) options("COLLATE binary")

#pragma db object
class person
{
  ...

  std::string name_; // Mapped to TEXT NOT NULL COLLATE binary.
};
  </pre>

  <p>The semantics of the <code>options</code> specifier for a value type
     are similar to those of the <code>options</code> specifier for a
     data member (<a href="#12.4.8">Section 12.4.8,
     "<code>options</code>"</a>).</p>

  <h3><a name="12.3.6">12.3.6 <code>readonly</code></a></h3>

  <p>The <code>readonly</code> specifier specifies that the composite
     value type is read-only. Changes to data members of a read-only
     composite value type are ignored when updating the database
     state of an object (<a href="#3.10">Section 3.10, "Updating Persistent
     Objects"</a>) containing such a value type. Note that this specifier
     is only valid for composite value types. For example:</p>

  <pre class="cxx">
#pragma db value readonly
class person_name
{
  ...
};
  </pre>

  <p>Read-only and read-write composite values can derive from each other
     without any restrictions. When a read-only value derives from a
     read-write value, the resulting whole value is read-only, including
     the part corresponding to the read-write base. On the other hand, when a
     read-write value derives from a read-only value, all the data
     members that correspond to the read-only base are treated as
     read-only while the rest is treated as read-write.</p>

  <p>Note that it is also possible to declare individual data members
     (<a href="#12.4.12">Section 12.4.12, "<code>readonly</code>"</a>)
     as well as whole objects (<a href="#12.1.4">Section 12.1.4,
     "<code>readonly</code>"</a>) as read-only.</p>

  <h3><a name="12.3.7">12.3.7 <code>definition</code></a></h3>

  <p>The <code>definition</code> specifier specifies an alternative
     <em>definition location</em> for the composite value type. By
     default, the ODB compiler generates the database support code for
     a composite value type when we compile the header file that
     defines this value type. However, if the  <code>definition</code>
     specifier is used, then the ODB compiler will instead generate
     the database support code when we compile the header file containing
     this pragma.</p>

  <p>This mechanism is primarily useful for converting third-party
     types to ODB composite value types. In such cases we normally
     cannot modify the header files to add the necessary pragmas.
     It is also often inconvenient to compile these header files
     with the ODB compiler. With the <code>definition</code>
     specifier we can create a <em>wrapper header</em> that contains
     the necessary pragmas and instructs the ODB compiler to generate
     the database support code for a third-party type when we compile
     the wrapper header. As an example, consider <code>struct timeval</code>
     that is defined in the <code>&lt;sys/time.h></code> system header.
     This type has the following (or similar) definition:</p>

  <pre class="cxx">
struct timeval
{
  long tv_sec;
  long tv_usec;
};
  </pre>

  <p>If we would like to make this type an ODB composite value type,
     then we can create a wrapper header, for example
     <code>time-mapping.hxx</code>, with the following content:</p>

  <pre class="cxx">
#ifndef TIME_MAPPING_HXX
#define TIME_MAPPING_HXX

#include &lt;sys/time.h>

#pragma db value(timeval) definition
#pragma db member(timeval::tv_sec) column("sec")
#pragma db member(timeval::tv_usec) column("usec")

#endif // TIME_MAPPING_HXX
  </pre>

  <p>If we now compile this header with the ODB compiler, the
     resulting <code>time-mapping-odb.?xx</code> files will
     contain the database support code for <code>struct timeval</code>.
     To use <code>timeval</code> in our persistent classes, we simply
     include the <code>time-mapping.hxx</code> header:</p>

  <pre class="cxx">
#include &lt;sys/time.h>
#include "time-mapping.hxx"

#pragma db object
class object
{
  timeval timestamp;
};
  </pre>

  <h3><a name="12.3.8">12.3.8 <code>transient</code></a></h3>

  <p>The <code>transient</code> specifier instructs the ODB compiler
     to treat all non-virtual data members in the composite value type
     as transient (<a href="#12.4.1">Section 12.4.1,
     "<code>transient</code>"</a>). This specifier is primarily useful
     when declaring virtual data members, as discussed in
     <a href="#12.4.13">Section 12.4.13, "<code>virtual</code>"</a>.</p>

  <h3><a name="12.3.9">12.3.9 <code>unordered</code></a></h3>

  <p>The <code>unordered</code> specifier specifies that the ordered
     container should be stored unordered in the database. The database
     table for such a container will not contain the index column
     and the order in which elements are retrieved from the database may
     not be the same as the order in which they were stored. For example:</p>

  <pre class="cxx">
typedef std::vector&lt;std::string> names;
#pragma db value(names) unordered
  </pre>

  <p>For a more detailed discussion of ordered containers and their
     storage in the database, refer to <a href="#5.1">Section 5.1,
     "Ordered Containers"</a>.</p>

  <h3><a name="12.3.10">12.3.10 <code>index_type</code></a></h3>

  <p>The <code>index_type</code> specifier specifies the native
     database type that should be used for the ordered container's
     index column. The semantics of <code>index_type</code>
     are similar to those of the <code>type</code> specifier
     (<a href="#12.3.1">Section 12.3.1, "<code>type</code>"</a>). The native
     database type is expected to be an integer type. For example:</p>

  <pre class="cxx">
typedef std::vector&lt;std::string> names;
#pragma db value(names) index_type("SMALLINT UNSIGNED")
  </pre>

  <h3><a name="12.3.11">12.3.11 <code>key_type</code></a></h3>

  <p>The <code>key_type</code> specifier specifies the native
     database type that should be used for the map container's
     key column. The semantics of <code>key_type</code>
     are similar to those of the <code>type</code> specifier
     (<a href="#12.3.1">Section 12.3.1, "<code>type</code>"</a>). For
     example:</p>

  <pre class="cxx">
typedef std::map&lt;unsigned short, float> age_weight_map;
#pragma db value(age_weight_map) key_type("INT UNSIGNED")
  </pre>

  <h3><a name="12.3.12">12.3.12 <code>value_type</code></a></h3>

  <p>The <code>value_type</code> specifier specifies the native
     database type that should be used for the container's
     value column. The semantics of <code>value_type</code>
     are similar to those of the <code>type</code> specifier
     (<a href="#12.3.1">Section 12.3.1, "<code>type</code>"</a>). For
     example:</p>

  <pre class="cxx">
typedef std::vector&lt;std::string> names;
#pragma db value(names) value_type("VARCHAR(255)")
  </pre>

  <p>The <code>value_null</code> and <code>value_not_null</code>
     (<a href="#12.3.13">Section 12.3.13,
     "<code>value_null</code>/<code>value_not_null</code>"</a>) specifiers
     can be used to control the NULL semantics of a value column.</p>

  <h3><a name="12.3.13">12.3.13 <code>value_null</code>/<code>value_not_null</code></a></h3>

  <p>The <code>value_null</code> and <code>value_not_null</code> specifiers
     specify that the container type's element value can or cannot be
     <code>NULL</code>, respectively. The semantics of <code>value_null</code>
     and <code>value_not_null</code> are similar to those of the
     <code>null</code> and <code>not_null</code> specifiers
     (<a href="#12.3.3">Section 12.3.3, "<code>null</code>/<code>not_null</code>"</a>).
     For example:</p>

  <pre class="cxx">
using std::tr1::shared_ptr;

#pragma db object
class account
{
  ...
};

typedef std::vector&lt;shared_ptr&lt;account> > accounts;
#pragma db value(accounts) value_not_null
  </pre>

  <p>For set and multiset containers (<a href="#5.2">Section 5.2, "Set and
     Multiset Containers"</a>) the element value is automatically treated
     as not allowing a <code>NULL</code> value.</p>


  <h3><a name="12.3.14">12.3.14 <code>id_options</code></a></h3>

  <p>The <code>id_options</code> specifier specifies additional
     column definition options that should be used for the container's
     id column. For example:</p>

  <pre class="cxx">
typedef std::vector&lt;std::string> nicknames;
#pragma db value(nicknames) id_options("COLLATE binary")
  </pre>

  <p>The semantics of the <code>id_options</code> specifier for a container
     type are similar to those of the <code>id_options</code> specifier for
     a container data member (<a href="#12.4.24">Section 12.4.24,
     "<code>id_options</code>"</a>).</p>


  <h3><a name="12.3.15">12.3.15 <code>index_options</code></a></h3>

  <p>The <code>index_options</code> specifier specifies additional
     column definition options that should be used for the container's
     index column. For example:</p>

  <pre class="cxx">
typedef std::vector&lt;std::string> nicknames;
#pragma db value(nicknames) index_options("ZEROFILL")
  </pre>

  <p>The semantics of the <code>index_options</code> specifier for a container
     type are similar to those of the <code>index_options</code> specifier for
     a container data member (<a href="#12.4.25">Section 12.4.25,
     "<code>index_options</code>"</a>).</p>


  <h3><a name="12.3.16">12.3.16 <code>key_options</code></a></h3>

  <p>The <code>key_options</code> specifier specifies additional
     column definition options that should be used for the container's
     key column. For example:</p>

  <pre class="cxx">
typedef std::map&lt;std::string, std::string> properties;
#pragma db value(properties) key_options("COLLATE binary")
  </pre>

  <p>The semantics of the <code>key_options</code> specifier for a container
     type are similar to those of the <code>key_options</code> specifier for
     a container data member (<a href="#12.4.26">Section 12.4.26,
     "<code>key_options</code>"</a>).</p>


  <h3><a name="12.3.17">12.3.17 <code>value_options</code></a></h3>

  <p>The <code>value_options</code> specifier specifies additional
     column definition options that should be used for the container's
     value column. For example:</p>

  <pre class="cxx">
typedef std::set&lt;std::string> nicknames;
#pragma db value(nicknames) value_options("COLLATE binary")
  </pre>

  <p>The semantics of the <code>value_options</code> specifier for a container
     type are similar to those of the <code>value_options</code> specifier for
     a container data member (<a href="#12.4.27">Section 12.4.27,
     "<code>value_options</code>"</a>).</p>


  <h3><a name="12.3.18">12.3.18 <code>id_column</code></a></h3>

  <p>The <code>id_column</code> specifier specifies the column
     name that should be used to store the object id in the
     container's table. For example:</p>

  <pre class="cxx">
typedef std::vector&lt;std::string> names;
#pragma db value(names) id_column("id")
  </pre>

  <p>If the column name is not specified, then <code>object_id</code>
     is used by default.</p>

  <h3><a name="12.3.19">12.3.19 <code>index_column</code></a></h3>

  <p>The <code>index_column</code> specifier specifies the column
     name that should be used to store the element index in the
     ordered container's table. For example:</p>

  <pre class="cxx">
typedef std::vector&lt;std::string> names;
#pragma db value(names) index_column("name_number")
  </pre>

  <p>If the column name is not specified, then <code>index</code>
     is used by default.</p>

  <h3><a name="12.3.20">12.3.20 <code>key_column</code></a></h3>

  <p>The <code>key_column</code> specifier specifies the column
     name that should be used to store the key in the map
     container's table. For example:</p>

  <pre class="cxx">
typedef std::map&lt;unsigned short, float> age_weight_map;
#pragma db value(age_weight_map) key_column("age")
  </pre>

  <p>If the column name is not specified, then <code>key</code>
     is used by default.</p>

  <h3><a name="12.3.21">12.3.21 <code>value_column</code></a></h3>

  <p>The <code>value_column</code> specifier specifies the column
     name that should be used to store the element value in the
     container's table. For example:</p>

  <pre class="cxx">
typedef std::map&lt;unsigned short, float> age_weight_map;
#pragma db value(age_weight_map) value_column("weight")
  </pre>

  <p>If the column name is not specified, then <code>value</code>
     is used by default.</p>

  <!-- Data Member Pragmas -->


  <h2><a name="12.4">12.4 Data Member Pragmas</a></h2>

  <p>A pragma with the <code>member</code> qualifier or a positioned
     pragma without a qualifier describes a data member. It can
     be optionally followed, in any order, by one or more specifiers
     summarized in the table below:</p>

  <!-- border="1" is necessary for html2ps -->
  <table class="specifiers" border="1">
    <tr>
      <th>Specifier</th>
      <th>Summary</th>
      <th>Section</th>
    </tr>

    <tr>
      <td><code>id</code></td>
      <td>member is an object id</td>
      <td><a href="#12.4.1">12.4.1</a></td>
    </tr>

    <tr>
      <td><code>auto</code></td>
      <td>id is assigned by the database</td>
      <td><a href="#12.4.2">12.4.2</a></td>
    </tr>

    <tr>
      <td><code>type</code></td>
      <td>database type for a member</td>
      <td><a href="#12.4.3">12.4.3</a></td>
    </tr>

    <tr>
      <td><code>id_type</code></td>
      <td>database type for a member when used as an object id</td>
      <td><a href="#12.4.4">12.4.4</a></td>
    </tr>

    <tr>
      <td><code>get</code>/<code>set</code>/<code>access</code></td>
      <td>member accessor/modifier expressions</td>
      <td><a href="#12.4.5">12.4.5</a></td>
    </tr>

    <tr>
      <td><code>null</code>/<code>not_null</code></td>
      <td>member can/cannot be <code>NULL</code></td>
      <td><a href="#12.4.6">12.4.6</a></td>
    </tr>

    <tr>
      <td><code>default</code></td>
      <td>default value for a member</td>
      <td><a href="#12.4.7">12.4.7</a></td>
    </tr>

    <tr>
      <td><code>options</code></td>
      <td>database options for a member</td>
      <td><a href="#12.4.8">12.4.8</a></td>
    </tr>

    <tr>
      <td><code>column</code></td>
      <td>column name for a member of an object or composite value</td>
      <td><a href="#12.4.9">12.4.9</a></td>
    </tr>

    <tr>
      <td><code>column</code></td>
      <td>column name for a member of a view</td>
      <td><a href="#12.4.10">12.4.10</a></td>
    </tr>

    <tr>
      <td><code>transient</code></td>
      <td>member is not stored in the database</td>
      <td><a href="#12.4.11">12.4.11</a></td>
    </tr>

    <tr>
      <td><code>readonly</code></td>
      <td>member is read-only</td>
      <td><a href="#12.4.12">12.4.12</a></td>
    </tr>

    <tr>
      <td><code>virtual</code></td>
      <td>declare a virtual data member</td>
      <td><a href="#12.4.13">12.4.13</a></td>
    </tr>

    <tr>
      <td><code>inverse</code></td>
      <td>member is an inverse side of a bidirectional relationship</td>
      <td><a href="#12.4.14">12.4.14</a></td>
    </tr>

    <tr>
      <td><code>version</code></td>
      <td>member stores object version</td>
      <td><a href="#12.4.15">12.4.15</a></td>
    </tr>

    <tr>
      <td><code>index</code></td>
      <td>define database index for a member</td>
      <td><a href="#12.4.16">12.4.16</a></td>
    </tr>

    <tr>
      <td><code>unique</code></td>
      <td>define unique database index for a member</td>
      <td><a href="#12.4.17">12.4.17</a></td>
    </tr>

    <tr>
      <td><code>unordered</code></td>
      <td>ordered container should be stored unordered</td>
      <td><a href="#12.4.18">12.4.18</a></td>
    </tr>

    <tr>
      <td><code>table</code></td>
      <td>table name for a container</td>
      <td><a href="#12.4.19">12.4.19</a></td>
    </tr>

    <tr>
      <td><code>index_type</code></td>
      <td>database type for a container's index type</td>
      <td><a href="#12.4.20">12.4.20</a></td>
    </tr>

    <tr>
      <td><code>key_type</code></td>
      <td>database type for a container's key type</td>
      <td><a href="#12.4.21">12.4.21</a></td>
    </tr>

    <tr>
      <td><code>value_type</code></td>
      <td>database type for a container's value type</td>
      <td><a href="#12.4.22">12.4.22</a></td>
    </tr>

    <tr>
      <td><code>value_null</code>/<code>value_not_null</code></td>
      <td>container's value can/cannot be <code>NULL</code></td>
      <td><a href="#12.4.23">12.4.23</a></td>
    </tr>

    <tr>
      <td><code>id_options</code></td>
      <td>database options for a container's id column</td>
      <td><a href="#12.4.24">12.4.24</a></td>
    </tr>

    <tr>
      <td><code>index_options</code></td>
      <td>database options for a container's index column</td>
      <td><a href="#12.4.25">12.4.25</a></td>
    </tr>

    <tr>
      <td><code>key_options</code></td>
      <td>database options for a container's key column</td>
      <td><a href="#12.4.26">12.4.26</a></td>
    </tr>

    <tr>
      <td><code>value_options</code></td>
      <td>database options for a container's value column</td>
      <td><a href="#12.4.27">12.4.27</a></td>
    </tr>

    <tr>
      <td><code>id_column</code></td>
      <td>column name for a container's object id</td>
      <td><a href="#12.4.28">12.4.28</a></td>
    </tr>

    <tr>
      <td><code>index_column</code></td>
      <td>column name for a container's index</td>
      <td><a href="#12.4.29">12.4.29</a></td>
    </tr>

    <tr>
      <td><code>key_column</code></td>
      <td>column name for a container's key</td>
      <td><a href="#12.4.30">12.4.30</a></td>
    </tr>

    <tr>
      <td><code>value_column</code></td>
      <td>column name for a container's value</td>
      <td><a href="#12.4.31">12.4.31</a></td>
    </tr>

  </table>

  <p>Many of the member specifiers have corresponding value type
     specifiers with the same names (<a href="#12.3">Section 12.3,
     "Value Type Pragmas"</a>). The behavior of such specifiers
     for members is similar to that for value types. The only difference
     is the scope. A particular value type specifier applies to all the
     members of this value type that don't have a pre-member version
     of the specifier, while the member specifier always applies only
     to a single member. Also, with a few exceptions, member specifiers
     take precedence over and override parameters specified with value
     specifiers.</p>

  <h3><a name="12.4.1">12.4.1 <code>id</code></a></h3>

  <p>The <code>id</code> specifier specifies that the data member contains
     the object id. In a relational database, an identifier member is
     mapped to a primary key. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db id
  std::string email_;
};
  </pre>

  <p>Normally, every persistent class has a data member designated as an
     object's identifier. However, it is possible to declare a
     persistent class without an id using the object <code>no_id</code>
     specifier (<a href="#12.1.6">Section 12.1.6, "<code>no_id</code>"</a>).</p>

  <p>Note also that the <code>id</code> specifier cannot be used for data
     members of composite value types or views.</p>

  <h3><a name="12.4.2">12.4.2 <code>auto</code></a></h3>

  <p>The <code>auto</code> specifier specifies that the object's identifier
     is automatically assigned by the database. Only a member that was
     designated as an object id can have this specifier. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db id auto
  unsigned long id_;
};
  </pre>

  <p>Note that automatically-assigned object ids are not reused.
     If you have a high object turnover (that is, objects are routinely
     made persistent and then erased), then care must be taken not to
     run out of object ids. In such situations, using
     <code>unsigned&nbsp;long&nbsp;long</code> as the identifier type
     is a safe choice.</p>

  <p>For additional information on the automatic identifier assignment,
     refer to <a href="#3.8">Section 3.8, "Making Objects Persistent"</a>.</p>

  <p>Note also that the <code>auto</code> specifier cannot be specified
     for data members of composite value types or views.</p>

  <h3><a name="12.4.3">12.4.3 <code>type</code></a></h3>

  <p>The <code>type</code> specifier specifies the native database type
     that should be used for the data member. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db type("INT")
  bool married_;
};
  </pre>

  <p>The <code>null</code> and <code>not_null</code> (<a href="#12.4.6">Section
     12.4.6, "<code>null</code>/<code>not_null</code>"</a>) specifiers
     can be used to control the NULL semantics of a data member.</p>

  <h3><a name="12.4.4">12.4.4 <code>id_type</code></a></h3>

  <p>The <code>type</code> specifier specifies the native database type
     that should be used for the data member when it is part of an
     object identifier. This specifier only makes sense when applied to
     a member of a composite value type that is used for both id and
     non-id members. For example:</p>

  <pre class="cxx">
#pragma db value
class name
{
  ...

  #pragma db type("VARCHAR(256)") id_type("VARCHAR(64)")
  std::string first_;

  #pragma db type("VARCHAR(256)") id_type("VARCHAR(64)")
  std::string last_;
};

#pragma db object
class person
{
  ...

  #pragma db id
  name name_;  // name_.first_, name_.last_ mapped to VARCHAR(64)

  name alias_; // alias_.first_, alias_.last_ mapped to VARCHAR(256)
};
  </pre>

  <h3><a name="12.4.5">12.4.5 <code>get</code>/<code>set</code>/<code>access</code></a></h3>

  <p>The <code>get</code> and <code>set</code> specifiers specify the
     data member accessor and modifier expressions, respectively. If
     provided, the generated database support code will use these
     expressions to access and modify the data member when performing
     database operations. The <code>access</code> specifier can be used
     as a shortcut to specify both the accessor and modifier if they
     happen to be the same.</p>

  <p>In its simplest form the accessor or modifier expression can be
     just a name. Such a name should resolve either to another data
     member of the same type or to a suitable accessor or modifier
     member function. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

public:
  const std::string&amp; name () const;
  void name (const std::string&amp;);
private:
  #pragma db access(name)
  std::string name_;
};
  </pre>

  <p>A suitable accessor function is a <code>const</code> member function
     that takes no arguments and whose return value can be implicitly
     converted to the <code>const</code> reference to the member type
     (<code>const&nbsp;std::string&amp;</code> in the example above).
     An accessor function that returns a <code>const</code> reference
     to the data member is called <em>by-reference accessor</em>.
     Otherwise, it is called <em>by-value accessor</em>.</p>

  <p>A suitable modifier function can be of two forms. It can be the
     so called <em>by-reference modifier</em> which is a member function
     that takes no arguments and returns a non-<code>const</code> reference
     to the data member (<code>std::string&amp;</code> in the example above).
     Alternatively, it can be the so called <em>by-value modifier</em> which
     is a member function taking a single argument &mdash; the new value
     &mdash; that can be implicitly initialized from a variable of the member
     type (<code>std::string</code> in the example above). The return value
     of a by-value modifier, if any, is ignored. If both by-reference and
     by-value modifiers are available, then ODB prefers the by-reference
     version since it is more efficient. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

public:
  std::string get_name () const;      // By-value accessor.
  std::string&amp; set_name ();           // By-reference modifier.
  void set_name (std::string const&amp;); // By-value modifier.
private:
  #pragma db get(get_name) \ // Uses by-value accessor.
             set(set_name)   // Uses by-reference modifier.
  std::string name_;
};
  </pre>

  <p>Note that in many cases it is not necessary to specify accessor and
     modifier functions explicitly since the ODB compiler will try to
     discover them automatically in case the data member will be inaccessible
     to the generated code. In particular, in both of the above examples
     the ODB compiler would have successfully discovered the necessary
     functions. For more information on this functionality, refer to
     <a href="#3.2">Section 3.2, "Declaring Persistent Objects and
     Values"</a>.</p>

  <p>Note also that by-value accessors and by-value modifiers cannot be
     used for certain data members in certain situations. These limitations
     are discussed in more detail later in this section.</p>

  <p>Accessor and modifier expressions can be more elaborate than simple
     names. An accessor expression is any C++ expression that can be
     used to initialize a <code>const</code> reference to the member
     type. Similar to accessor functions, which are just a special case
     of accessor expressions, an accessor expression that evaluates to a
     <code>const</code> reference to the data member is called
     <em>by-reference accessor expression</em>. Otherwise, it is
     called <em>by-value accessor expression</em>.</p>

  <p>Modifier expressions can also be of two forms: <em>by-reference
     modifier expression</em> and <em>by-value modifier expression</em>
     (again, modifier functions are just a special case of modifier
     expressions). A by-reference modifier expression is any C++
     expression that evaluates to the non-<code>const</code> reference
     to the member type. A by-value modifier expression can be a
     single or multiple (separated by semicolon) C++ statements
     with the effect of setting the new member value.</p>

  <p>There are two special placeholders that are recognized by the
     ODB compiler in accessor and modifier expressions. The first
     is the <code>this</code> keyword which denotes a reference
     (note: not a pointer) to the persistent object. In accessor
     expressions this reference is <code>const</code> while in
     modifier expressions it is non-<code>const</code>. If an
     expression does not contain the <code>this</code> placeholder,
     then the ODB compiler automatically prefixes it with <code>this.</code>
     sequence.</p>

  <p>The second placeholder, the <code>(?)</code> sequence, is used
     to denote the new value in by-value modifier expressions. The
     ODB compiler replaces the question mark with the variable name,
     keeping the surrounding parenthesis. The following example shows
     a few more interesting accessor and modifier expressions:</p>

  <pre class="cxx">
#pragma db value
struct point
{
  point (int, int);

  int x;
  int y;
};

#pragma db object
class person
{
  ...

  public:
    const char* name () const;
    void name (const char*);
  private:
    #pragma db get(std::string (this.name ())) \
               set(name ((?).c_str ())) // The same as this.name (...).
    std::string name_;

  public:
    const std::unique_ptr&lt;account>&amp; acc () const;
    void acc (std::unique_ptr&lt;account>);
  private:
    #pragma db set(acc (std::move (?)))
    std::unique_ptr&lt;account> acc_;

  public:
    int loc_x () const
    int loc_y () const
    void loc_x (int);
    void loc_y (int);
  private:
    #pragma db get(point (this.loc_x (), this.loc_y ()))    \
               set(this.loc_x ((?).x); this.loc_y ((?).y))
    point loc_;
};
  </pre>

  <p>When the data member is of an array type, then the terms "reference"
     and "member type" in the above discussion should be replaced with
     "pointer" and "array element type", respectively. That is, the accessor
     expression for an array member is any C++ expression that can be
     used to initialize a <code>const</code> pointer to the array
     element type, and so on. The following example shows common
     accessor and modifier signatures for array members:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  public:
    const char* id () const; // By-reference accessor.
    void id (const char*);   // By-value modifier.
  private:
    char id_[16];

  public:
    const char* pub_key () const; // By-reference accessor.
    char* pub_key ();             // By-reference modifier.
  private:
    char pub_key_[2048];
};
  </pre>

  <p>Accessor and modifier expressions can be used with data members
     of simple value, composite value, container, and object pointer
     types. They can be used for data members in persistent classes,
     composite value types, and views. There is also a mechanism
     related to accessors and modifiers called virtual data members
     and which is discussed in <a href="#12.4.13">Section 12.4.13,
     "<code>virtual</code>"</a>.</p>

  <p>There are, however, certain limitations when it comes to using
     by-value accessor and modifier expressions. First of all, if a
     by-value modifier is used, then the data member type should be
     default-constructible. Furthermore, a composite value type that
     has a container member cannot be modified with a by-value modifier.
     Only a by-reference modifier expression can be used. The ODB
     compiler will detect such cases and issue diagnostics. For
     example:</p>

  <pre class="cxx">
#pragma db value
struct name
{
  std::string first_;
  std::string last_;
  std::vector&lt;std::string> aliases_;
};

#pragma db object
class person
{
  ...

public:
  const name&amp; name () const;
  void name (const name&amp;);
private:
  #pragma db access(name) // Error: by-value modifier.
  name name_;
};
  </pre>

  <p>In certain database systems it is also not possible to use by-value
     accessor and modifier expression with certain database types.
     The ODB compiler is only able to detect such cases and issue diagnostics
     if you specified accessor/modifier function names as opposed to custom
     expressions. For more information on these database and type-specific
     limitations, refer to the "Limitations" sections in <a href="#II">Part
     II, "Database Systems"</a>.</p>

  <h3><a name="12.4.6">12.4.6 <code>null</code>/<code>not_null</code></a></h3>

  <p>The <code>null</code> and <code>not_null</code> specifiers specify that
     the data member can or cannot be <code>NULL</code>, respectively.
     By default, data members of basic value types for which database
     mapping is provided by the ODB compiler do not allow <code>NULL</code>
     values while data members of object pointers allow <code>NULL</code>
     values. Other value types, such as those provided by the profile
     libraries (<a href="#III">Part III, "Profiles"</a>), may or may
     not allow <code>NULL</code> values, depending on the semantics
     of each value type. Consult the relevant documentation to find
     out more about the <code>NULL</code> semantics for such value
     types. A data member containing the object id (<a href="#12.4.1">Section
     12.4.1, "<code>id</code>"</a>) is automatically treated as not
     allowing a <code>NULL</code> value. Data members that
     allow <code>NULL</code> values are mapped in a relational database
     to columns that allow <code>NULL</code> values. For example:</p>

  <pre class="cxx">
using std::tr1::shared_ptr;

#pragma db object
class person
{
  ...

  #pragma db null
  std::string name_;
};

#pragma db object
class account
{
  ...

  #pragma db not_null
  shared_ptr&lt;person> holder_;
};
  </pre>

  <p>The <code>NULL</code> semantics can also be specified on the
     per-type basis (<a href="#12.3.3">Section 12.3.3,
     "<code>null</code>/<code>not_null</code>"</a>). If both a type and
     a member have <code>null</code>/<code>not_null</code> specifiers,
     then the member specifier takes precedence. If a member specifier
     relaxes the <code>NULL</code> semantics (that is, if a member has
     the <code>null</code> specifier and the type has the explicit
     <code>not_null</code> specifier), then a warning is issued.</p>

  <p>For a more detailed discussion of the <code>NULL</code> semantics
     for values, refer to <a href="#7.3">Section 7.3, "Pointers and
     <code>NULL</code> Value Semantics"</a>. For a more detailed
     discussion of the <code>NULL</code> semantics for object pointers,
     refer to <a href="#6">Chapter 6, "Relationships"</a>.</p>

  <h3><a name="12.4.7">12.4.7 <code>default</code></a></h3>

  <p>The <code>default</code> specifier specifies the database default value
     that should be used for the data member. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db default(-1)
  int age_;              // Mapped to INT NOT NULL DEFAULT -1.
};
  </pre>

  <p>A default value can be the special <code>null</code> keyword,
     a <code>bool</code> literal (<code>true</code> or <code>false</code>),
     an integer literal, a floating point literal, a string literal, or
     an enumerator name. If you need to specify a default value that is
     an expression, for example an SQL function call, then you can use
     the <code>options</code> specifier (<a href="#12.4.8">Section
     12.4.8, "<code>options</code>"</a>) instead. For example:</p>

  <pre class="cxx">
enum gender {male, female, undisclosed};

#pragma db object
class person
{
  ...

  #pragma db default(null)
  odb::nullable&lt;std::string> middle_; // DEFAULT NULL

  #pragma db default(false)
  bool married_;                      // DEFAULT 0/FALSE

  #pragma db default(0.0)
  float weight_;                      // DEFAULT 0.0

  #pragma db default("Mr")
  string title_;                      // DEFAULT 'Mr'

  #pragma db default(undisclosed)
  gender gender_;                     // DEFAULT 2/'undisclosed'

  #pragma db options("DEFAULT CURRENT_TIMESTAMP()")
  date timestamp_;                    // DEFAULT CURRENT_TIMESTAMP()
};
  </pre>

  <p>Default values specified as enumerators are only supported for
     members that are mapped to an <code>ENUM</code> or an integer
     type in the database, which is the case for the automatic
     mapping of C++ enums to suitable database types as performed
     by the ODB compiler. If you have mapped a C++ enum to another
     database type, then you should use a literal corresponding
     to that type to specify the default value. For example:</p>

  <pre class="cxx">
enum gender {male, female, undisclosed};
#pragma db value(gender) type("VARCHAR(11)")

#pragma db object
class person
{
  ...

  #pragma db default("undisclosed")
  gender gender_;                   // DEFAULT 'undisclosed'
};
  </pre>

  <p>A default value can also be specified on the per-type basis
     (<a href="#12.3.4">Section 12.3.4, "<code>default</code>"</a>).
     An empty <code>default</code> specifier can be used to reset
     a default value that was previously specified on the per-type
     basis. For example:</p>

  <pre class="cxx">
#pragma db value(std::string) default("")

#pragma db object
class person
{
  ...

  #pragma db default()
  std::string name_;   // No default value.
};
  </pre>

  <p>A data member containing the object id (<a href="#12.4.1">Section
     12.4.1, "<code>id</code>"</a> ) is automatically treated as not
     having a default value even if its type specifies a default value.</p>

  <p>Note also that default values do not affect the generated C++ code
     in any way. In particular, no automatic initialization of data members
     with their default values is performed at any point. If you need such
     an initialization, you will need to implement it yourself, for example,
     in your persistent class constructors. The default values only
     affect the generated database schemas and, in the context of ODB,
     are primarily useful for schema evolution.</p>

  <p>Additionally, the <code>default</code> specifier cannot be specified
     for view data members.</p>

  <h3><a name="12.4.8">12.4.8 <code>options</code></a></h3>

  <p>The <code>options</code> specifier specifies additional column
     definition options that should be used for the data member. For
     example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db options("CHECK(email != '')")
  std::string email_; // Mapped to TEXT NOT NULL CHECK(email != '').
};
  </pre>

  <p>Options can also be specified on the per-type basis
     (<a href="#12.3.5">Section 12.3.5, "<code>options</code>"</a>).
     By default, options are accumulating. That is, the ODB compiler
     first adds all the options specified for a value type followed
     by all the options specified for a data member. To clear the
     accumulated options at any point in this sequence you can use
     an empty <code>options</code> specifier. For example:</p>

  <pre class="cxx">
#pragma db value(std::string) options("COLLATE binary")

#pragma db object
class person
{
  ...

  std::string first_; // TEXT NOT NULL COLLATE binary

  #pragma db options("CHECK(email != '')")
  std::string last_;  // TEXT NOT NULL COLLATE binary CHECK(email != '')

  #pragma db options()
  std::string title_; // TEXT NOT NULL

  #pragma db options() options("CHECK(email != '')")
  std::string email_; // TEXT NOT NULL CHECK(email != '')
};
  </pre>

  <p>ODB provides dedicated specifiers for specifying column types
     (<a href="#12.4.3">Section 12.4.3, "<code>type</code>"</a>),
     <code>NULL</code> constraints (<a href="#12.4.6">Section 12.4.6,
     "<code>null</code>/<code>not_null</code>"</a>), and default
     values (<a href="#12.4.7">Section 12.4.7, "<code>default</code>"</a>).
     For ODB to function correctly these specifiers should always be
     used instead of the opaque <code>options</code> specifier for
     these components of a column definition.</p>

  <p>Note also that the <code>options</code> specifier cannot be specified
     for view data members.</p>

  <h3><a name="12.4.9">12.4.9 <code>column</code> (object, composite value)</a></h3>

  <p>The <code>column</code> specifier specifies the column name
     that should be used to store the data member of a persistent class
     or composite value type in a relational database. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db id column("person_id")
  unsigned long id_;
};
  </pre>

  <p>For a member of a composite value type, the <code>column</code> specifier
     specifies the column name prefix. Refer to <a href="#7.2.2">Section 7.2.2,
     "Composite Value Column and Table Names"</a> for details.</p>

  <p>If the column name is not specified, it is derived from the member's
     so-called public name. A public member name is obtained by removing
     the common data member name decorations, such as leading and trailing
     underscores, the <code>m_</code> prefix, etc.</p>

  <h3><a name="12.4.10">12.4.10 <code>column</code> (view)</a></h3>

  <p>The <code>column</code> specifier can be used to specify the associated
     object data member, the potentially qualified column name, or the column
     expression for the data member of a view class. For more information,
     refer to <a href="#9.1">Section 9.1, "Object Views"</a> and
     <a href="#9.2">Section 9.2, "Table Views"</a>.</p>

  <h3><a name="12.4.11">12.4.11 <code>transient</code></a></h3>

  <p>The <code>transient</code> specifier instructs the ODB compiler
     not to store the data member in the database. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  date born_;

  #pragma db transient
  unsigned short age_; // Computed from born_.
};
  </pre>

  <p>This pragma is usually used on computed members, pointers and
     references that are only meaningful in the application's
     memory, as well as utility members such as mutexes, etc.</p>

  <h3><a name="12.4.12">12.4.12 <code>readonly</code></a></h3>

  <p>The <code>readonly</code> specifier specifies that the data member of
     an object or composite value type is read-only. Changes to a read-only
     data member are ignored when updating the database state of an object
     (<a href="#3.10">Section 3.10, "Updating Persistent Objects"</a>)
     containing such a member. Since views are read-only, it is not
     necessary to use this specifier for view data members. Object id
     (<a href="#12.4.1">Section 12.4.1, "<code>id</code>"</a>)
     and inverse (<a href="#12.4.14">Section 12.4.14,
     "<code>inverse</code>"</a>) data members are automatically treated
     as read-only and must not be explicitly declared as such. For
     example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db readonly
  date born_;
};
  </pre>

  <p>Besides simple value members, object pointer, container, and composite
     value members can also be declared read-only. A change of a pointed-to
     object is ignored when updating the state of a read-only object
     pointer. Similarly, any changes to the number or order of
     elements or to the element values themselves are ignored when
     updating the state of a read-only container. Finally, any changes
     to the members of a read-only composite value type are also ignored
     when updating the state of such a composite value.</p>

  <p>ODB automatically treats <code>const</code> data members as read-only.
     For example, the following <code>person</code> object is equivalent
     to the above declaration for the database persistence purposes:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  const date born_; // Automatically read-only.
};
  </pre>

  <p>When declaring an object pointer <code>const</code>, make sure to
     declare the pointer as <code>const</code> rather than (or in addition
     to) the object itself. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  const person* father_; // Read-write pointer to a read-only object.
  person* const mother_; // Read-only pointer to a read-write object.
};
  </pre>

  <p>Note that in case of a wrapper type (<a href="#7.3">Section 7.3,
     "Pointers and <code>NULL</code> Value Semantics"</a>), both the
     wrapper and the wrapped type must be <code>const</code> in
     order for the ODB compiler to automatically treat the data
     member as read-only. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  const std::auto_ptr&lt;const date> born_;
};
  </pre>

  <p>Read-only members are useful when dealing with
     asynchronous changes to the state of a data member in the
     database which should not be overwritten. In other cases,
     where the state of a data member never changes, declaring such a member
     read-only allows ODB to perform more efficient object updates.
     In such cases, however, it is conceptually more correct to
     declare such a data member as <code>const</code> rather than
     as read-only.</p>

  <p>Note that it is also possible to declare composite value types
     (<a href="#12.3.6">Section 12.3.6, "<code>readonly</code>"</a>)
     as well as whole objects (<a href="#12.1.4">Section 12.1.4,
     "<code>readonly</code>"</a>) as read-only.</p>

  <h3><a name="12.4.13">12.4.13 <code>virtual</code></a></h3>

  <p>The <code>virtual</code> specifier is used to declare a virtual
     data member in an object, view, or composite value type. A virtual
     data member is an <em>imaginary</em> data member that is only
     used for the purpose of database persistence. A virtual data
     member does not actually exist (that is, occupy space) in the
     C++ class. Note also that virtual data members have nothing to
     do with C++ virtual functions or virtual inheritance. Specifically,
     no virtual function call overhead is incurred when using virtual
     data members.</p>

  <p>To declare a virtual data member we must specify the data
     member name using the <code>member</code> specifier. We must
     also specify the data member type with the <code>virtual</code>
     specifier. Finally, the virtual data member declaration must
     also specify the accessor and modifier expressions, unless
     suitable accessor and modifier functions can automatically be
     found by the ODB compiler (<a href="#12.4.5">Section 12.4.5,
     "<code>get</code>/<code>set</code>/<code>access</code>"</a>).
     For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  // Transient real data member that actually stores the data.
  //
  #pragma db transient
  std::string name_;

  // Virtual data member.
  //
  #pragma db member(name) virtual(std::string) access(name_)
};
  </pre>

  <p>From the pragma language point of view, a virtual data member
     behaves exactly like a normal data member. Specifically, we
     can reference the virtual data member after it has been
     declared and use positioned pragmas before its declaration.
     For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db transient
  std::string name_;

  #pragma db access(name_)
  #pragma db member(name) virtual(std::string)
};

#pragma db member(person::name) column("person_name")
#pragma db index member(person::name)
  </pre>

  <p>We can also declare a virtual data member outside the class
     scope:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  std::string name_;
};

#pragma db member(person::name_) transient
#pragma db member(person::name) virtual(std::string) access(name_)
  </pre>

  <p>While in the above examples using virtual data members doesn't
     seem to yield any benefits, this mechanism can be useful in a
     number of situations. As one example, consider the need to
     aggregate or dis-aggregate a data member:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db transient
  std::pair&lt;std::string, std::string> name_;

  #pragma db member(first) virtual(std::string) access(name_.first)
  #pragma db member(last) virtual(std::string) access(name_.second)
};
  </pre>

  <p>We can also use virtual data members to implement composite
     object ids that are spread over multiple data members:</p>

  <pre class="cxx">
#pragma db value
struct name
{
  name () {}
  name (std::string const&amp; f, std::string const&amp; l)
    : first (f), last(l) {}

  std::string first;
  std::string last;
};

#pragma db object
class person
{
  ...

  #pragma db transient
  std::string first_;

  #pragma db transient
  std::string last_;

  #pragma db member(name) virtual(name) id                       \
             get(::name (this.first_, this.last_))               \
             set(this.first_ = (?).first; this.last_ = (?).last)
};
  </pre>

  <p>Another common situation that calls for virtual data members is
     a class that uses the pimpl idiom. While the following code
     fragment outlines the idea, for details refer to the
     <code>pimpl</code> example in the <code>odb-examples</code>
     package.</p>

  <pre class="cxx">
#pragma db object
class person
{
public:
  std::string const&amp; name () const;
  void name (std::string const&amp;);

  unsigned short age () const;
  void age (unsigned short);

  ...

private:
  class impl;

  #pragma db transient
  impl* pimpl_;

  #pragma db member(name) virtual(std::string)   // Uses name().
  #pragma db member(age) virtual(unsigned short) // Uses age().
};
  </pre>

  <p>The above example also shows that names used for virtual data
     members (<code>name</code> and <code>age</code> in our case) can
     be the same as the names of accessor/modifier functions. The only
     names that virtual data members cannot clash with are those of
     other data members, virtual or real.</p>

  <p>A common pattern in the above examples is the need to
     declare the real data member that actually stores the
     data as transient. If all the real data members in a
     class are treated as transient, then we can use the
     class-level <code>transient</code> specifier
     (<a href="#12.1.12">Section 12.1.12, "<code>transient</code>
     (object)"</a>,
     <a href="#12.3.8">Section 12.3.8, "<code>transient</code>
     (composite value)"</a>,
     <a href="#12.2.7">Section 12.2.7, "<code>transient</code>
     (view)"</a>)
     instead of doing it for each individual member. For example: </p>

  <pre class="cxx">
#pragma db object transient
class person
{
  ...

  std::string first_; // Transient.
  std::string last_;  // Transient.

  #pragma db member(name) virtual(name) ...
};
  </pre>

  <p>The ability to treat all the real data members as transient
     becomes more important if we don't know the names of these
     data members. This is often the case when we are working
     with third-party types that document the accessor and
     modifier functions but not the names of their private data
     members. As an example, consider the <code>point</code> class
     defined in a third-party <code>&lt;point></code> header file:</p>

  <pre class="cxx">
class point
{
public:
  point ();
  point (int x, int y);

  int x () const;
  int y () const;

  void x (int);
  void y (int);

private:
  ...
};
  </pre>

 <p>To convert this class to an ODB composite value type we could
    create the <code>point-mapping.hxx</code> file with the following
    content:</p>

  <pre class="cxx">
#include &lt;point>

#pragma db value(point) transient definition
#pragma db member(point::x) virtual(int)
#pragma db member(point::y) virtual(int)
  </pre>

  <p>Virtual data members can be of simple value, composite value,
     container, or object pointer types. They can be used in persistent
     classes, composite value types, and views.</p>

  <h3><a name="12.4.14">12.4.14 <code>inverse</code></a></h3>

  <p>The <code>inverse</code> specifier specifies that the data member of
     an object pointer or a container of object pointers type is an
     inverse side of a bidirectional object relationship. The single
     required argument to this specifier is the corresponding data
     member name in the referenced object. For example:</p>

  <pre class="cxx">
using std::tr1::shared_ptr;
using std::tr1::weak_ptr;

class person;

#pragma db object pointer(shared_ptr)
class employer
{
  ...

  std::vector&lt;shared_ptr&lt;person> > employees_;
};

#pragma db object pointer(shared_ptr)
class person
{
  ...

  #pragma db inverse(employee_)
  weak_ptr&lt;employer> employer_;
};
  </pre>

  <p>An inverse member does not have a corresponding column or, in case
     of a container, table in the resulting database schema. Instead, the
     column or table from the referenced object is used to retrieve the
     relationship information. Only ordered and set containers can be used
     for inverse members. If an inverse member is of an ordered container
     type, it is automatically marked as unordered
     (<a href="#12.4.18">Section 12.4.18, "<code>unordered</code>"</a>).</p>

  <p>For a more detailed discussion of inverse members, refer to
     <a href="#6.2">Section 6.2, "Bidirectional Relationships"</a>.</p>

  <h3><a name="12.4.15">12.4.15 <code>version</code></a></h3>

  <p>The <code>version</code> specifier specifies that the data member stores
     the object version used to support optimistic concurrency.  If a class
     has a version data member, then it must also be declared as having the
     optimistic concurrency model using the <code>optimistic</code> pragma
     (<a href="#12.1.5">Section 12.1.5, "<code>optimistic</code>"</a>). For
     example:</p>

  <pre class="cxx">
#pragma db object optimistic
class person
{
  ...

  #pragma db version
  unsigned long version_;
};
  </pre>

  <p>A version member must be of an integral C++ type and must map to
     an integer or similar database type. Note also that object versions
     are not reused. If you have a high update frequency, then care must
     be taken not to run out of versions. In such situations, using
     <code>unsigned&nbsp;long&nbsp;long</code> as the version type is a safe
     choice.</p>

  <p>For a more detailed discussion of optimistic concurrency, refer to
     <a href="#11">Chapter 11, "Optimistic Concurrency"</a>.</p>

  <h3><a name="12.4.16">12.4.16 <code>index</code></a></h3>

  <p>The <code>index</code> specifier instructs the ODB compiler to define
     a database index for the data member. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db index
  std::string name_;
};
  </pre>

  <p>For more information on defining database indexes, refer to
     <a href="#12.6">Section 12.6, "Index Definition Pragmas"</a>.</p>

  <h3><a name="12.4.17">12.4.17 <code>unique</code></a></h3>

  <p>The <code>index</code> specifier instructs the ODB compiler to define
     a unique database index for the data member. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db unique
  std::string name_;
};
  </pre>

  <p>For more information on defining database indexes, refer to
     <a href="#12.6">Section 12.6, "Index Definition Pragmas"</a>.</p>

  <h3><a name="12.4.18">12.4.18 <code>unordered</code></a></h3>

  <p>The <code>unordered</code> specifier specifies that the member of
     an ordered container type should be stored unordered in the database.
     The database table for such a member will not contain the index column
     and the order in which elements are retrieved from the database may
     not be the same as the order in which they were stored. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db unordered
  std::vector&lt;std::string> nicknames_;
};
  </pre>

  <p>For a more detailed discussion of ordered containers and their
     storage in the database, refer to <a href="#5.1">Section 5.1,
     "Ordered Containers"</a>.</p>

  <h3><a name="12.4.19">12.4.19 <code>table</code></a></h3>

  <p>The <code>table</code> specifier specifies the table name that should
     be used to store the contents of the container member. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db table("nicknames")
  std::vector&lt;std::string> nicknames_;
};
  </pre>

  <p>If the table name is not specified, then the container table name
     is constructed by concatenating the object's table name, underscore,
     and the public member name. The public member name is obtained
     by removing the common member name decorations, such as leading and
     trailing underscores, the <code>m_</code> prefix, etc. In the example
     above, without the <code>table</code> specifier, the container's
     table name would have been <code>person_nicknames</code>.</p>

  <p>The <code>table</code> specifier can also be used for members of
     composite value types. In this case it specifies the table name
     prefix for container members inside the composite value type. Refer
     to <a href="#7.2.2">Section 7.2.2, "Composite Value Column and Table
     Names"</a> for details.</p>

  <p>The container table name can be qualified with a database
     schema, for example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db table("extras.nicknames")
  std::vector&lt;std::string> nicknames_;
};
  </pre>

  <p>For more information on database schemas and the format of the
     qualified names, refer to <a href="#12.1.8">Section 12.1.8,
     "<code>schema</code>"</a>.</p>

  <h3><a name="12.4.20">12.4.20 <code>index_type</code></a></h3>

  <p>The <code>index_type</code> specifier specifies the native
     database type that should be used for an ordered container's
     index column of the data member. The semantics of <code>index_type</code>
     are similar to those of the <code>type</code> specifier
     (<a href="#12.4.3">Section 12.4.3, "<code>type</code>"</a>). The native
     database type is expected to be an integer type. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db index_type("SMALLINT UNSIGNED")
  std::vector&lt;std::string> nicknames_;
};
  </pre>

  <h3><a name="12.4.21">12.4.21 <code>key_type</code></a></h3>

  <p>The <code>key_type</code> specifier specifies the native
     database type that should be used for a map container's
     key column of the data member. The semantics of <code>key_type</code>
     are similar to those of the <code>type</code> specifier
     (<a href="#12.4.3">Section 12.4.3, "<code>type</code>"</a>). For
     example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db key_type("INT UNSIGNED")
  std::map&lt;unsigned short, float> age_weight_map_;
};
  </pre>

  <h3><a name="12.4.22">12.4.22 <code>value_type</code></a></h3>

  <p>The <code>value_type</code> specifier specifies the native
     database type that should be used for a container's
     value column of the data member. The semantics of <code>value_type</code>
     are similar to those of the <code>type</code> specifier
     (<a href="#12.4.3">Section 12.4.3, "<code>type</code>"</a>). For
     example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db value_type("VARCHAR(255)")
  std::vector&lt;std::string> nicknames_;
};
  </pre>

  <p>The <code>value_null</code> and <code>value_not_null</code>
     (<a href="#12.4.23">Section 12.4.23,
     "<code>value_null</code>/<code>value_not_null</code>"</a>) specifiers
     can be used to control the NULL semantics of a value column.</p>

  <h3><a name="12.4.23">12.4.23 <code>value_null</code>/<code>value_not_null</code></a></h3>

  <p>The <code>value_null</code> and <code>value_not_null</code> specifiers
     specify that a container's element value for the data member can or
     cannot be <code>NULL</code>, respectively. The semantics of
     <code>value_null</code> and <code>value_not_null</code> are similar
     to those of the <code>null</code> and <code>not_null</code> specifiers
     (<a href="#12.4.6">Section 12.4.6, "<code>null</code>/<code>not_null</code>"</a>).
     For example:</p>

  <pre class="cxx">
using std::tr1::shared_ptr;

#pragma db object
class person
{
  ...
};

#pragma db object
class account
{
  ...

  #pragma db value_not_null
  std::vector&lt;shared_ptr&lt;person> > holders_;
};
  </pre>

  <p>For set and multiset containers (<a href="#5.2">Section 5.2, "Set and
     Multiset Containers"</a>) the element value is automatically treated
     as not allowing a <code>NULL</code> value.</p>

  <h3><a name="12.4.24">12.4.24 <code>id_options</code></a></h3>

  <p>The <code>id_options</code> specifier specifies additional
     column definition options that should be used for a container's
     id column of the data member. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db id options("COLLATE binary")
  std::string name_;

  #pragma db id_options("COLLATE binary")
  std::vector&lt;std::string> nicknames_;
};
  </pre>

  <p>The semantics of <code>id_options</code> are similar to those
     of the <code>options</code> specifier (<a href="#12.4.8">Section
     12.4.8, "<code>options</code>"</a>).</p>

  <h3><a name="12.4.25">12.4.25 <code>index_options</code></a></h3>

  <p>The <code>index_options</code> specifier specifies additional
     column definition options that should be used for a container's
     index column of the data member. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db index_options("ZEROFILL")
  std::vector&lt;std::string> nicknames_;
};
  </pre>

  <p>The semantics of <code>index_options</code> are similar to those
     of the <code>options</code> specifier (<a href="#12.4.8">Section
     12.4.8, "<code>options</code>"</a>).</p>

  <h3><a name="12.4.26">12.4.26 <code>key_options</code></a></h3>

  <p>The <code>key_options</code> specifier specifies additional
     column definition options that should be used for a container's
     key column of the data member. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db key_options("COLLATE binary")
  std::map&lt;std::string, std::string> properties_;
};
  </pre>

  <p>The semantics of <code>key_options</code> are similar to those
     of the <code>options</code> specifier (<a href="#12.4.8">Section
     12.4.8, "<code>options</code>"</a>).</p>

  <h3><a name="12.4.27">12.4.27 <code>value_options</code></a></h3>

  <p>The <code>value_options</code> specifier specifies additional
     column definition options that should be used for a container's
     value column of the data member. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db value_options("COLLATE binary")
  std::set&lt;std::string> nicknames_;
};
  </pre>

  <p>The semantics of <code>value_options</code> are similar to those
     of the <code>options</code> specifier (<a href="#12.4.8">Section
     12.4.8, "<code>options</code>"</a>).</p>

  <h3><a name="12.4.28">12.4.28 <code>id_column</code></a></h3>

  <p>The <code>id_column</code> specifier specifies the column
     name that should be used to store the object id in a
     container's table for the data member. The semantics of
     <code>id_column</code> are similar to those of the
     <code>column</code> specifier
     (<a href="#12.4.9">Section 12.4.9, "<code>column</code>"</a>).
     For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db id_column("person_id")
  std::vector&lt;std::string> nicknames_;
};
  </pre>

  <p>If the column name is not specified, then <code>object_id</code>
     is used by default.</p>

  <h3><a name="12.4.29">12.4.29 <code>index_column</code></a></h3>

  <p>The <code>index_column</code> specifier specifies the column
     name that should be used to store the element index in an
     ordered container's table for the data member. The semantics of
     <code>index_column</code> are similar to those of the
     <code>column</code> specifier
     (<a href="#12.4.9">Section 12.4.9, "<code>column</code>"</a>).
     For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db index_column("nickname_number")
  std::vector&lt;std::string> nicknames_;
};
  </pre>

  <p>If the column name is not specified, then <code>index</code>
     is used by default.</p>

  <h3><a name="12.4.30">12.4.30 <code>key_column</code></a></h3>

  <p>The <code>key_column</code> specifier specifies the column
     name that should be used to store the key in a map
     container's table for the data member. The semantics of
     <code>key_column</code> are similar to those of the
     <code>column</code> specifier
     (<a href="#12.4.9">Section 12.4.9, "<code>column</code>"</a>).
     For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db key_column("age")
  std::map&lt;unsigned short, float> age_weight_map_;
};
  </pre>

  <p>If the column name is not specified, then <code>key</code>
     is used by default.</p>

  <h3><a name="12.4.31">12.4.31 <code>value_column</code></a></h3>

  <p>The <code>value_column</code> specifier specifies the column
     name that should be used to store the element value in a
     container's table for the data member. The semantics of
     <code>value_column</code> are similar to those of the
     <code>column</code> specifier
     (<a href="#12.4.9">Section 12.4.9, "<code>column</code>"</a>).
     For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db value_column("weight")
  std::map&lt;unsigned short, float> age_weight_map_;
};
  </pre>

  <p>If the column name is not specified, then <code>value</code>
     is used by default.</p>

  <h2><a name="12.5">12.5 Namespace Pragmas</a></h2>

  <p>A pragma with the <code>namespace</code> qualifier describes a
     C++ namespace. Similar to other qualifiers, <code>namespace</code>
     can also refer to a named C++ namespace, for example:</p>

  <pre class="cxx">
namespace test
{
  ...
}

#pragma db namespace(test) ...
  </pre>

  <p>To refer to the global namespace in the <code>namespace</code>
     qualifier the following special syntax is used:</p>

  <pre class="cxx">
#pragma db namespace() ....
  </pre>

  <p>The <code>namespace</code> qualifier can be optionally followed,
     in any order, by one or more specifiers summarized in the
     table below:</p>

  <!-- border="1" is necessary for html2ps -->
  <table class="specifiers" border="1">
    <tr>
      <th>Specifier</th>
      <th>Summary</th>
      <th>Section</th>
    </tr>

    <tr>
      <td><code>pointer</code></td>
      <td>pointer type for persistent classes and views inside a namespace</td>
      <td><a href="#12.5.1">12.5.1</a></td>
    </tr>

    <tr>
      <td><code>table</code></td>
      <td>table name prefix for persistent classes inside a namespace</td>
      <td><a href="#12.5.2">12.5.2</a></td>
    </tr>

    <tr>
      <td><code>schema</code></td>
      <td>database schema for persistent classes inside a namespace</td>
      <td><a href="#12.5.3">12.5.3</a></td>
    </tr>

    <tr>
      <td><code>session</code></td>
      <td>enable/disable session support for persistent classes inside a namespace</td>
      <td><a href="#12.5.4">12.5.4</a></td>
    </tr>

  </table>

  <h3><a name="12.5.1">12.5.1 <code>pointer</code></a></h3>

  <p>The <code>pointer</code> specifier specifies the default pointer
     type for persistent classes and views inside the namespace. For
     example:</p>

  <pre class="cxx">
#pragma db namespace pointer(std::tr1::shared_ptr)
namespace accounting
{
  #pragma db object
  class employee
  {
    ...
  };

  #pragma db object
  class employer
  {
    ...
  };
}
  </pre>

  <p>There are only two valid ways to specify a pointer with the
     <code>pointer</code> specifier at the namespace level. We can
     specify the template name of a smart pointer in which
     case the ODB compiler will automatically append the class
     name as a template argument. Or we can use <code>*</code>
     to denote a raw pointer.</p>

  <p>Note also that we can always override the default pointer
     specified at the namespace level for any persistent class
     or view inside this namespace. For example:</p>

  <pre class="cxx">
#pragma db namespace pointer(std::unique_ptr)
namespace accounting
{
  #pragma db object pointer(std::shared_ptr)
  class employee
  {
    ...
  };

  #pragma db object
  class employer
  {
    ...
  };
}
  </pre>

  <p>For a more detailed discussion of object and view pointers, refer
     to <a href="#3.3">Section 3.3, "Object and View Pointers"</a>.</p>

  <h3><a name="12.5.2">12.5.2 <code>table</code></a></h3>

  <p>The <code>table</code> specifier specifies a table prefix
     that should be added to table names of persistent classes inside
     the namespace. For example:</p>

  <pre class="cxx">
#pragma db namespace table("acc_")
namespace accounting
{
  #pragma db object table("employees")
  class employee
  {
    ...
  };

  #pragma db object table("employers")
  class employer
  {
    ...
  };
}
  </pre>

  <p>In the above example the resulting table names will be
     <code>acc_employees</code> and <code>acc_employers</code>.</p>

  <p>The table name prefix can also be specified with the
     <code>--table-prefix</code> ODB compiler option. Note
     that table prefixes specified at the namespace level as well
     as with the command line option are accumulated. For example:</p>

  <pre class="cxx">
#pragma db namespace() table("audit_")

#pragma db namespace table("hr_")
namespace hr
{
  #pragma db object table("employees")
  class employee
  {
    ...
  };
}

#pragma db object table("employers")
class employer
{
  ...
};
  </pre>

  <p>If we compile the above example with the
     <code>--table-prefix&nbsp;test_</code> option, then the
     <code>employee</code> class table will be called
     <code>test_audit_hr_employees</code> and <code>employer</code> &mdash;
     <code>test_audit_employers</code>.</p>

  <p>Table prefixes can be used as an alternative to database schemas
     (<a href="#12.1.8">Section 12.1.8, "<code>schema</code>"</a>) if
     the target database system does not support schemas.</p>

  <h3><a name="12.5.3">12.5.3 <code>schema</code></a></h3>

  <p>The <code>schema</code> specifier specifies a database schema
     that should be used for persistent classes inside the namespace.
     For more information on specifying a database schema refer to
     <a href="#12.1.8">Section 12.1.8, "<code>schema</code>"</a>.</p>

  <h3><a name="12.5.4">12.5.4 <code>session</code></a></h3>

  <p>The <code>session</code> specifier specifies whether to enable
     session support for persistent classes inside the namespace. For
     example:</p>

  <pre class="cxx">
#pragma db namespace session
namespace hr
{
  #pragma db object                // Enabled.
  class employee
  {
    ...
  };

  #pragma db object session(false) // Disabled.
  class employer
  {
    ...
  };
}
  </pre>

  <p>Session support is disabled by default unless the
     <code>--generate-session</code> ODB compiler option is specified.
     Session support specified at the namespace level can be overridden
     on the per object basis (<a href="#12.1.10">Section 12.1.10,
     "<code>session</code>"</a>). For more information on sessions,
     refer to <a href="#10">Chapter 10, "Session"</a>.</p>

  <h2><a name="12.6">12.6 Index Definition Pragmas</a></h2>

  <p>While it is possible to manually add indexes to the generated
     database schema, it is more convenient to do this as part of
     the persistent class definitions. A pragma with the <code>index</code>
     qualifier describes a database index. It has the following
     general format:</p>

<pre class="cxx">
#pragma db index[("&lt;name>")]                       \
           [unique|type("&lt;type>")]                 \
           [method("&lt;method>")]                    \
           [options("&lt;index-options>")]            \
           member(&lt;name>[, "&lt;column-options>"])... \
           members(&lt;name>[,&lt;name>...])...
</pre>

  <p>The <code>index</code> qualifier can optionally specify the
     index name. If the index name is not specified, then one is
     automatically derived by appending the <code>_i</code> suffix
     to the column name of the index member. If the name is not
     specified and the index contains multiple members, then the
     index definition is invalid.</p>

  <p>The optional <code>type</code>, <code>method</code>, and
     <code>options</code> clauses specify the index type, for
     example <code>UNIQUE</code>, index method, for example
     <code>BTREE</code>, and index options, respectively. The
     <code>unique</code> clause is a shortcut for
     <code>type("UNIQUE")</code>. Note that not all database
     systems support specifying an index method or options.
     For more information on the database system-specific index
     types, methods, and options, refer to <a href="#II">Part II,
     "Database Systems"</a>.</p>

  <p>To specify index members we can use the <code>member</code>
     or <code>members</code> clauses, or a mix of the two. The
     <code>member</code> clause allows us to specify a single
     index member with optional column options, for example,
     <code>"ASC"</code>. If we need to create a composite
     index that contains multiple members, then we can repeat
     the <code>member</code> clause several times or, if the
     members don't have any column options, we can use a single
     <code>members</code> clause instead. Similar to the index
     type, method, and options, the format of column options is
     database system-specific. For more details, refer to
     <a href="#II">Part II, "Database Systems"</a>.</p>

  <p>The following code fragment shows some typical examples
     of index definitions:</p>

<pre class="cxx">
#pragma db object
class object
{
  ...

  int x;
  int y;
  int z1;
  int z2;

  // An index for member x with automatically-assigned name x_i.
  //
  #pragma db index member(x)

  // A unique index named y_index for member y which is sorted in
  // the descending order. The index is using the BTREE method.
  //
  #pragma db index("y_index") unique method("BTREE") member(y, "DESC")

  // A composite BITMAP index named z_i for members z1 and z2.
  //
  #pragma db index("z_i") type("BITMAP") members(z1, z2)
};
</pre>

  <p>ODB also offers a shortcut for defining an index with the default
     method and options for a single data member. Such an index can
     be defined using the <code>index</code> (<a href="#12.4.16">Section
     12.4.16, "<code>index</code>"</a>) or <code>unique</code>
     (<a href="#12.4.17">Section 12.4.17, "<code>unique</code>"</a>)
     member specifier. For example:</p>

<pre class="cxx">
#pragma db object
class object
{
  ...

  #pragma db index
  int x;

  #pragma db type("INT") unique
  int y;
};
</pre>

  <p>The above example is semantically equivalent to the following
     more verbose version:</p>

<pre class="cxx">
#pragma db object
class object
{
  ...

  int x;

  #pragma db type("INT")
  int y;

  #pragma db index member(x)
  #pragma db index unique member(y)
};
</pre>

  <p>While it is convenient to define an index inside a persistent
     class, it is also possible to do that out of the class body. In this
     case, the index name, if specified, must be prefixed with the
     potentially-qualified class name. For example:</p>

<pre class="cxx">
namespace n
{
  #pragma db object
  class object
  {
    ...

    int x;
    int y;
  };

  // An index for member x in persistent class object with automatically-
  // assigned name x_i.
  //
  #pragma db index(object) member(x)
}

// An index named y_index for member y in persistent class n::object.
//
#pragma db index(n::object::"y_index") member(y)
</pre>

  <p>It is possible to define an index on a member that is of a
     composite value type or on some of its nested members. For
     example:</p>

<pre class="cxx">
#pragma db value
struct point
{
  int x;
  int y;
  int z;
};

#pragma db object
class object
{
  // An index that includes all of the p1's nested members.
  //
  #pragma db index
  point p1;

  point p2;

  // An index that includes only p2.x and p2.y.
  //
  #pragma db index("p2_xy_i") members(p2.x, p2.y)
};
</pre>

  <p>When generating a schema for a container member (<a href="#5">Chapter 5,
     "Containers"</a>), ODB automatically defines two indexes on the container
     table. One is for the object id that references the object table and the
     other is for the index column in case the container is ordered
     (<a href="#5.1">Section 5.1, "Ordered Containers"</a>). By default these
     indexes use the default index name, type, method, and options. The
     <code>index</code> pragma allows us to customize these two indexes by
     recognizing the special <code>id</code> and <code>index</code> nested
     member names when specified after a container member. For example:</p>

<pre class="cxx">
#pragma db object
class object
{
  std::vector&lt;int> v;

  // Change the container id index name.
  //
  #pragma db index("id_index") member(v.id)

  // Change the container index index method.
  //
  #pragma db index method("BTREE") member(v.index)
};
</pre>

  <h2><a name="12.7">12.7 Database Type Mapping Pragmas</a></h2>

  <p>A pragma with the <code>map</code> qualifier describes a
     mapping between two database types. For each database system
     ODB provides built-in support for a core set of database types,
     such as integers, strings, binary, etc. However, many database
     systems provide additional types such as extensions (geospatial,
     key-value stores, etc.), user-defined types, and collections (arrays,
     table types, etc). In order to support such additional types, ODB
     allows us to map them to one of the built-in types, normally
     a string or a binary. Given the text or binary representation
     of the data we can then extract it into our chosen C++ data type
     and thus establish a mapping between an additional database type and
     its C++ equivalent.</p>

  <p>The <code>map</code> pragma has the following format:</p>

<pre class="cxx">
#pragma db map type("regex") as("subst") [to("subst")] [from("subst")]
</pre>

  <p>The <code>type</code> clause specifies the name of the database type
     that we are mapping. We will refer to it as the <em>mapped type</em>
     from now on. The name of the mapped type is a Perl-like regular
     expression pattern that is matched in the case-insensitive mode.</p>

  <p>The <code>as</code> clause specifies the name of the database type
     that we are mapping the mapped type to. We will refer to it as
     the <em>interface type</em> from now on. The name of the interface
     type is a regular expression substitution and should expand to a
     name of a database type for which ODB provides built-in support.</p>

  <p>The optional <code>to</code> and <code>from</code> clauses specify the
     database conversion expressions between the mapped type and the
     interface type. The <code>to</code> expression converts from the
     interface type to the mapped type and <code>from</code> converts
     in the other direction. If no explicit conversion is required for
     either direction, then the corresponding clause can be omitted.
     The conversion expressions are regular expression substitutions.
     They must contain the special <code>(?)</code> placeholder which will
     be replaced with the actual value to be converted. Turning on SQL
     statement tracing (<a href="#3.13">Section 3.13, "Tracing SQL
     Statement Execution"</a>) can be useful for debugging conversion
     expressions. This allows you to see the substituted expressions
     as used in the actual statements.</p>

  <p>As an example, the following <code>map</code> pragma maps the
     PostgreSQL array of <code>INTEGER</code>'s to <code>TEXT</code>:</p>

<pre class="cxx">
#pragma db map type("INTEGER *\\[(\\d*)\\]") \
               as("TEXT")                    \
               to("(?)::INTEGER[$1]")        \
               from("(?)::TEXT")
</pre>

  <p>With the above mapping we can now have a persistent class that
     has a member of the PostgreSQL array type:</p>

<pre class="cxx">
#pragma db object
class object
{
  ...

  #pragma db type("INTEGER[]")
  std::string array_;
};
</pre>

  <p>In PostgreSQL the array literal has the <code>{n1,n2,...}</code> form.
     As a result, we need to make sure that we pass the correct text
     representation in the <code>array_</code> member, for example:</p>

<pre class="cxx">
object o;
o.array_ = "{1,2,3}";
db.persist (o);
</pre>

  <p>Of course, <code>std::string</code> is not the most natural
     representation of an array of integers in C++. Instead,
     <code>std::vector&lt;int></code> would have been much more
     appropriate. To add support for mapping
     <code>std::vector&lt;int></code> to PostgreSQL <code>INTEGER[]</code>
     we need to provide a <code>value_traits</code> specialization
     that implements conversion between the PostgreSQL text representation
     of an array and <code>std::vector&lt;int></code>. Below is a sample
     implementation:</p>

<pre class="cxx">
namespace odb
{
  namespace pgsql
  {
    template &lt;>
    class value_traits&lt;std::vector&lt;int>, id_string>
    {
    public:
      typedef std::vector&lt;int> value_type;
      typedef value_type query_type;
      typedef details::buffer image_type;

      static void
      set_value (value_type&amp; v,
                 const details::buffer&amp; b,
                 std::size_t n,
                 bool is_null)
      {
        v.clear ();

        if (!is_null)
        {
          char c;
          std::istringstream is (std::string (b.data (), n));

          is >> c; // '{'

          for (c = static_cast&lt;char> (is.peek ()); c != '}'; is >> c)
          {
            v.push_back (int ());
            is >> v.back ();
          }
        }
      }

      static void
      set_image (details::buffer&amp; b,
                 std::size_t&amp; n,
                 bool&amp; is_null,
                 const value_type&amp; v)
      {
        is_null = false;
        std::ostringstream os;

        os &lt;&lt; '{';

        for (value_type::const_iterator i (v.begin ()), e (v.end ());
             i != e;)
        {
          os &lt;&lt; *i;

          if (++i != e)
            os &lt;&lt; ',';
        }

        os &lt;&lt; '}';

        const std::string&amp; s (os.str ());
        n = s.size ();

        if (n > b.capacity ())
          b.capacity (n);

        std::memcpy (b.data (), s.c_str (), n);
      }
    };
  }
}
</pre>

  <p>Once this specialization is included in the generated code (see
     the <code>mapping</code> example in the <code>odb-examples</code>
     package for details), we can use <code>std::vector&lt;int></code>
     instead of <code>std::string</code> in our persistent class:</p>

<pre class="cxx">
#pragma db object
class object
{
  ...

  #pragma db type("INTEGER[]")
  std::vector&lt;int> array_;
};
</pre>

  <p>If we wanted to always map <code>std::vector&lt;int></code>
     to PostgreSQL <code>INTEGER[]</code>, then we could instead
     write:</p>

<pre class="cxx">
typedef std::vector&lt;int> int_vector;
#pragma db value(int_vector) type("INTEGER[]")

#pragma db object
class object
{
  ...

  std::vector&lt;int> array_; // Mapped to INTEGER[].
};
</pre>

  <p>While the above example only shows how to handle PostgreSQL arrays,
     other types in PostgreSQL and in other databases can be supported
     in a similar way. The <code>odb-tests</code> package contains a
     set of tests in the <code>&lt;database>/custom</code> directories that,
     for each database, shows how to provide custom mapping for some of
     the additional types.</p>

  <h2><a name="12.8">12.8 C++ Compiler Warnings</a></h2>

  <p>When a C++ header file defining persistent classes and containing
     ODB pragmas is used to build the application, the C++ compiler may
     issue warnings about pragmas that it doesn't recognize. There
     are several ways to deal with this problem. The easiest is to
     disable such warnings using one of the compiler-specific command
     line options or warning control pragmas. This method is described
     in the following sub-section for popular C++ compilers.</p>

  <p>There are also several C++ compiler-independent methods that we
     can employ. The first is to use the <code>PRAGMA_DB</code> macro,
     defined in <code>&lt;odb/core.hxx></code>, instead of using
     <code>#pragma&nbsp;db</code> directly. This macro expands to the
     ODB pragma when compiled with the ODB compiler and to an empty
     declaration when compiled with other compilers. The following example
     shows how we can use this macro:</p>

  <pre class="cxx">
#include &lt;odb/core.hxx>

PRAGMA_DB(object)
class person
{
  ...

  PRAGMA_DB(id)
  unsigned long id_;
};
  </pre>

  <p>An alternative to using the <code>PRAGMA_DB</code> macro is to
     group the <code>#pragma&nbsp;db</code> directives in blocks that are
     conditionally included into compilation only when compiled with the
     ODB compiler. For example:</p>

  <pre class="cxx">
class person
{
  ...

  unsigned long id_;
};

#ifdef ODB_COMPILER
#  pragma db object(person)
#  pragma db member(person::id_) id
#endif
  </pre>

  <p>The disadvantage of this approach is that it can quickly become
     overly verbose when positioned pragmas are used.</p>

  <h3><a name="12.8.1">12.8.1 GNU C++</a></h3>

  <p>GNU g++ does not issue warnings about unknown pragmas
     unless requested with the <code>-Wall</code> command line option.
     To disable only the unknown pragma warning, we can add the
     <code>-Wno-unknown-pragmas</code> option after <code>-Wall</code>,
     for example:</p>

  <pre class="terminal">
g++ -Wall -Wno-unknown-pragmas ...
  </pre>

  <h3><a name="12.8.2">12.8.2 Visual C++</a></h3>

  <p>Microsoft Visual C++ issues an unknown pragma warning (C4068) at
     warning level 1 or higher. This means that unless we have disabled
     the warnings altogether (level 0), we will see this warning.</p>

  <p>To disable this warning via the compiler command line, we can add
     the <code>/wd4068</code> C++ compiler option in Visual Studio 2008
     and earlier. In Visual Studio 2010 there is now a special GUI field
     where we can enter warning numbers that should be disabled. Simply
     enter 4068 into this field.</p>

  <p>We can also disable this warning for only a specific header or
     a fragment of a header using the warning control pragma. For
     example:</p>

  <pre class="cxx">
#include &lt;odb/core.hxx>

#pragma warning (push)
#pragma warning (disable:4068)

#pragma db object
class person
{
  ...

  #pragma db id
  unsigned long id_;
};

#pragma warning (pop)
  </pre>

  <h3><a name="12.8.3">12.8.3 Sun C++</a></h3>

  <p>The Sun C++ compiler does not issue warnings about unknown pragmas
     unless the <code>+w</code> or <code>+w2</code> option is specified.
     To disable only the unknown pragma warning we can add the
     <code>-erroff=unknownpragma</code> option anywhere on the
     command line, for example:</p>

  <pre class="terminal">
CC +w -erroff=unknownpragma ...
  </pre>

  <h3><a name="12.8.4">12.8.4 IBM XL C++</a></h3>

  <p>IBM XL C++ issues an unknown pragma warning (1540-1401) by default.
     To disable this warning we can add the <code>-qsuppress=1540-1401</code>
     command line option, for example:</p>

  <pre class="terminal">
xlC -qsuppress=1540-1401 ...
  </pre>

  <h3><a name="12.8.5">12.8.5 HP aC++</a></h3>

  <p>HP aC++ (aCC) issues an unknown pragma warning (2161) by default.
     To disable this warning we can add the <code>+W2161</code>
     command line option, for example:</p>

  <pre class="terminal">
aCC +W2161 ...
  </pre>

  <h3><a name="12.8.6">12.8.6 Clang</a></h3>

  <p>Clang does not issue warnings about unknown pragmas
     unless requested with the <code>-Wall</code> command line option.
     To disable only the unknown pragma warning, we can add the
     <code>-Wno-unknown-pragmas</code> option after <code>-Wall</code>,
     for example:</p>

  <pre class="terminal">
clang++ -Wall -Wno-unknown-pragmas ...
  </pre>

  <p>We can also disable this warning for only a specific header or
     a fragment of a header using the warning control pragma. For
     example:</p>

  <pre class="cxx">
#include &lt;odb/core.hxx>

#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunknown-pragmas"

#pragma db object
class person
{
  ...

  #pragma db id
  unsigned long id_;
};

#pragma clang diagnostic pop
  </pre>


  <!-- PART -->


  <hr class="page-break"/>
  <h1><a name="II">PART II&nbsp;&nbsp;
      <span style="font-weight: normal;">DATABASE SYSTEMS</span></a></h1>

  <p>Part II covers topics specific to the database system
     implementations and their support in ODB. In particular, it
     describes the system-specific <code>database</code> classes
     as well as the default mapping between basic C++ value types
     and native database types. Part II consists of the following
     chapters.</p>

  <table class="toc">
    <tr><th>13</th><td><a href="#13">MySQL Database</a></td></tr>
    <tr><th>14</th><td><a href="#14">SQLite Database</a></td></tr>
    <tr><th>15</th><td><a href="#15">PostgreSQL Database</a></td></tr>
    <tr><th>16</th><td><a href="#16">Oracle Database</a></td></tr>
    <tr><th>17</th><td><a href="#17">Microsoft SQL Server Database</a></td></tr>
  </table>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="13">13 MySQL Database</a></h1>

  <p>To generate support code for the MySQL database you will need
     to pass the "<code>--database&nbsp;mysql</code>"
     (or "<code>-d&nbsp;mysql</code>") option to the ODB compiler.
     Your application will also need to link to the MySQL ODB runtime
     library (<code>libodb-mysql</code>). All MySQL-specific ODB
     classes are defined in the <code>odb::mysql</code> namespace.</p>

  <h2><a name="13.1">13.1 MySQL Type Mapping</a></h2>

  <p>The following table summarizes the default mapping between basic
     C++ value types and MySQL database types. This mapping can be
     customized on the per-type and per-member basis using the ODB
     Pragma Language (<a href="#12">Chapter 12, "ODB Pragma
     Language"</a>).</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>C++ Type</th>
      <th>MySQL Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>bool</code></td>
      <td><code>TINYINT(1)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>char</code></td>
      <td><code>TINYINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>signed char</code></td>
      <td><code>TINYINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned char</code></td>
      <td><code>TINYINT UNSIGNED</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>short</code></td>
      <td><code>SMALLINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned short</code></td>
      <td><code>SMALLINT UNSIGNED</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>int</code></td>
      <td><code>INT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned int</code></td>
      <td><code>INT UNSIGNED</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>long</code></td>
      <td><code>BIGINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned long</code></td>
      <td><code>BIGINT UNSIGNED</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>long long</code></td>
      <td><code>BIGINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned long long</code></td>
      <td><code>BIGINT UNSIGNED</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>float</code></td>
      <td><code>FLOAT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>double</code></td>
      <td><code>DOUBLE</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>std::string</code></td>
      <td><code>TEXT/VARCHAR(255)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>
  </table>

  <p>Note that the <code>std::string</code> type is mapped
     differently depending on whether a member of this type
     is an object id or not. If the member is an object id,
     then for this member <code>std::string</code> is mapped
     to the <code>VARCHAR(255)</code> MySQL type. Otherwise,
     it is mapped to <code>TEXT</code>.</p>

  <p>The MySQL ODB runtime library also provides support for mapping the
     <code>std::string</code> type to the MySQL <code>CHAR</code>,
     <code>NCHAR</code>, and <code>NVARCHAR</code> types, as well as for
     mapping the <code>std::vector&lt;char></code>,
     <code>std::vector&lt;unsigned&nbsp;char></code>,
     <code>char[N]</code>, <code>unsigned&nbsp;char[N]</code>,
     <code>std::array&lt;char, N></code>, and <code>std::array&lt;unsigned char, N></code>
     types to the MySQL BLOB types. However, these mappings are not enabled
     by default (in particular, by default, <code>std::vector</code> and
     <code>std::array</code> will be treated as containers). To enable the
     alternative mappings for these types we need to specify the database
     type explicitly using the <code>db&nbsp;type</code> pragma
     (<a href="#12.4.3">Section 12.4.3, "<code>type</code>"</a>), for
     example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  #pragma db type("CHAR(2)")
  std::string state_;

  #pragma db type("BLOB")
  std::vector&lt;char> buf_;

  #pragma db type("BINARY(16)")
  unsigned char uuid_[16];
};
  </pre>

  <p>Alternatively, this can be done on the per-type basis, for example:</p>

  <pre class="cxx">
typedef std::vector&lt;char> buffer;
#pragma db value(buffer) type("BLOB")

#pragma db object
class object
{
  ...

  buffer buf_; // Mapped to BLOB.
};
  </pre>

  <p>Additionally, by default, C++ enumerations are automatically
     mapped to a suitable MySQL type. Contiguous enumerations with
     the zero first enumerator are mapped to the MySQL <code>ENUM</code>
     type. All other enumerations are mapped to <code>INT</code> or
     <code>INT UNSIGNED</code>. In both cases the default <code>NULL</code>
     semantics is <code>NOT NULL</code>. For example:</p>

  <pre class="cxx">
enum color {red, green, blue};
enum taste
{
  bitter = 1, // Non-zero first enumerator.
  sweet,
  sour = 4,   // Non-contiguous.
  salty
};

#pragma db object
class object
{
  ...

  color color_; // Mapped to ENUM ('red', 'green', 'blue') NOT NULL.
  taste taste_; // Mapped to INT UNSIGNED NOT NULL.
};
  </pre>

  <p>It is also possible to add support for additional MySQL types,
     such as geospatial types. For more information, refer to
     <a href="#12.7">Section 12.7, "Database Type Mapping
     Pragmas"</a>.</p>

  <h2><a name="13.2">13.2 MySQL Database Class</a></h2>

  <p>The MySQL <code>database</code> class has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace mysql
  {
    class database: public odb::database
    {
    public:
      database (const char* user,
                const char* passwd,
                const char* db,
                const char* host = 0,
                unsigned int port = 0,
                const char* socket = 0,
                const char* charset = 0,
                unsigned long client_flags = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (const std::string&amp; user,
                const std::string&amp; passwd,
                const std::string&amp; db,
                const std::string&amp; host = "",
                unsigned int port = 0,
                const std::string* socket = 0,
                const std::string&amp; charset = "",
                unsigned long client_flags = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (const std::string&amp; user,
                const std::string* passwd,
                const std::string&amp; db,
                const std::string&amp; host = "",
                unsigned int port = 0,
                const std::string* socket = 0,
                const std::string&amp; charset = "",
                unsigned long client_flags = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (const std::string&amp; user,
                const std::string&amp; passwd,
                const std::string&amp; db,
                const std::string&amp; host,
                unsigned int port,
                const std::string&amp; socket,
                const std::string&amp; charset = "",
                unsigned long client_flags = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (const std::string&amp; user,
                const std::string* passwd,
                const std::string&amp; db,
                const std::string&amp; host,
                unsigned int port,
                const std::string&amp; socket,
                const std::string&amp; charset = "",
                unsigned long client_flags = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (int&amp; argc,
                char* argv[],
                bool erase = false,
                const std::string&amp; charset = "",
                unsigned long client_flags = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      static void
      print_usage (std::ostream&amp;);

    public:
      const char*
      user () const;

      const char*
      password () const;

      const char*
      db () const;

      const char*
      host () const;

      unsigned int
      port () const;

      const char*
      socket () const;

      const char*
      charset () const;

      unsigned long
      client_flags () const;

    public:
      connection_ptr
      connection ();
    };
  }
}
  </pre>

  <p>You will need to include the <code>&lt;odb/mysql/database.hxx></code>
     header file to make this class available in your application.</p>

  <p>The overloaded <code>database</code> constructors allow us
     to specify MySQL database parameters that should be used when
     connecting to the database. In MySQL <code>NULL</code> and an
     empty string are treated as the same values for all the
     string parameters except <code>password</code> and
     <code>socket</code>.</p>

  <p>The <code>charset</code> argument allows us to specify the client
     character set, that is, the character set in which the application
     will encode its text data. Note that this can be different from
     the MySQL server character set. If this argument is not specified or
     is empty, then the default MySQL client character set is used, normally
     <code>latin1</code>. Commonly used values for this argument are
     <code>latin1</code> (equivalent to Windows cp1252 and similar to
     ISO-8859-1) and <code>utf8</code>. For other possible values
     as well as more information on character set support in MySQL,
     refer to the MySQL documentation.</p>

  <p>The <code>client_flags</code> argument allows us to specify various
     MySQL client library flags. For more information on the possible
     values, refer to the MySQL C API documentation. The
     <code>CLIENT_FOUND_ROWS</code> flag is always set by the MySQL ODB
     runtime regardless of whether it was passed in the
     <code>client_flags</code> argument.</p>

  <p>The last constructor extracts the database parameters
     from the command line. The following options are recognized:</p>

  <pre class="terminal">
  --user &lt;login>
  --password &lt;password>
  --database &lt;name>
  --host &lt;host>
  --port &lt;integer>
  --socket &lt;socket>
  --options-file &lt;file>
  </pre>

  <p>The <code>--options-file</code> option allows us to specify some
     or all of the database options in a file with each option appearing
     on a separate line followed by a space and an option value.</p>

  <p>If the <code>erase</code> argument to this constructor is true,
     then the above options are removed from the <code>argv</code>
     array and the <code>argc</code> count is updated accordingly.
     This is primarily useful if your application accepts other
     options or arguments and you would like to get the MySQL
     options out of the <code>argv</code> array.</p>

  <p>This constructor throws the <code>odb::mysql::cli_exception</code>
     exception if the MySQL option values are missing or invalid.
     See section <a href="#13.4">Section 13.4, "MySQL Exceptions"</a>
     for more information on this exception.</p>

  <p>The static <code>print_usage()</code> function prints the list of options
     with short descriptions that are recognized by this constructor.</p>

  <p>The last argument to all of the constructors is a pointer to the
     connection factory. In C++98, it is <code>std::auto_ptr</code> while
     in C++11 <code>std::unique_ptr</code> is used instead. If we pass a
     non-<code>NULL</code> value, the database instance assumes ownership
     of the factory instance. The connection factory interface as well as
     the available implementations are described in the next section.</p>

  <p>The set of accessor functions following the constructors allows us
     to query the parameters of the <code>database</code> instance.</p>

  <p>The <code>connection()</code> function returns a pointer to the
     MySQL database connection encapsulated by the
     <code>odb::mysql::connection</code> class. For more information
     on <code>mysql::connection</code>, refer to <a href="#13.3">Section
     13.3, "MySQL Connection and Connection Factory"</a>.</p>

  <h2><a name="13.3">13.3 MySQL Connection and Connection Factory</a></h2>

  <p>The <code>mysql::connection</code> class has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace mysql
  {
    class connection: public odb::connection
    {
    public:
      connection (database&amp;);
      connection (database&amp;, MYSQL*);

      MYSQL*
      handle ();
    };

    typedef details::shared_ptr&lt;connection> connection_ptr;
  }
}
  </pre>

  <p>For more information on the <code>odb::connection</code> interface,
     refer to <a href="#3.6">Section 3.6, "Connections"</a>. The first
     overloaded <code>mysql::connection</code> constructor establishes a
     new MySQL connection. The second constructor allows us to create
     a <code>connection</code> instance by providing an already connected
     native MySQL handle. Note that the <code>connection</code>
     instance assumes ownership of this handle. The <code>handle()</code>
     accessor returns the MySQL handle corresponding to the connection.</p>

  <p>The <code>mysql::connection_factory</code> abstract class has the
     following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace mysql
  {
    class connection_factory
    {
    public:
      virtual void
      database (database&amp;) = 0;

      virtual connection_ptr
      connect () = 0;
    };
  }
}
  </pre>

  <p>The <code>database()</code> function is called when a connection
     factory is associated with a database instance. This happens in
     the <code>odb::mysql::database</code> class constructors. The
     <code>connect()</code> function is called whenever a database
     connection is requested.</p>

  <p>The two implementations of the <code>connection_factory</code>
     interface provided by the MySQL ODB runtime are
     <code>new_connection_factory</code> and
     <code>connection_pool_factory</code>. You will need to include
     the <code>&lt;odb/mysql/connection-factory.hxx></code>
     header file to make the <code>connection_factory</code> interface
     and these implementation classes available in your application.</p>

  <p>The <code>new_connection_factory</code> class creates a new
     connection whenever one is requested. When a connection is no
     longer needed, it is released and closed. The
     <code>new_connection_factory</code> class has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace mysql
  {
    class new_connection_factory: public connection_factory
    {
    public:
      new_connection_factory ();
    };
};
  </pre>

  <p>The <code>connection_pool_factory</code> class implements a
     connection pool. It has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace mysql
  {
    class connection_pool_factory: public connection_factory
    {
    public:
      connection_pool_factory (std::size_t max_connections = 0,
                               std::size_t min_connections = 0,
                               bool ping = true);

    protected:
      class pooled_connection: public connection
      {
      public:
        pooled_connection (database_type&amp;);
        pooled_connection (database_type&amp;, MYSQL*);
      };

      typedef details::shared_ptr&lt;pooled_connection> pooled_connection_ptr;

      virtual pooled_connection_ptr
      create ();
    };
};
  </pre>

  <p>The <code>max_connections</code> argument in the
     <code>connection_pool_factory</code> constructor specifies the maximum
     number of concurrent connections that this pool factory will
     maintain. Similarly, the <code>min_connections</code> argument
     specifies the minimum number of available connections that
     should be kept open. The <code>ping</code> argument specifies
     whether the factory should validate the connection before
     returning it to the caller.</p>

  <p>Whenever a connection is requested, the pool factory first
     checks if there is an unused connection that can be returned.
     If there is none, the pool factory checks the
     <code>max_connections</code> value to see if a new connection
     can be created. If the total number of connections maintained
     by the pool is less than this value, then a new connection is
     created and returned. Otherwise, the caller is blocked until
     a connection becomes available.</p>

  <p>When a connection is released, the pool factory first checks
     if there are blocked callers waiting for a connection. If so, then
     one of them is unblocked and is given the connection. Otherwise,
     the pool factory checks whether the total number of connections
     maintained by the pool is greater than the <code>min_connections</code>
     value. If that's the case, the connection is closed. Otherwise, the
     connection is added to the pool of available connections to be
     returned on the next request. In other words, if the number of
     connections maintained by the pool exceeds <code>min_connections</code>
     and there are no callers waiting for a new connection,
     then the pool will close the excess connections.</p>

  <p>If the <code>max_connections</code> value is 0, then the pool will
     create a new connection whenever all of the existing connections
     are in use. If the <code>min_connections</code> value is 0, then
     the pool will never close a connection and instead maintain all
     the connections that were ever created.</p>

  <p>Connection validation (the <code>ping</code> argument) is useful
     if your application may experience long periods of inactivity. In
     such cases the MySQL server may close network connections that have
     been inactive for too long. If during connection validation the pool
     factory detects that the connection has been terminated, it silently
     closes it and tries to find or create another connection instead.</p>

  <p>The <code>create()</code> virtual function is called whenever the
     pool needs to create a new connection. By deriving from the
     <code>connection_pool_factory</code> class and overriding this
     function we can implement custom connection establishment
     and configuration.</p>

  <p>If you pass <code>NULL</code> as the connection factory to
     one of the <code>database</code> constructors, then the
     <code>connection_pool_factory</code> instance will be
     created by default with the min and max connections values
     set to <code>0</code> and connection validation enabled.
     The following code fragment shows how we can pass our own
     connection factory instance:</p>

  <pre class="cxx">
#include &lt;odb/database.hxx>

#include &lt;odb/mysql/database.hxx>
#include &lt;odb/mysql/connection-factory.hxx>

int
main (int argc, char* argv[])
{
  auto_ptr&lt;odb::mysql::connection_factory> f (
    new odb::mysql::connection_pool_factory (20));

  auto_ptr&lt;odb::database> db (
    new mysql::database (argc, argv, false, 0, f));
}
  </pre>

  <h2><a name="13.4">13.4 MySQL Exceptions</a></h2>

  <p>The MySQL ODB runtime library defines the following MySQL-specific
     exceptions:</p>

  <pre class="cxx">
namespace odb
{
  namespace mysql
  {
    class database_exception: odb::database_exception
    {
    public:
      unsigned int
      error () const;

      const std::string&amp;
      sqlstate () const;

      const std::string&amp;
      message () const;

      virtual const char*
      what () const throw ();
    };

    class cli_exception: odb::exception
    {
    public:
      virtual const char*
      what () const throw ();
    };
  }
}
  </pre>

  <p>You will need to include the <code>&lt;odb/mysql/exceptions.hxx></code>
     header file to make these exceptions available in your application.</p>

  <p>The <code>odb::mysql::database_exception</code> is thrown if
     a MySQL database operation fails. The MySQL-specific error
     information is accessible via the <code>error()</code>,
     <code>sqlstate()</code>, and <code>message()</code> functions.
     All this information is also combined and returned in a
     human-readable form by the <code>what()</code> function.</p>

  <p>The <code>odb::mysql::cli_exception</code> is thrown by the
     command line parsing constructor of the <code>odb::mysql::database</code>
     class if the MySQL option values are missing or invalid. The
     <code>what()</code> function returns a human-readable description
     of an error.</p>

  <h2><a name="13.5">13.5 MySQL Limitations</a></h2>

  <p>The following sections describe MySQL-specific limitations imposed
     by the current MySQL and ODB runtime versions.</p>

  <h3><a name="13.5.1">13.5.1 Foreign Key Constraints</a></h3>

  <p>ODB relies on standard SQL behavior which requires that foreign
     key constraints checking is deferred until the transaction is
     committed. The only behaviors supported by MySQL are to either
     check such constraints immediately (InnoDB engine) or to ignore
     foreign key constraints altogether (all other engines). As a
     result, schemas generated by the ODB compiler for MySQL have
     foreign key definitions commented out. They are retained only
     for documentation.</p>

  <h2><a name="13.6">13.6 MySQL Index Definitions</a></h2>

  <p>When the <code>index</code> pragma (<a href="#12.6">Section 12.6,
     "Index Definition Pragmas"</a>) is used to define a MySQL index,
     the <code>type</code> clause specifies the index type (for example,
     <code>UNIQUE</code>, <code>FULLTEXT</code>, <code>SPATIAL</code>),
     the <code>method</code> clause specifies the index method (for
     example, <code>BTREE</code>, <code>HASH</code>), and the
     <code>options</code> clause is not used. The column options
     can be used to specify column length limits and the sort order.
     For example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  std::string name_;

  #pragma db index method("HASH") member(name_, "(100) DESC")
};
  </pre>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="14">14 SQLite Database</a></h1>

  <p>To generate support code for the SQLite database you will need
     to pass the "<code>--database&nbsp;sqlite</code>"
     (or "<code>-d&nbsp;sqlite</code>") option to the ODB compiler.
     Your application will also need to link to the SQLite ODB runtime
     library (<code>libodb-sqlite</code>). All SQLite-specific ODB
     classes are defined in the <code>odb::sqlite</code> namespace.</p>

  <h2><a name="14.1">14.1 SQLite Type Mapping</a></h2>

  <p>The following table summarizes the default mapping between basic
     C++ value types and SQLite database types. This mapping can be
     customized on the per-type and per-member basis using the ODB
     Pragma Language (<a href="#12">Chapter 12, "ODB Pragma
     Language"</a>).</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>C++ Type</th>
      <th>SQLite Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>bool</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>char</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>signed char</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned char</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>short</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned short</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>int</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned int</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>long</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned long</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>long long</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned long long</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>float</code></td>
      <td><code>REAL</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>double</code></td>
      <td><code>REAL</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>std::string</code></td>
      <td><code>TEXT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>std::wstring (Windows only)</code></td>
      <td><code>TEXT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>
  </table>

  <p>SQLite represents the <code>NaN</code> <code>FLOAT</code> value
     as a <code>NULL</code> value. As a result, columns of the
     <code>float</code> and <code>double</code> types are by default
     declared as <code>NULL</code>. However, you can override this by
     explicitly declaring them as <code>NOT NULL</code> with the
     <code>db&nbsp;not_null</code> pragma (<a href="#12.4.6">Section
     12.4.6, "<code>null/not_null</code>"</a>).</p>

  <p>The SQLite ODB runtime library also provides support for mapping the
     <code>std::vector&lt;char></code>,
     <code>std::vector&lt;unsigned&nbsp;char></code>,
     <code>char[N]</code>, <code>unsigned&nbsp;char[N]</code>,
     <code>std::array&lt;char, N></code>, and <code>std::array&lt;unsigned char, N></code>
     types to the SQLite BLOB type. However, this mapping is not enabled
     by default (in particular, by default, <code>std::vector</code> and
     <code>std::array</code> will be treated as containers). To enable the
     BLOB mapping for these types we need to specify the database type
     explicitly using the <code>db&nbsp;type</code> pragma
     (<a href="#12.4.3">Section 12.4.3, "<code>type</code>"</a>), for
     example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  #pragma db type("BLOB")
  std::vector&lt;char> buf_;

  #pragma db type("BLOB")
  unsigned char uuid_[16];
};
  </pre>

  <p>Alternatively, this can be done on the per-type basis, for example:</p>

  <pre class="cxx">
typedef std::vector&lt;char> buffer;
#pragma db value(buffer) type("BLOB")

#pragma db object
class object
{
  ...

  buffer buf_; // Mapped to BLOB.
};
  </pre>

  <p>Additionally, by default, C++ enumerations are automatically mapped to
     the SQLite <code>INTEGER</code> type with the default <code>NULL</code>
     semantics being <code>NOT NULL</code>.</p>

  <p>Note also that SQLite only operates with signed integers and the largest
     value that an SQLite database can store is a signed 64-bit integer. As
     a result, greater <code>unsigned&nbsp;long</code> and
     <code>unsigned&nbsp;long&nbsp;long</code> values will be represented in
     the database as negative values.</p>

  <p>It is also possible to add support for additional SQLite types,
     such as <code>NUMERIC</code>. For more information, refer to
     <a href="#12.7">Section 12.7, "Database Type Mapping
     Pragmas"</a>.</p>

  <h2><a name="14.2">14.2 SQLite Database Class</a></h2>

  <p>The SQLite <code>database</code> class has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace sqlite
  {
    class database: public odb::database
    {
    public:
      database (const std::string&amp; name,
                int flags = SQLITE_OPEN_READWRITE,
                bool foreign_keys = true,
                const std::string&amp; vfs = "",
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

#ifdef _WIN32
      database (const std::wstring&amp; name,
                int flags = SQLITE_OPEN_READWRITE,
                bool foreign_keys = true,
                const std::string&amp; vfs = "",
                std::[auto|unique]_ptr&lt;connection_factory> = 0);
#endif

      database (int&amp; argc,
                char* argv[],
                bool erase = false,
                int flags = SQLITE_OPEN_READWRITE,
                bool foreign_keys = true,
                const std::string&amp; vfs = "",
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      static void
      print_usage (std::ostream&amp;);

    public:
      const std::string&amp;
      name () const;

      int
      flags () const;

    public:
      transaction
      begin_immediate ();

      transaction
      begin_exclusive ();

    public:
      connection_ptr
      connection ();
    };
  }
}
  </pre>

  <p>You will need to include the <code>&lt;odb/sqlite/database.hxx></code>
     header file to make this class available in your application.</p>

  <p>The first constructor opens the specified SQLite database. The
     <code>name</code> argument is the database file name to open in
     the UTF-8 encoding. If this argument is empty, then a temporary,
     on-disk database is created. If this argument is the
     <code>:memory:</code> special value, then a temporary, in-memory
     database is created. The <code>flags</code> argument allows us to
     specify SQLite opening flags. For more information on the possible
     values, refer to the <code>sqlite3_open_v2()</code> function description
     in the SQLite C API documentation. The <code>foreign_keys</code>
     argument specifies whether foreign key constraints checking
     should be enabled. See <a href="#14.5.3">Section 14.5.3,
     "Foreign Key Constraints"</a> for more information on foreign
     keys. The <code>vfs</code> argument specifies the SQLite
     virtual file system module that should be used to access the
     database. If this argument is empty, then the default vfs module
     is used. Again, refer to the <code>sqlite3_open_v2()</code> function
     documentation for detail.</p>

  <p>The following example shows how we can open the <code>test.db</code>
     database in the read-write mode and create it if it does not exist:</p>

  <pre class="cxx">
auto_ptr&lt;odb::database> db (
  new odb::sqlite::database (
    "test.db",
    SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE));
  </pre>

  <p>The second constructor is the same as the first except that the database
     name is passes as <code>std::wstring</code> in the UTF-16 encoding. This
     constructor is only available when compiling for Windows.</p>

  <p>The third constructor extracts the database parameters from the
     command line. The following options are recognized:</p>

  <pre class="terminal">
  --database &lt;name>
  --create
  --read-only
  --options-file &lt;file>
  </pre>

  <p>By default, this constructor opens the database in the read-write mode
     (<code>SQLITE_OPEN_READWRITE</code> flag). If the <code>--create</code>
     flag is specified, then the database file is created if it does
     not already exist (<code>SQLITE_OPEN_CREATE</code> flag). If the
     <code>--read-only</code> flag is specified, then the database is
     opened in the read-only mode (<code>SQLITE_OPEN_READONLY</code>
     flag instead of <code>SQLITE_OPEN_READWRITE</code>). The
     <code>--options-file</code> option allows us to specify some
     or all of the database options in a file with each option appearing
     on a separate line followed by a space and an option value.</p>

  <p>If the <code>erase</code> argument to this constructor is true,
     then the above options are removed from the <code>argv</code>
     array and the <code>argc</code> count is updated accordingly.
     This is primarily useful if your application accepts other
     options or arguments and you would like to get the SQLite
     options out of the <code>argv</code> array.</p>

  <p>The <code>flags</code> argument has the same semantics as in
     the first constructor. Flags from the command line always override
     the corresponding values specified with this argument.</p>

  <p>The third constructor throws the <code>odb::sqlite::cli_exception</code>
     exception if the SQLite option values are missing or invalid.
     See <a href="#14.4">Section 14.4, "SQLite Exceptions"</a>
     for more information on this exception.</p>

  <p>The static <code>print_usage()</code> function prints the list of options
     with short descriptions that are recognized by the third constructor.</p>

  <p>The last argument to all of the constructors is a pointer to the
     connection factory. In C++98, it is <code>std::auto_ptr</code> while
     in C++11 <code>std::unique_ptr</code> is used instead. If we pass a
     non-<code>NULL</code> value, the database instance assumes ownership
     of the factory instance. The connection factory interface as well as
     the available implementations are described in the next section.</p>

  <p>The set of accessor functions following the constructors allows us
     to query the parameters of the <code>database</code> instance.</p>

  <p>The <code>begin_immediate()</code> and <code>begin_exclusive()</code>
     functions are the SQLite-specific extensions to the standard
     <code>odb::database::begin()</code> function (see
     <a href="#3.5">Section 3.5, "Transactions"</a>). They allow us
     to start an immediate (<code>BEGIN IMMEDIATE</code>) and an exclusive
     (<code>BEGIN EXCLUSIVE</code>) SQLite transaction, respectively.
     For more information on the semantics of the immediate and exclusive
     transactions, refer to the <code>BEGIN</code> statement description
     in the SQLite documentation.</p>

  <p>The <code>connection()</code> function returns a pointer to the
     SQLite database connection encapsulated by the
     <code>odb::sqlite::connection</code> class. For more information
     on <code>sqlite::connection</code>, refer to <a href="#14.3">Section
     14.3, "SQLite Connection and Connection Factory"</a>.</p>

  <h2><a name="14.3">14.3 SQLite Connection and Connection Factory</a></h2>

  <p>The <code>sqlite::connection</code> class has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace sqlite
  {
    class connection: public odb::connection
    {
    public:
      connection (database&amp;, int extra_flags = 0);
      connection (database&amp;, sqlite3*);

      transaction
      begin_immediate ();

      transaction
      begin_exclusive ();

      sqlite3*
      handle ();
    };

    typedef details::shared_ptr&lt;connection> connection_ptr;
  }
}
  </pre>

  <p>For more information on the <code>odb::connection</code> interface,
     refer to <a href="#3.6">Section 3.6, "Connections"</a>. The first
     overloaded <code>sqlite::connection</code> constructor opens
     a new SQLite connection. The <code>extra_flags</code> argument can
     be used to specify extra <code>sqlite3_open_v2()</code> flags
     that are combined with the flags specified in the
     <code>sqlite::database</code> constructor. The second constructor
     allows us to create a <code>connection</code> instance by providing
     an already open native SQLite handle. Note that the
     <code>connection</code> instance assumes ownership of this handle.</p>

  <p>The <code>begin_immediate()</code> and <code>begin_exclusive()</code>
     functions allow us to start an immediate and an exclusive SQLite
     transaction on the connection, respectively. Their semantics are
     equivalent to the corresponding functions defined in the
     <code>sqlite::database</code> class (<a href="#14.2">Section 14.2,
     "SQLite Database Class"</a>). The <code>handle()</code> accessor
     returns the SQLite handle corresponding to the connection.</p>

  <p>The <code>sqlite::connection_factory</code> abstract class has the
     following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace sqlite
  {
    class connection_factory
    {
    public:
      virtual void
      database (database&amp;) = 0;

      virtual connection_ptr
      connect () = 0;
    };
  }
}
  </pre>

  <p>The <code>database()</code> function is called when a connection
     factory is associated with a database instance. This happens in
     the <code>odb::sqlite::database</code> class constructors. The
     <code>connect()</code> function is called whenever a database
     connection is requested.</p>

  <p>The three implementations of the <code>connection_factory</code>
     interface provided by the SQLite ODB runtime library are
     <code>single_connection_factory</code>,
     <code>new_connection_factory</code>, and
     <code>connection_pool_factory</code>. You will need to include
     the <code>&lt;odb/sqlite/connection-factory.hxx></code>
     header file to make the <code>connection_factory</code> interface
     and these implementation classes available in your application.</p>

  <p>The <code>single_connection_factory</code> class creates a
     single connection that is shared between all the threads in
     an application. If the connection is currently not in use,
     then it is returned to the caller. Otherwise, the caller is
     blocked until the connection becomes available. The
     <code>single_connection_factory</code> class has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace sqlite
  {
    class single_connection_factory: public connection_factory
    {
    public:
      single_connection_factory ();

    protected:
      class single_connection: public connection
      {
      public:
        single_connection (database_type&amp;);
        single_connection (database_type&amp;, MYSQL*);
      };

      typedef details::shared_ptr&lt;single_connection> single_connection_ptr;

      virtual single_connection_ptr
      create ();
    };
};
  </pre>

  <p>The <code>create()</code> virtual function is called when the
     factory needs to create the connection. By deriving from the
     <code>single_connection_factory</code> class and overriding this
     function we can implement custom connection establishment
     and configuration.</p>

  <p>The <code>new_connection_factory</code> class creates a new
     connection whenever one is requested. When a connection is no
     longer needed, it is released and closed. The
     <code>new_connection_factory</code> class has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace sqlite
  {
    class new_connection_factory: public connection_factory
    {
    public:
      new_connection_factory ();
    };
};
  </pre>

  <p>The <code>connection_pool_factory</code> class implements a
     connection pool. It has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace sqlite
  {
    class connection_pool_factory: public connection_factory
    {
    public:
      connection_pool_factory (std::size_t max_connections = 0,
                               std::size_t min_connections = 0);

    protected:
      class pooled_connection: public connection
      {
      public:
        pooled_connection (database_type&amp;, int extra_flags = 0);
        pooled_connection (database_type&amp;, sqlite3*);
      };

      typedef details::shared_ptr&lt;pooled_connection> pooled_connection_ptr;

      virtual pooled_connection_ptr
      create ();
    };
};
  </pre>

  <p>The <code>max_connections</code> argument in the
     <code>connection_pool_factory</code> constructor specifies the maximum
     number of concurrent connections that this pool factory will
     maintain. Similarly, the <code>min_connections</code> argument
     specifies the minimum number of available connections that
     should be kept open.</p>

  <p>Whenever a connection is requested, the pool factory first
     checks if there is an unused connection that can be returned.
     If there is none, the pool factory checks the
     <code>max_connections</code> value to see if a new connection
     can be created. If the total number of connections maintained
     by the pool is less than this value, then a new connection is
     created and returned. Otherwise, the caller is blocked until
     a connection becomes available.</p>

  <p>When a connection is released, the pool factory first checks
     if there are blocked callers waiting for a connection. If so, then
     one of them is unblocked and is given the connection. Otherwise,
     the pool factory checks whether the total number of connections
     maintained by the pool is greater than the <code>min_connections</code>
     value. If that's the case, the connection is closed. Otherwise, the
     connection is added to the pool of available connections to be
     returned on the next request. In other words, if the number of
     connections maintained by the pool exceeds <code>min_connections</code>
     and there are no callers waiting for a new connection,
     then the pool will close the excess connections.</p>

  <p>If the <code>max_connections</code> value is 0, then the pool will
     create a new connection whenever all of the existing connections
     are in use. If the <code>min_connections</code> value is 0, then
     the pool will never close a connection and instead maintain all
     the connections that were ever created.</p>

  <p>The <code>create()</code> virtual function is called whenever the
     pool needs to create a new connection. By deriving from the
     <code>connection_pool_factory</code> class and overriding this
     function we can implement custom connection establishment
     and configuration.</p>

  <p>By default, connections created by <code>new_connection_factory</code>
     and <code>connection_pool_factory</code> enable the SQLite shared cache
     mode and use the unlock notify functionality to aid concurrency. To
     disable the shared cache mode you can pass the
     <code>SQLITE_OPEN_PRIVATECACHE</code> flag when creating the database
     instance. For more information on the shared cache mode refer to the
     SQLite documentation.</p>

  <p>If you pass <code>NULL</code> as the connection factory to one of the
     <code>database</code> constructors, then the <code>connection_pool_factory</code>
     instance will be created by default with the min and max connections
     values set to <code>0</code>. The following code fragment shows how we
     can pass our own connection factory instance:</p>

  <pre class="cxx">
#include &lt;odb/database.hxx>

#include &lt;odb/sqlite/database.hxx>
#include &lt;odb/sqlite/connection-factory.hxx>

int
main (int argc, char* argv[])
{
  auto_ptr&lt;odb::sqlite::connection_factory> f (
    new odb::sqlite::connection_pool_factory (20));

  auto_ptr&lt;odb::database> db (
    new sqlite::database (argc, argv, false, SQLITE_OPEN_READWRITE, f));
}
  </pre>

  <h2><a name="14.4">14.4 SQLite Exceptions</a></h2>

  <p>The SQLite ODB runtime library defines the following SQLite-specific
     exceptions:</p>

  <pre class="cxx">
namespace odb
{
  namespace sqlite
  {
    class database_exception: odb::database_exception
    {
    public:
      int
      error () const

      int
      extended_error () const;

      const std::string&amp;
      message () const;

      virtual const char*
      what () const throw ();
    };

    class cli_exception: odb::exception
    {
    public:
      virtual const char*
      what () const throw ();
    };
  }
}
  </pre>

  <p>You will need to include the <code>&lt;odb/sqlite/exceptions.hxx></code>
     header file to make these exceptions available in your application.</p>

  <p>The <code>odb::sqlite::database_exception</code> is thrown if
     an SQLite database operation fails. The SQLite-specific error
     information is accessible via the <code>error()</code>,
     <code>extended_error()</code>, and <code>message()</code> functions.
     All this information is also combined and returned in a
     human-readable form by the <code>what()</code> function.</p>

  <p>The <code>odb::sqlite::cli_exception</code> is thrown by the
     command line parsing constructor of the <code>odb::sqlite::database</code>
     class if the SQLite option values are missing or invalid. The
     <code>what()</code> function returns a human-readable description
     of an error.</p>


  <h2><a name="14.5">14.5 SQLite Limitations</a></h2>

  <p>The following sections describe SQLite-specific limitations imposed by
     the current SQLite and ODB runtime versions.</p>

  <h3><a name="14.5.1">14.5.1 Query Result Caching</a></h3>

  <p>SQLite ODB runtime implementation does not perform query result caching
     (<a href="#4.4">Section 4.4, "Query Result"</a>) even when explicitly
     requested. The SQLite API supports interleaving execution of multiple
     prepared statements on a single connection. As a result, with SQLite, it
     is possible to have multiple uncached results and calls to other database
     functions do not invalidate them. The only limitation of the uncached
     SQLite results is the unavailability of the <code>result::size()</code>
     function. If you call this function on an SQLite query result, then
     the <code>odb::result_not_cached</code> exception
     (<a href="#3.14">Section 3.14, "ODB Exceptions"</a>) is always
     thrown. Future versions of the SQLite ODB runtime library may add support
     for result caching.</p>

  <h3><a name="14.5.2">14.5.2 Automatic Assignment of Object Ids</a></h3>

  <p>Due to SQLite API limitations, every automatically assigned object id
     (<a href="#12.4.2">Section 12.4.2, "<code>auto</code>"</a>) should have
     the <code>INTEGER</code> SQLite type. While SQLite will treat other
     integer type names (such as <code>INT</code>, <code>BIGINT</code>, etc.)
     as <code>INTEGER</code>, automatic id assignment will not work. By default,
     ODB maps all C++ integral types to <code>INTEGER</code>. This means that
     the only situation that requires consideration is the assignment of a
     custom database type using the <code>db&nbsp;type</code> pragma
     (<a href="#12.4.3">Section 12.4.3, "<code>type</code>"</a>). For
     example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  //#pragma db id auto type("INT")     // Will not work.
  //#pragma db id auto type("INTEGER") // Ok.
  #pragma db id auto                   // Ok, Mapped to INTEGER.
  unsigned int id_;
};
  </pre>

  <h3><a name="14.5.3">14.5.3 Foreign Key Constraints</a></h3>

  <p>By default the SQLite ODB runtime enables foreign key constraints
     checking (<code>PRAGMA foreign_keys=ON</code>). You can disable foreign
     keys by passing <code>false</code> as the <code>foreign_keys</code>
     argument to one of the <code>odb::sqlite::database</code> constructors.
     Foreign keys will also be disabled if the SQLite library is built without
     support for foreign keys (<code>SQLITE_OMIT_FOREIGN_KEY</code> and
     <code>SQLITE_OMIT_TRIGGER</code> macros) or if you are using
     an SQLite version prior to 3.6.19, which does not support foreign
     key constraints checking.</p>

  <p>If foreign key constraints checking is disabled or not available,
     then inconsistencies in object relationships will not be detected.
     Furthermore, using the <code>erase_query()</code> function
     (<a href="#3.11">Section 3.11, "Deleting Persistent Objects"</a>)
     to delete persistent objects that contain containers will not work
     correctly. Container data for such objects will not be deleted.</p>

  <p>When foreign key constraints checking is enabled, then you may
     get the "foreign key constraint failed" error while re-creating the
     database schema. This error is due to bugs in the SQLite DDL foreign
     keys support. The recommended work-around for this problem is to
     temporarily disable foreign key constraints checking while
     re-creating the schema. The following code fragment shows how
     this can be done:</p>

  <pre class="cxx">
#include &lt;odb/connection.hxx>
#include &lt;odb/transaction.hxx>
#include &lt;odb/schema-catalog.hxx>

odb::database&amp; db = ...

{
  odb::connection_ptr c (db.connection ());

  c->execute ("PRAGMA foreign_keys=OFF");

  odb::transaction t (c->begin ());
  odb::schema_catalog::create_schema (db);
  t.commit ();

  c->execute ("PRAGMA foreign_keys=ON");
}
  </pre>

  <p>Finally, ODB relies on standard SQL behavior which requires
     that foreign key constraints checking is deferred until the
     transaction is committed. Default SQLite behavior is to check such
     constraints immediately. As a result, when used with ODB, a custom
     database schema that defines foreign key constraints must declare
     such constraints as <code>DEFERRABLE INITIALLY DEFERRED</code>, as
     shown in the following example. Schemas generated by the ODB compiler
     meet this requirement automatically.</p>

  <pre class="sql">
CREATE TABLE Employee (
  ...
  employer INTEGER REFERENCES Employer(id)
           DEFERRABLE INITIALLY DEFERRED);
  </pre>


  <h3><a name="14.5.4">14.5.4 Constraint Violations</a></h3>

  <p>Due to the granularity of the SQLite error codes, it is impossible
     to distinguish between the duplicate primary key and other constraint
     violations. As a result, when making an object persistent, the SQLite
     ODB runtime will translate all constraint violation errors to the
     <code>object_already_persistent</code> exception (<a href="#3.14">Section
     3.14, "ODB Exceptions"</a>).</p>

  <h3><a name="14.5.5">14.5.5 Sharing of Queries</a></h3>

  <p>As discussed in <a href="#4.3">Section 4.3, "Executing a Query"</a>, a
     query instance that does not have any by-reference parameters is
     immutable and can be shared between multiple threads without
     synchronization. Currently, the SQLite ODB runtime does not support this
     functionality. Future versions of the library will remove this
     limitation.</p>

  <h2><a name="14.6">14.6 SQLite Index Definitions</a></h2>

  <p>When the <code>index</code> pragma (<a href="#12.6">Section 12.6,
     "Index Definition Pragmas"</a>) is used to define an SQLite index,
     the <code>type</code> clause specifies the index type (for example,
     <code>UNIQUE</code>) while the <code>method</code> and
     <code>options</code> clauses are not used. The column options
     can be used to specify collations and the sort order. For example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  std::string name_;

  #pragma db index member(name_, "COLLATE binary DESC")
};
  </pre>

  <p>Index names in SQLite are database-global. To avoid name clashes,
     ODB automatically prefixes each index name with the table name on
     which it is defined.</p>

  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="15">15 PostgreSQL Database</a></h1>

  <p>To generate support code for the PostgreSQL database you will need
     to pass the "<code>--database&nbsp;pgsql</code>"
     (or "<code>-d&nbsp;pgsql</code>") option to the ODB compiler.
     Your application will also need to link to the PostgreSQL ODB runtime
     library (<code>libodb-pgsql</code>). All PostgreSQL-specific ODB
     classes are defined in the <code>odb::pgsql</code> namespace.</p>

  <p>ODB utilizes prepared statements extensively. Support for prepared
     statements was added in PostgreSQL version 7.4 with the introduction
     of the messaging protocol version 3.0. For this reason, ODB supports
     only PostgreSQL version 7.4 and later.</p>

  <h2><a name="15.1">15.1 PostgreSQL Type Mapping</a></h2>

  <p>The following table summarizes the default mapping between basic
     C++ value types and PostgreSQL database types. This mapping can be
     customized on the per-type and per-member basis using the ODB
     Pragma Language (<a href="#12">Chapter 12, "ODB Pragma
     Language"</a>).</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>C++ Type</th>
      <th>PostgreSQL Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>bool</code></td>
      <td><code>BOOLEAN</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>char</code></td>
      <td><code>SMALLINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>signed char</code></td>
      <td><code>SMALLINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned char</code></td>
      <td><code>SMALLINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>short</code></td>
      <td><code>SMALLINT NULL</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned short</code></td>
      <td><code>SMALLINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>int</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned int</code></td>
      <td><code>INTEGER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>long</code></td>
      <td><code>BIGINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned long</code></td>
      <td><code>BIGINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>long long</code></td>
      <td><code>BIGINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned long long</code></td>
      <td><code>BIGINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>float</code></td>
      <td><code>REAL</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>double</code></td>
      <td><code>DOUBLE PRECISION</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>std::string</code></td>
      <td><code>TEXT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>
  </table>

  <p>The PostgreSQL ODB runtime library also provides support for mapping
     the <code>std::string</code> type to the PostgreSQL <code>CHAR</code>
     and <code>VARCHAR</code> types as well as the <code>char[16]</code>
     array to the PostgreSQL <code>UUID</code> type. There is also support
     for mapping the <code>std::vector&lt;char></code>,
     <code>std::vector&lt;unsigned&nbsp;char></code>,
     <code>char[N]</code>, <code>unsigned&nbsp;char[N]</code>,
     <code>std::array&lt;char, N></code>, and <code>std::array&lt;unsigned char, N></code>
     types to the PostgreSQL <code>BYTEA</code> type. However, these mappings
     are not enabled by default (in particular, by default,
     <code>std::vector</code> and <code>std::array</code> will be treated
     as containers). To enable the alternative mappings for these types we
     need to specify the database type explicitly using the
     <code>db&nbsp;type</code> pragma (<a href="#12.4.3">Section 12.4.3,
     "<code>type</code>"</a>), for example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  #pragma db type("CHAR(2)")
  std::string state_;

  #pragma db type("UUID")
  char uuid_[16];

  #pragma db type("BYTEA")
  std::vector&lt;char> buf_;

  #pragma db type("BYTEA")
  unsigned char data_[256];
};
  </pre>

  <p>Alternatively, this can be done on the per-type basis, for example:</p>

  <pre class="cxx">
typedef std::vector&lt;char> buffer;
#pragma db value(buffer) type("BYTEA")

#pragma db object
class object
{
  ...

  buffer buf_; // Mapped to BYTEA.
};
  </pre>

  <p>Additionally, by default, C++ enumerations are automatically
     mapped to <code>INTEGER</code> with the default <code>NULL</code>
     semantics being <code>NOT NULL</code>.</p>

  <p>Note also that because PostgreSQL does not support unsigned integers,
     the <code>unsigned&nbsp;short</code>, <code>unsigned&nbsp;int</code>, and
     <code>unsigned&nbsp;long</code>/<code>unsigned&nbsp;long&nbsp;long</code> C++ types
     are by default mapped to the <code>SMALLINT</code>, <code>INTEGER</code>,
     and <code>BIGINT</code> PostgreSQL types, respectively. The sign bit
     of the value stored by the database for these types will contain
     the most significant bit of the actual unsigned value being
     persisted.</p>

  <p>It is also possible to add support for additional PostgreSQL types,
     such as <code>NUMERIC</code>, geometry types, <code>XML</code>,
     <code>JSON</code>, enumeration types, composite types, arrays,
     geospatial types, and the key-value store (<code>HSTORE</code>).
     For more information, refer to <a href="#12.7">Section 12.7,
     "Database Type Mapping Pragmas"</a>.</p>

  <h2><a name="15.2">15.2 PostgreSQL Database Class</a></h2>

  <p>The PostgreSQL <code>database</code> class has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace pgsql
  {
    class database: public odb::database
    {
    public:
      database (const std::string&amp; user,
                const std::string&amp; password,
                const std::string&amp; db,
                const std::string&amp; host = "",
                unsigned int port = 0,
                const std::string&amp; extra_conninfo = "",
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (const std::string&amp; user,
                const std::string&amp; password,
                const std::string&amp; db,
                const std::string&amp; host,
                const std::string&amp; socket_ext,
                const std::string&amp; extra_conninfo = "",
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (const std::string&amp; conninfo,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (int&amp; argc,
                char* argv[],
                bool erase = false,
                const std::string&amp; extra_conninfo = "",
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      static void
      print_usage (std::ostream&amp;);

    public:
      const std::string&amp;
      user () const;

      const std::string&amp;
      password () const;

      const std::string&amp;
      db () const;

      const std::string&amp;
      host () const;

      unsigned int
      port () const;

      const std::string&amp;
      socket_ext () const;

      const std::string&amp;
      extra_conninfo () const;

      const std::string&amp;
      conninfo () const;

    public:
      connection_ptr
      connection ();
    };
  }
}
  </pre>

  <p>You will need to include the <code>&lt;odb/pgsql/database.hxx></code>
     header file to make this class available in your application.</p>

  <p>The overloaded <code>database</code> constructors allow us to specify
     the PostgreSQL database parameters that should be used when connecting
     to the database. The <code>port</code> argument in the first constructor
     is an integer value specifying the TCP/IP port number to connect to. A
     zero port number indicates that the default port should be used.
     The <code>socket_ext</code> argument in the second constructor is a
     string value specifying the UNIX-domain socket file name extension.</p>

  <p>The third constructor allows us to specify all the database parameters
     as a single <code>conninfo</code> string. All other constructors
     accept additional database connection parameters as the
     <code>extra_conninfo</code> argument. For more information
     about the format of the <code>conninfo</code> string, refer to
     the <code>PQconnectdb()</code> function description in the PostgreSQL
     documentation. In the case of <code>extra_conninfo</code>, all the
     database parameters provided in this string will take precedence
     over those explicitly specified with other constructor arguments.</p>

  <p>The last constructor extracts the database parameters
     from the command line. The following options are recognized:</p>

  <pre class="terminal">
  --user &lt;login> | --username &lt;login>
  --password &lt;password>
  --database &lt;name> | --dbname &lt;name>
  --host &lt;host>
  --port &lt;integer>
  --options-file &lt;file>
  </pre>

  <p>The <code>--options-file</code> option allows us to specify some
     or all of the database options in a file with each option appearing
     on a separate line followed by a space and an option value.</p>

  <p>If the <code>erase</code> argument to this constructor is true,
     then the above options are removed from the <code>argv</code>
     array and the <code>argc</code> count is updated accordingly.
     This is primarily useful if your application accepts other
     options or arguments and you would like to get the PostgreSQL
     options out of the <code>argv</code> array.</p>

  <p>This constructor throws the <code>odb::pgsql::cli_exception</code>
     exception if the PostgreSQL option values are missing or invalid.
     See section <a href="#15.4">Section 15.4, "PostgreSQL Exceptions"</a>
     for more information on this exception.</p>

  <p>The static <code>print_usage()</code> function prints the list of options
     with short descriptions that are recognized by this constructor.</p>

  <p>The last argument to all of the constructors is a pointer to the
     connection factory. In C++98, it is <code>std::auto_ptr</code> while
     in C++11 <code>std::unique_ptr</code> is used instead. If we pass a
     non-<code>NULL</code> value, the database instance assumes ownership
     of the factory instance. The connection factory interface as well as
     the available implementations are described in the next section.</p>

  <p>The set of accessor functions following the constructors allows us
     to query the parameters of the <code>database</code> instance. Note that
     the <code>conninfo()</code> accessor returns a complete
     <code>conninfo</code> string which includes parameters that were
     explicitly specified with the various constructor arguments, as well as
     the extra parameters passed in the <code>extra_conninfo</code> argument.
     The <code>extra_conninfo()</code> accessor will return the
     <code>conninfo</code> string as passed in the <code>extra_conninfo</code>
     argument.</p>

  <p>The <code>connection()</code> function returns a pointer to the
     PostgreSQL database connection encapsulated by the
     <code>odb::pgsql::connection</code> class. For more information
     on <code>pgsql::connection</code>, refer to <a href="#15.3">Section
     15.3, "PostgreSQL Connection and Connection Factory"</a>.</p>

  <h2><a name="15.3">15.3 PostgreSQL Connection and Connection Factory</a></h2>

  <p>The <code>pgsql::connection</code> class has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace pgsql
  {
    class connection: public odb::connection
    {
    public:
      connection (database&amp;);
      connection (database&amp;, PGconn*);

      PGconn*
      handle ();
    };

    typedef details::shared_ptr&lt;connection> connection_ptr;
  }
}
  </pre>

  <p>For more information on the <code>odb::connection</code> interface,
     refer to <a href="#3.6">Section 3.6, "Connections"</a>. The first
     overloaded <code>pgsql::connection</code> constructor establishes a
     new PostgreSQL connection. The second constructor allows us to create
     a <code>connection</code> instance by providing an already connected
     native PostgreSQL handle. Note that the <code>connection</code>
     instance assumes ownership of this handle. The <code>handle()</code>
     accessor returns the PostgreSQL handle corresponding to the connection.</p>

  <p>The <code>pgsql::connection_factory</code> abstract class has the
     following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace pgsql
  {
    class connection_factory
    {
    public:
      virtual void
      database (database&amp;) = 0;

      virtual connection_ptr
      connect () = 0;
    };
  }
}
  </pre>

  <p>The <code>database()</code> function is called when a connection
     factory is associated with a database instance. This happens in
     the <code>odb::pgsql::database</code> class constructors. The
     <code>connect()</code> function is called whenever a database
     connection is requested.</p>

  <p>The two implementations of the <code>connection_factory</code>
     interface provided by the PostgreSQL ODB runtime are
     <code>new_connection_factory</code> and
     <code>connection_pool_factory</code>. You will need to include
     the <code>&lt;odb/pgsql/connection-factory.hxx></code>
     header file to make the <code>connection_factory</code> interface
     and these implementation classes available in your application.</p>

  <p>The <code>new_connection_factory</code> class creates a new
     connection whenever one is requested. When a connection is no
     longer needed, it is released and closed. The
     <code>new_connection_factory</code> class has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace pgsql
  {
    class new_connection_factory: public connection_factory
    {
    public:
      new_connection_factory ();
    };
};
  </pre>

  <p>The <code>connection_pool_factory</code> class implements a
     connection pool. It has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace pgsql
  {
    class connection_pool_factory: public connection_factory
    {
    public:
      connection_pool_factory (std::size_t max_connections = 0,
                               std::size_t min_connections = 0);

    protected:
      class pooled_connection: public connection
      {
      public:
        pooled_connection (database_type&amp;);
        pooled_connection (database_type&amp;, PGconn*);
      };

      typedef details::shared_ptr&lt;pooled_connection> pooled_connection_ptr;

      virtual pooled_connection_ptr
      create ();
    };
};
  </pre>

  <p>The <code>max_connections</code> argument in the
     <code>connection_pool_factory</code> constructor specifies the maximum
     number of concurrent connections that this pool factory will
     maintain. Similarly, the <code>min_connections</code> argument
     specifies the minimum number of available connections that
     should be kept open.</p>

  <p>Whenever a connection is requested, the pool factory first
     checks if there is an unused connection that can be returned.
     If there is none, the pool factory checks the
     <code>max_connections</code> value to see if a new connection
     can be created. If the total number of connections maintained
     by the pool is less than this value, then a new connection is
     created and returned. Otherwise, the caller is blocked until
     a connection becomes available.</p>

  <p>When a connection is released, the pool factory first checks
     if there are blocked callers waiting for a connection. If so, then
     one of them is unblocked and is given the connection. Otherwise,
     the pool factory checks whether the total number of connections
     maintained by the pool is greater than the <code>min_connections</code>
     value. If that's the case, the connection is closed. Otherwise, the
     connection is added to the pool of available connections to be
     returned on the next request. In other words, if the number of
     connections maintained by the pool exceeds <code>min_connections</code>
     and there are no callers waiting for a new connection,
     the pool will close the excess connections.</p>

  <p>If the <code>max_connections</code> value is 0, then the pool will
     create a new connection whenever all of the existing connections
     are in use. If the <code>min_connections</code> value is 0, then
     the pool will never close a connection and instead maintain all
     the connections that were ever created.</p>

  <p>The <code>create()</code> virtual function is called whenever the
     pool needs to create a new connection. By deriving from the
     <code>connection_pool_factory</code> class and overriding this
     function we can implement custom connection establishment
     and configuration.</p>

  <p>If you pass <code>NULL</code> as the connection factory to one of the
     <code>database</code> constructors, then the
     <code>connection_pool_factory</code> instance will be created by default
     with the min and max connections values set to <code>0</code>. The
     following code fragment shows how we can pass our own connection factory
     instance:</p>

  <pre class="cxx">
#include &lt;odb/database.hxx>

#include &lt;odb/pgsql/database.hxx>
#include &lt;odb/pgsql/connection-factory.hxx>

int
main (int argc, char* argv[])
{
  auto_ptr&lt;odb::pgsql::connection_factory> f (
    new odb::pgsql::connection_pool_factory (20));

  auto_ptr&lt;odb::database> db (
    new pgsql::database (argc, argv, false, "", f));
}
  </pre>

  <h2><a name="15.4">15.4 PostgreSQL Exceptions</a></h2>

  <p>The PostgreSQL ODB runtime library defines the following
     PostgreSQL-specific exceptions:</p>

  <pre class="cxx">
namespace odb
{
  namespace pgsql
  {
    class database_exception: odb::database_exception
    {
    public:
      const std::string&amp;
      message () const;

      const std::string&amp;
      sqlstate () const;

      virtual const char*
      what () const throw ();
    };

    class cli_exception: odb::exception
    {
    public:
      virtual const char*
      what () const throw ();
    };
  }
}
  </pre>

  <p>You will need to include the <code>&lt;odb/pgsql/exceptions.hxx></code>
     header file to make these exceptions available in your application.</p>

  <p>The <code>odb::pgsql::database_exception</code> is thrown if
     a PostgreSQL database operation fails. The PostgreSQL-specific error
     information is accessible via the <code>message()</code> and
     <code>sqlstate()</code> functions. All this information is also
     combined and returned in a human-readable form by the <code>what()</code>
     function.</p>

  <p>The <code>odb::pgsql::cli_exception</code> is thrown by the
     command line parsing constructor of the <code>odb::pgsql::database</code>
     class if the PostgreSQL option values are missing or invalid. The
     <code>what()</code> function returns a human-readable description
     of an error.</p>

  <h2><a name="15.5">15.5 PostgreSQL Limitations</a></h2>

  <p>The following sections describe PostgreSQL-specific limitations imposed
     by the current PostgreSQL and ODB runtime versions.</p>

  <h3><a name="15.5.1">15.5.1 Query Result Caching</a></h3>

  <p>The PostgreSQL ODB runtime implementation will always return a
     cached query result (<a href="#4.4">Section 4.4, "Query Result"</a>)
     even when explicitly requested not to. This is a limitation of the
     PostgreSQL client library (<code>libpq</code>) which does not
     support uncached (streaming) query results.</p>

  <h3><a name="15.5.2">15.5.2 Foreign Key Constraints</a></h3>

  <p>ODB relies on standard SQL behavior which requires that
     foreign key constraints checking is deferred until the
     transaction is committed. Default PostgreSQL behavior is
     to check such constraints immediately. As a result, when
     used with ODB, a custom database schema that defines foreign
     key constraints must declare such constraints as
     <code>INITIALLY DEFERRED</code>, as shown in the following example.
     Schemas generated by the ODB compiler meet this requirement
     automatically.</p>

  <pre class="sql">
CREATE TABLE Employee (
  ...
  employer BIGINT REFERENCES Employer(id) INITIALLY DEFERRED);
  </pre>

  <h3><a name="15.5.3">15.5.3 Unique Constraint Violations</a></h3>

  <p>Due to the granularity of the PostgreSQL error codes, it is impossible
     to distinguish between the duplicate primary key and other unique
     constraint violations. As a result, when making an object persistent,
     the PostgreSQL ODB runtime will translate all unique constraint violation
     errors to the <code>object_already_persistent</code> exception
     (<a href="#3.14">Section 3.14, "ODB Exceptions"</a>).</p>

  <h3><a name="15.5.4">15.5.4 Date-Time Format</a></h3>

  <p>ODB expects the PostgreSQL server to use integers as a binary
     format for the date-time types, which is the default for most
     PostgreSQL configurations. When creating a connection, ODB
     examines the <code>integer_datetimes</code> PostgreSQL server
     parameter and if it is <code>false</code>,
     <code>odb::pgsql::database_exception</code> is thrown. You may
     check the value of this parameter for your server by executing
     the following SQL query:</p>

  <pre class="sql">
SHOW integer_datetimes
  </pre>

  <h3><a name="15.5.5">15.5.5 Timezones</a></h3>

  <p>ODB does not currently natively support the PostgreSQL date-time types
     with timezone information. However, these types can be accessed by
     mapping them to one of the natively supported types, as discussed
     in <a href="#12.7">Section 12.7, "Database Type Mapping Pragmas"</a>.</p>

  <h3><a name="15.5.6">15.5.6 <code>NUMERIC</code> Type Support</a></h3>

  <p>Support for the PostgreSQL <code>NUMERIC</code> type is limited
     to providing a binary buffer containing the binary representation
     of the value. For more information on the binary format used to
     store <code>NUMERIC</code> values refer to the PostgreSQL
     documentation. An alternative approach to accessing <code>NUMERIC</code>
     values is to map this type to one of the natively supported
     ones, as discussed in <a href="#12.7">Section 12.7, "Database
     Type Mapping Pragmas"</a>.</p>


  <h2><a name="15.6">15.6 PostgreSQL Index Definitions</a></h2>

  <p>When the <code>index</code> pragma (<a href="#12.6">Section 12.6,
     "Index Definition Pragmas"</a>) is used to define a PostgreSQL index,
     the <code>type</code> clause specifies the index type (for example,
     <code>UNIQUE</code>), the <code>method</code> clause specifies the
     index method (for example, <code>BTREE</code>, <code>HASH</code>,
     <code>GIN</code>, etc.), and the <code>options</code> clause
     specifies additional index options, such as storage parameters,
     table spaces, and the <code>WHERE</code> predicate. To support
     the definition of concurrent indexes, the <code>type</code>
     clause can end with the word <code>CONCURRENTLY</code> (upper and
     lower cases are recognized). The column options can be used to
     specify collations, operator classes, and the sort order. For example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  std::string name_;

  #pragma db index                            \
             type("UNIQUE CONCURRENTLY")      \
             method("HASH")                   \
             member(name_, "DESC")            \
             options("WITH(FILLFACTOR = 80)")
};
  </pre>

  <p>Index names in PostgreSQL are schema-global. To avoid name clashes,
     ODB automatically prefixes each index name with the table name on
     which it is defined.</p>

  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="16">16 Oracle Database</a></h1>

  <p>To generate support code for the Oracle database you will need
     to pass the "<code>--database&nbsp;oracle</code>"
     (or "<code>-d&nbsp;oracle</code>") option to the ODB compiler.
     Your application will also need to link to the Oracle ODB runtime
     library (<code>libodb-oracle</code>). All Oracle-specific ODB
     classes are defined in the <code>odb::oracle</code> namespace.</p>

  <h2><a name="16.1">16.1 Oracle Type Mapping</a></h2>

  <p>The following table summarizes the default mapping between basic
     C++ value types and Oracle database types. This mapping can be
     customized on the per-type and per-member basis using the ODB
     Pragma Language (<a href="#12">Chapter 12, "ODB Pragma
     Language"</a>).</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>C++ Type</th>
      <th>Oracle Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>bool</code></td>
      <td><code>NUMBER(1)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>char</code></td>
      <td><code>NUMBER(3)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>signed char</code></td>
      <td><code>NUMBER(3)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned char</code></td>
      <td><code>NUMBER(3)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>short</code></td>
      <td><code>NUMBER(5)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned short</code></td>
      <td><code>NUMBER(5)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>int</code></td>
      <td><code>NUMBER(10)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned int</code></td>
      <td><code>NUMBER(10)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>long</code></td>
      <td><code>NUMBER(19)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned long</code></td>
      <td><code>NUMBER(20)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>long long</code></td>
      <td><code>NUMBER(19)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned long long</code></td>
      <td><code>NUMBER(20)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>float</code></td>
      <td><code>BINARY_FLOAT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>double</code></td>
      <td><code>BINARY_DOUBLE</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>std::string</code></td>
      <td><code>VARCHAR2(512)</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>In Oracle empty <code>VARCHAR2</code> and <code>NVARCHAR2</code>
     strings are represented as a <code>NULL</code> value. As a result,
     columns of the <code>std::string</code> type are by default declared
     as <code>NULL</code> except for primary key columns. However, you
     can override this by explicitly declaring them as <code>NOT NULL</code>
     with the <code>db&nbsp;not_null</code> pragma (<a href="#12.4.6">Section
     12.4.6, "<code>null/not_null</code>"</a>). This also means that for
     object ids that are mapped to these Oracle types, an empty string is
     an invalid value.</p>

  <p>The Oracle ODB runtime library also provides support for mapping the
     <code>std::string</code> type to the Oracle <code>CHAR</code>,
     <code>NCHAR</code>, <code>NVARCHAR2</code>, <code>CLOB</code> and
     <code>NCLOB</code> types, as well as for mapping the
     <code>std::vector&lt;char></code>,
     <code>std::vector&lt;unsigned&nbsp;char></code>,
     <code>char[N]</code>, <code>unsigned&nbsp;char[N]</code>,
     <code>std::array&lt;char, N></code>, and <code>std::array&lt;unsigned char, N></code>
     types to the Oracle <code>BLOB</code> and <code>RAW</code> types.
     However, these mappings are not enabled by default (in particular, by
     default, <code>std::vector</code> and <code>std::array</code> will be
     treated as containers). To enable the alternative mappings for these
     types we need to specify the database type explicitly using the
     <code>db&nbsp;type</code> pragma (<a href="#12.4.3">Section 12.4.3,
     "<code>type</code>"</a>), for example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  #pragma db type ("CLOB")
  std::string str_;

  #pragma db type("BLOB")
  std::vector&lt;char> buf_;

  #pragma db type("RAW(16)")
  unsigned char uuid_[16];
};
  </pre>

  <p>Alternatively, this can be done on the per-type basis, for example:</p>

  <pre class="cxx">
typedef std::vector&lt;char> buffer;
#pragma db value(buffer) type("BLOB")

#pragma db object
class object
{
  ...

  buffer buf_; // Mapped to BLOB.
};
  </pre>

  <p>Additionally, by default, C++ enumerations are automatically
     mapped to <code>NUMBER(10)</code> with the default <code>NULL</code>
     semantics being <code>NOT NULL</code>.</p>

  <p>It is also possible to add support for additional Oracle types,
     such as <code>XML</code>, geospatial types, user-defined types,
     and collections (arrays, table types). For more information, refer to
     <a href="#12.7">Section 12.7, "Database Type Mapping
     Pragmas"</a>.</p>

  <h2><a name="16.2">16.2 Oracle Database Class</a></h2>

  <p>The Oracle <code>database</code> class encapsulates the OCI environment
     handle as well as the database connection string and user credentials
     that are used to establish connections to the database. It has the
     following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace oracle
  {
    class database: public odb::database
    {
    public:
      database (const std::string&amp; user,
                const std::string&amp; password,
                const std::string&amp; db,
                ub2 charset = 0,
                ub2 ncharset = 0,
                OCIEnv* environment = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (const std::string&amp; user,
                const std::string&amp; password,
                const std::string&amp; service,
                const std::string&amp; host,
                unsigned int port = 0,
                ub2 charset = 0,
                ub2 ncharset = 0,
                OCIEnv* environment = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (int&amp; argc,
                char* argv[],
                bool erase = false,
                ub2 charset = 0,
                ub2 ncharset = 0,
                OCIEnv* environment = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      static void
      print_usage (std::ostream&amp;);

    public:
      const std::string&amp;
      user () const;

      const std::string&amp;
      password () const;

      const std::string&amp;
      db () const;

      const std::string&amp;
      service () const;

      const std::string&amp;
      host () const;

      unsigned int
      port () const;

      ub2
      charset () const;

      ub2
      ncharset () const;

      OCIEnv*
      environment ();

    public:
      connection_ptr
      connection ();
    };
  }
}
  </pre>

  <p>You will need to include the <code>&lt;odb/oracle/database.hxx></code>
     header file to make this class available in your application.</p>

  <p>The overloaded <code>database</code> constructors allow us to specify the
     Oracle database parameters that should be used when connecting to the
     database. The <code>db</code> argument in the first constructor is a
     connection identifier that specifies the database to connect to. For more
     information on the format of the connection identifier, refer to the
     Oracle documentation.</p>

  <p>The second constructor allows us to specify the individual components
     of a connection identifier as the <code>service</code>, <code>host</code>,
     and <code>port</code> arguments. If the <code>host</code> argument is
     empty, then localhost is used by default. Similarly, if the
     <code>port</code> argument is zero, then the default port is used.</p>

  <p>The last constructor extracts the database parameters
     from the command line. The following options are recognized:</p>

  <pre class="terminal">
  --user &lt;login>
  --password &lt;password>
  --database &lt;connect-id>
  --service &lt;name>
  --host &lt;host>
  --port &lt;integer>
  --options-file &lt;file>
  </pre>

  <p>The <code>--options-file</code> option allows us to specify some
     or all of the database options in a file with each option appearing
     on a separate line followed by a space and an option value. Note that it
     is invalid to specify the <code>--database</code> option
     together with <code>--service</code>, <code>--host</code>, or
     <code>--port</code> options.</p>

  <p>If the <code>erase</code> argument to this constructor is true,
     then the above options are removed from the <code>argv</code>
     array and the <code>argc</code> count is updated accordingly.
     This is primarily useful if your application accepts other
     options or arguments and you would like to get the Oracle
     options out of the <code>argv</code> array.</p>

  <p>This constructor throws the <code>odb::oracle::cli_exception</code>
     exception if the Oracle option values are missing or invalid. See section
     <a href="#16.4">Section 16.4, "Oracle Exceptions"</a> for more
     information on this exception.</p>

  <p>The static <code>print_usage()</code> function prints the list of options
     with short descriptions that are recognized by this constructor.</p>

  <p>Additionally, all the constructors have the <code>charset</code>,
     <code>ncharset</code>, and <code>environment</code> arguments.
     The <code>charset</code> argument specifies the client-side database
     character encoding. Character data corresponding to the <code>CHAR</code>,
     <code>VARCHAR2</code>, and <code>CLOB</code> types will be delivered
     to and received from the application in this encoding. Similarly,
     the <code>ncharset</code> argument specifies the client-side national
     character encoding. Character data corresponding to the <code>NCHAR</code>,
     <code>NVARCHAR2</code>, and <code>NCLOB</code> types will be delivered
     to and received from the application in this encoding. For the complete
     list of available character encoding values, refer to the Oracle
     documentation. Commonly used encoding values are <code>873</code>
     (UTF-8), <code>31</code> (ISO-8859-1), and <code>1000</code> (UTF-16).
     If the database character encoding is not specified, then the
     <code>NLS_LANG</code> environment/registry variable is used. Similarly,
     if the national character encoding is not specified, then the
     <code>NLS_NCHAR</code> environment/registry variable is used. For more
     information on character encodings, refer to the
     <code>OCIEnvNlsCreate()</code> function in the Oracle Call Interface
     (OCI) documentation.</p>

  <p>The <code>environment</code> argument allows us to provide a custom
     OCI environment handle. If this argument is not <code>NULL</code>,
     then the passed handle is used in all the OCI function calls made
     by this <code>database</code> class instance. Note also that the
     <code>database</code> instance does not assume ownership of the
     passed environment handle and this handle should be valid for
     the lifetime of the <code>database</code> instance. If a custom
     environment handle is used, then the <code>charset</code> and
     <code>ncharset</code> arguments have no effect.</p>

  <p>The last argument to all of the constructors is a pointer to the
     connection factory. In C++98, it is <code>std::auto_ptr</code> while
     in C++11 <code>std::unique_ptr</code> is used instead. If we pass a
     non-<code>NULL</code> value, the database instance assumes ownership
     of the factory instance. The connection factory interface as well as
     the available implementations are described in the next section.</p>

  <p>The set of accessor functions following the constructors allows us
     to query the parameters of the <code>database</code> instance.</p>

  <p>The <code>connection()</code> function returns a pointer to the
     Oracle database connection encapsulated by the
     <code>odb::oracle::connection</code> class. For more information
     on <code>oracle::connection</code>, refer to <a href="#16.3">Section
     16.3, "Oracle Connection and Connection Factory"</a>.</p>

  <h2><a name="16.3">16.3 Oracle Connection and Connection Factory</a></h2>

  <p>The <code>oracle::connection</code> class has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace oracle
  {
    class connection: public odb::connection
    {
    public:
      connection (database&amp;);
      connection (database&amp;, OCISvcCtx*);

      OCISvcCtx*
      handle ();

      OCIError*
      error_handle ();

      details::buffer&amp;
      lob_buffer ();
    };

    typedef details::shared_ptr&lt;connection> connection_ptr;
  }
}
  </pre>

  <p>For more information on the <code>odb::connection</code> interface, refer
     to <a href="#3.6">Section 3.6, "Connections"</a>. The first overloaded
     <code>oracle::connection</code> constructor creates a new OCI service
     context. The OCI statement caching is enabled for the underlying session
     while the OCI connection pooling and session pooling are not used. The
     second constructor allows us to create a <code>connection</code> instance by
     providing an already connected Oracle service context. Note that the
     <code>connection</code> instance assumes ownership of this handle. The
     <code>handle()</code> accessor returns the OCI service context handle
     associated with the <code>connection</code> instance.</p>

  <p>An OCI error handle is allocated for each <code>connection</code>
     instance and is available via the <code>error_handle()</code> accessor
     function.</p>

  <p>Additionally, each <code>connection</code> instance maintains a large
     object (LOB) buffer. This buffer is used by the Oracle ODB runtime
     as an intermediate storage for piecewise handling of LOB data.
     By default, the LOB buffer has zero initial capacity and is
     expanded to 4096 bytes when the first LOB operation is performed.
     If your application requires a bigger or smaller LOB buffer, you can
     specify a custom capacity using the <code>lob_buffer()</code>
     accessor.</p>

  <p>The <code>oracle::connection_factory</code> abstract class has the
     following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace oracle
  {
    class connection_factory
    {
    public:
      virtual void
      database (database&amp;) = 0;

      virtual connection_ptr
      connect () = 0;
    };
  }
}
  </pre>

  <p>The <code>database()</code> function is called when a connection
     factory is associated with a database instance. This happens in
     the <code>odb::oracle::database</code> class constructors. The
     <code>connect()</code> function is called whenever a database
     connection is requested.</p>

  <p>The two implementations of the <code>connection_factory</code>
     interface provided by the Oracle ODB runtime are
     <code>new_connection_factory</code> and
     <code>connection_pool_factory</code>. You will need to include
     the <code>&lt;odb/oracle/connection-factory.hxx></code>
     header file to make the <code>connection_factory</code> interface
     and these implementation classes available in your application.</p>

  <p>The <code>new_connection_factory</code> class creates a new
     connection whenever one is requested. When a connection is no
     longer needed, it is released and closed. The
     <code>new_connection_factory</code> class has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace oracle
  {
    class new_connection_factory: public connection_factory
    {
    public:
      new_connection_factory ();
    };
};
  </pre>

  <p>The <code>connection_pool_factory</code> class implements a
     connection pool. It has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace oracle
  {
    class connection_pool_factory: public connection_factory
    {
    public:
      connection_pool_factory (std::size_t max_connections = 0,
                               std::size_t min_connections = 0);

    protected:
      class pooled_connection: public connection
      {
      public:
        pooled_connection (database_type&amp;);
        pooled_connection (database_type&amp;, OCISvcCtx*);
      };

      typedef details::shared_ptr&lt;pooled_connection> pooled_connection_ptr;

      virtual pooled_connection_ptr
      create ();
    };
};
  </pre>

  <p>The <code>max_connections</code> argument in the
     <code>connection_pool_factory</code> constructor specifies the maximum
     number of concurrent connections that this pool factory will
     maintain. Similarly, the <code>min_connections</code> argument
     specifies the minimum number of available connections that
     should be kept open.</p>

  <p>Whenever a connection is requested, the pool factory first
     checks if there is an unused connection that can be returned.
     If there is none, the pool factory checks the
     <code>max_connections</code> value to see if a new connection
     can be created. If the total number of connections maintained
     by the pool is less than this value, then a new connection is
     created and returned. Otherwise, the caller is blocked until
     a connection becomes available.</p>

  <p>When a connection is released, the pool factory first checks
     if there are blocked callers waiting for a connection. If so, then
     one of them is unblocked and is given the connection. Otherwise,
     the pool factory checks whether the total number of connections
     maintained by the pool is greater than the <code>min_connections</code>
     value. If that's the case, the connection is closed. Otherwise, the
     connection is added to the pool of available connections to be
     returned on the next request. In other words, if the number of
     connections maintained by the pool exceeds <code>min_connections</code>
     and there are no callers waiting for a new connection,
     the pool will close the excess connections.</p>

  <p>If the <code>max_connections</code> value is 0, then the pool will
     create a new connection whenever all of the existing connections
     are in use. If the <code>min_connections</code> value is 0, then
     the pool will never close a connection and instead maintain all
     the connections that were ever created.</p>

  <p>The <code>create()</code> virtual function is called whenever the
     pool needs to create a new connection. By deriving from the
     <code>connection_pool_factory</code> class and overriding this
     function we can implement custom connection establishment
     and configuration.</p>

  <p>If you pass <code>NULL</code> as the connection factory to one of the
     <code>database</code> constructors, then the
     <code>connection_pool_factory</code> instance will be created by default
     with the min and max connections values set to <code>0</code>. The
     following code fragment shows how we can pass our own connection factory
     instance:</p>

  <pre class="cxx">
#include &lt;odb/database.hxx>

#include &lt;odb/oracle/database.hxx>
#include &lt;odb/oracle/connection-factory.hxx>

int
main (int argc, char* argv[])
{
  auto_ptr&lt;odb::oracle::connection_factory> f (
    new odb::oracle::connection_pool_factory (20));

  auto_ptr&lt;odb::database> db (
    new oracle::database (argc, argv, false, 0, 0, 0, f));
}
  </pre>

  <h2><a name="16.4">16.4 Oracle Exceptions</a></h2>

  <p>The Oracle ODB runtime library defines the following
     Oracle-specific exceptions:</p>

  <pre class="cxx">
namespace odb
{
  namespace oracle
  {
    class database_exception: odb::database_exception
    {
    public:
      class record
      {
      public:
        sb4
        error () const;

        const std::string&amp;
        message () const;
      };

      typedef std::vector&lt;record> records;

      typedef records::size_type size_type;
      typedef records::const_iterator iterator;

      iterator
      begin () const;

      iterator
      end () const;

      size_type
      size () const;

      virtual const char*
      what () const throw ();
    };

    class cli_exception: odb::exception
    {
    public:
      virtual const char*
      what () const throw ();
    };

    class invalid_oci_handle: odb::exception
    {
    public:
      virtual const char*
      what () const throw ();
    };
  }
}
  </pre>

  <p>You will need to include the <code>&lt;odb/oracle/exceptions.hxx></code>
     header file to make these exceptions available in your application.</p>

  <p>The <code>odb::oracle::database_exception</code> is thrown if
     an Oracle database operation fails. The Oracle-specific error
     information is stored as a series of records, each containing
     the error code as a signed 4-byte integer and the message string.
     All this information is also combined and returned in a
     human-readable form by the <code>what()</code> function.</p>

  <p>The <code>odb::oracle::cli_exception</code> is thrown by the
     command line parsing constructor of the <code>odb::oracle::database</code>
     class if the Oracle option values are missing or invalid. The
     <code>what()</code> function returns a human-readable description
     of an error.</p>

  <p>The <code>odb::oracle::invalid_oci_handle</code> is thrown if an
     invalid handle is passed to an OCI function or if an OCI function
     was unable to allocate a handle. The former normally indicates
     a programming error while the latter indicates an out of memory
     condition. The <code>what()</code> function returns a human-readable
     description of an error.</p>

  <h2><a name="16.5">16.5 Oracle Limitations</a></h2>

  <p>The following sections describe Oracle-specific limitations imposed
     by the current Oracle and ODB runtime versions.</p>

  <h3><a name="16.5.1">16.5.1 Identifier Truncation</a></h3>

  <p>Oracle limits the length of database identifiers (table, column, etc.,
     names) to 30 characters. The ODB compiler automatically truncates
     any identifier that is longer than 30 characters. This, however,
     can lead to duplicate names. A common symptom of this problem
     are errors during the database schema creation indicating
     that a database object with the same name already exists. To
     resolve this problem we can assign custom, shorter identifiers
     using the <code>db&nbsp;table</code> and <code>db&nbsp;column</code>
     pragmas (<a href="#12">Chapter 12, "ODB Pragma Language")</a>. For
     example:</p>

  <pre class="cxx">
#pragma db object
class long_class_name
{
  ...

  std::vector&lt;int> long_container_x_;
  std::vector&lt;int> long_container_y_;
};
  </pre>

  <p>In the above example, the names of the two container tables will be
     <code>long_class_name_long_container_x_</code> and
     <code>long_class_name_long_container_y_</code>. However, when
     truncated to 30 characters, they both become
     <code>long_class_name_long_container</code>. To resolve this
     collision we can assign a custom table name for each container:</p>

  <pre class="cxx">
#pragma db object
class long_class_name
{
  ...

  #pragma db table("long_class_name_cont_x")
  std::vector&lt;int> long_container_x_;

  #pragma db table("long_class_name_cont_y")
  std::vector&lt;int> long_container_y_;
};
  </pre>

  <h3><a name="16.5.2">16.5.2 Query Result Caching</a></h3>

  <p>Oracle ODB runtime implementation does not perform query result caching
     (<a href="#4.4">Section 4.4, "Query Result"</a>) even when explicitly
     requested. The OCI API supports interleaving execution of multiple
     prepared statements on a single connection. As a result, with OCI,
     it is possible to have multiple uncached results and calls to other
     database functions do not invalidate them. The only limitation of
     the uncached Oracle results is the unavailability of the
     <code>result::size()</code> function. If you call this function on
     an Oracle query result, then the <code>odb::result_not_cached</code>
     exception (<a href="#3.14">Section 3.14, "ODB Exceptions"</a>) is
     always thrown. Future versions of the Oracle ODB runtime library
     may add support for result caching.</p>

  <h3><a name="16.5.3">16.5.3 Foreign Key Constraints</a></h3>

  <p>ODB relies on standard SQL behavior which requires that
     foreign key constraints checking is deferred until the
     transaction is committed. Default Oracle behavior is
     to check such constraints immediately. As a result, when
     used with ODB, a custom database schema that defines foreign
     key constraints must declare such constraints as
     <code>INITIALLY DEFERRED</code>, as shown in the following example.
     Schemas generated by the ODB compiler meet this requirement
     automatically.</p>

  <pre class="sql">
CREATE TABLE Employee (
  ...
  employer NUMBER(20) REFERENCES Employer(id)
           DEFERRABLE INITIALLY DEFERRED);
  </pre>

  <h3><a name="16.5.4">16.5.4 Unique Constraint Violations</a></h3>

  <p>Due to the granularity of the Oracle error codes, it is impossible
     to distinguish between the duplicate primary key and other unique
     constraint violations. As a result, when making an object persistent,
     the Oracle ODB runtime will translate all unique constraint violation
     errors to the <code>object_already_persistent</code> exception
     (<a href="#3.14">Section 3.14, "ODB Exceptions"</a>).</p>

  <h3><a name="16.5.5">16.5.5 Large <code>FLOAT</code> and
      <code>NUMBER</code> Types</a></h3>

  <p>The Oracle <code>FLOAT</code> type with a binary precision greater
     than 53 and fixed-point <code>NUMBER</code> type with a decimal
     precision greater than 15 cannot be automatically extracted
     into the C++ <code>float</code> and <code>double</code> types.
     Instead, the Oracle ODB runtime uses a 21-byte buffer containing
     the binary representation of a value as an image type for such
     <code>FLOAT</code> and <code>NUMBER</code> types. In order to
     convert them into an application-specific large number representation,
     you will need to provide a suitable <code>value_traits</code>
     template specialization. For more information on the binary format
     used to store the <code>FLOAT</code> and <code>NUMBER</code> values,
     refer to the Oracle Call Interface (OCI) documentation.</p>

  <p>An alternative approach to accessing large <code>FLOAT</code> and
     <code>NUMBER</code> values is to map these type to one of the
     natively supported ones, as discussed in <a href="#12.7">Section
     12.7, "Database Type Mapping Pragmas"</a>.</p>

  <p>Note that a <code>NUMBER</code> type that is used to represent a
     floating point number (declared by specifying <code>NUMBER</code>
     without any range and scale) can be extracted into the C++
     <code>float</code> and <code>double</code> types.</p>

  <h3><a name="16.5.6">16.5.6 Timezones</a></h3>

  <p>ODB does not currently support the Oracle date-time types with timezone
     information. However, these types can be accessed by mapping them to
     one of the natively supported types, as discussed in
     <a href="#12.7">Section 12.7, "Database Type Mapping Pragmas"</a>.</p>

  <h3><a name="16.5.7">16.5.7 <code>LONG</code> Types</a></h3>

  <p>ODB does not support the deprecated Oracle <code>LONG</code> and
     <code>LONG RAW</code> data types. However, these types can be accessed
     by mapping them to one of the natively supported types, as discussed
     in <a href="#12.7">Section 12.7, "Database Type Mapping Pragmas"</a>.</p>

  <h3><a name="16.5.8">16.5.8 LOB Types and By-Value Accessors/Modifiers</a></h3>

  <p>As discussed in <a href="#12.4.5">Section 12.4.5,
     "<code>get</code>/<code>set</code>/<code>access</code>"</a>, by-value
     accessor and modifier expressions cannot be used with data members
     of Oracle large object (LOB) data types: <code>BLOB</code>,
     <code>CLOB</code>, and <code>NCLOB</code>. The Oracle ODB runtime
     uses streaming for reading/writing LOB data directly from/to
     data members. As a result, by-reference accessors and modifiers
     should be used for these data types.</p>

  <h2><a name="16.6">16.6 Oracle Index Definitions</a></h2>

  <p>When the <code>index</code> pragma (<a href="#12.6">Section 12.6,
     "Index Definition Pragmas"</a>) is used to define an Oracle index,
     the <code>type</code> clause specifies the index type (for example,
     <code>UNIQUE</code>, <code>BITMAP</code>), the <code>method</code>
     clause is not used, and the <code>options</code> clause specifies
     additional index properties, such as partitioning, table spaces, etc.
     The column options can be used to specify the sort order. For example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  std::string name_;

  #pragma db index                     \
             type("BITMAP")            \
             member(name_, "DESC")     \
             options("TABLESPACE TBS1")
};
  </pre>

  <p>Index names in Oracle are schema-global. To avoid name clashes,
     ODB automatically prefixes each index name with the table name on
     which it is defined.</p>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="17">17 Microsoft SQL Server Database</a></h1>

  <p>To generate support code for the SQL Server database you will need
     to pass the "<code>--database&nbsp;mssql</code>"
     (or "<code>-d&nbsp;mssql</code>") option to the ODB compiler.
     Your application will also need to link to the SQL Server ODB runtime
     library (<code>libodb-mssql</code>). All SQL Server-specific ODB
     classes are defined in the <code>odb::mssql</code> namespace.</p>

  <h2><a name="17.1">17.1 SQL Server Type Mapping</a></h2>

  <p>The following table summarizes the default mapping between basic
     C++ value types and SQL Server database types. This mapping can be
     customized on the per-type and per-member basis using the ODB
     Pragma Language (<a href="#12">Chapter 12, "ODB Pragma Language"</a>).</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>C++ Type</th>
      <th>SQL Server Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>bool</code></td>
      <td><code>BIT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>char</code></td>
      <td><code>TINYINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>signed char</code></td>
      <td><code>TINYINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned char</code></td>
      <td><code>TINYINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>short</code></td>
      <td><code>SMALLINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned short</code></td>
      <td><code>SMALLINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>int</code></td>
      <td><code>INT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned int</code></td>
      <td><code>INT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>long</code></td>
      <td><code>BIGINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned long</code></td>
      <td><code>BIGINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>long long</code></td>
      <td><code>BIGINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>unsigned long long</code></td>
      <td><code>BIGINT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>float</code></td>
      <td><code>REAL</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>double</code></td>
      <td><code>FLOAT</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>std::string</code></td>
      <td><code>VARCHAR(512)/VARCHAR(256)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>std::wstring</code></td>
      <td><code>NVARCHAR(512)/NVARCHAR(256)</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

    <tr>
      <td><code>GUID</code></td>
      <td><code>UNIQUEIDENTIFIER</code></td>
      <td><code>NOT NULL</code></td>
    </tr>

  </table>

  <p>Note that the <code>std::string</code> and <code>std::wstring</code>
     types are mapped differently depending on whether a member of one of
     these types is an object id or not. If the member is an object id,
     then for this member <code>std::string</code> is mapped
     to <code>VARCHAR(256)</code> and <code>std::wstring</code> &mdash;
     to <code>NVARCHAR(256)</code>. Otherwise, <code>std::string</code>
     is mapped to <code>VARCHAR(512)</code> and <code>std::wstring</code>
     &mdash; to <code>NVARCHAR(512)</code>. Note also that you can
     always change this mapping using the <code>db&nbsp;type</code> pragma
     (<a href="#12.4.3">Section 12.4.3, "<code>type</code>"</a>).</p>

  <p>The SQL Server ODB runtime library also provides support for mapping the
     <code>std::string</code> type to the SQL Server <code>CHAR</code> and
     <code>TEXT</code> types as well as <code>std::wstring</code>
     to <code>NCHAR</code> and <code>NTEXT</code>. There is also support
     for mapping the <code>char[16]</code> array to the SQL Server
     <code>UNIQUEIDENTIFIER</code> type as well as the
     <code>std::vector&lt;char></code>,
     <code>std::vector&lt;unsigned&nbsp;char></code>,
     <code>char[N]</code>, <code>unsigned&nbsp;char[N]</code>,
     <code>std::array&lt;char, N></code>, and <code>std::array&lt;unsigned char, N></code>
     types to the SQL Server <code>BINARY</code>, <code>VARBINARY</code>, and
     <code>IMAGE</code> types. However, these mappings are not enabled
     by default (in particular, by default, <code>std::vector</code> and
     <code>std::array</code> will be treated as containers). To enable the
     alternative mappings for these types we need to specify the database
     type explicitly using the <code>db&nbsp;type</code> pragma
     (<a href="#12.4.3">Section 12.4.3, "<code>type</code>"</a>), for
     example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  #pragma db type ("CHAR(5)")
  std::string str_;

  #pragma db type("UNIQUEIDENTIFIER")
  char uuid_[16];

  #pragma db type("VARBINARY(max)")
  std::vector&lt;char> buf_;

  #pragma db type("BINARY(256)")
  unsigned char data_[256];
};
  </pre>

  <p>Alternatively, this can be done on the per-type basis, for example:</p>

  <pre class="cxx">
typedef std::vector&lt;char> buffer;
#pragma db value(buffer) type("VARBINARY(max)")

#pragma db object
class object
{
  ...

  buffer buf_; // Mapped to VARBINARY(max).
};
  </pre>

  <p>Additionally, by default, C++ enumerations are automatically
     mapped to <code>INT</code> with the default <code>NULL</code>
     semantics being <code>NOT NULL</code>.</p>

  <p>For SQL Server, ODB handles character, national character, and
     binary data in two different ways depending on its maximum length.
     If the maximum length (in bytes) is less than or equal to the limit
     specified with the <code>--mssql-short-limit</code> ODB compiler
     option (1024 by default), then it is treated as <i>short data</i>,
     otherwise &mdash; <i>long data</i>. For short data ODB pre-allocates
     an intermediate buffer of the maximum size and binds it directly
     to a parameter or result column. This way the underlying database
     API (ODBC) can read/write directly from/to this buffer. In the case
     of long data, the data is read/written in chunks using the
     <code>SQLGetData()</code>/<code>SQLPutData()</code> ODBC functions.
     While the long data approach reduces the amount of memory used by
     the application, it may require greater CPU resources.</p>

  <p>Long data has a number of limitations. In particular, when setting
     a custom short data limit, make sure that it is sufficiently large
     so that no object id in the application is treated as long data.
     It is also impossible to load an object or view with long data more
     than once as part of a query result iteration (<a href="#4.4">Section
     4.4, "Query Result"</a>). Any such attempt will result in the
     <code>odb::mssql::long_data_reload</code> exception
     (<a href="#17.4">Section 17.4, "SQL Server Exceptions"</a>). For
     example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  int num_;

  #pragma db type("VARCHAR(max)") // Long data.
  std::string str_;
};

typedef odb::query&lt;object> query;
typedef odb::result&lt;object> result;

transaction t (db.begin ());

result r (db.query&lt;object> (query::num &lt; 100));

for (result::iterator i (r.begin ()); i != r.end (); ++i)
{
  if (!i->str_.empty ()) // First load.
  {
    object o;
    i.load (o); // Error: second load, long_data_reload is thrown.
  }
}

t.commit ();
  </pre>

  <p>Finally, if a native view (<a href="#9.5">Section 9.5, "Native
     Views"</a>) contains one or more long data members, then such
     members should come last both in the select-list of the native
     SQL query and the list of data members in the C++ class.</p>

  <p>Note also that because SQL Server does not support unsigned integers,
     the <code>unsigned&nbsp;short</code>, <code>unsigned&nbsp;int</code>, and
     <code>unsigned&nbsp;long</code>/<code>unsigned&nbsp;long&nbsp;long</code> C++ types
     are by default mapped to the <code>SMALLINT</code>, <code>INT</code>,
     and <code>BIGINT</code> SQL Server types, respectively. The sign bit
     of the value stored by the database for these types will contain
     the most significant bit of the actual unsigned value being
     persisted. Similarly, because there is no signed version of the
     <code>TINYINT</code> SQL Server type, by default, <code>char</code>
     and <code>signed char</code> C++ types are mapped to
     <code>TINYINT</code>. As a result, the most significant bit of
     the value stored by the database for these types will contain the
     sign bit of the actual signed value being persisted.</p>

  <p>It is also possible to add support for additional SQL Server types,
     such as geospatial types, <code>XML</code>, and user-defined types.
     For more information, refer to <a href="#12.7">Section 12.7, "Database
     Type Mapping Pragmas"</a>.</p>

  <h2><a name="17.2">17.2 SQL Server Database Class</a></h2>

  <p>The SQL Server <code>database</code> class encapsulates the ODBC
     environment handle as well as the server instance address and
     user credentials that are used to establish connections to the
     database. It has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace mssql
  {
    enum protocol
    {
      protocol_auto,
      protocol_tcp, // TCP/IP.
      protocol_lpc, // Shared memory (local procedure call).
      protocol_np   // Named pipes.
    };

    class database: public odb::database
    {
    public:
      database (const std::string&amp; user,
                const std::string&amp; password,
                const std::string&amp; db,
                const std::string&amp; server,
                const std::string&amp; driver = "",
                const std::string&amp; extra_connect_string = "",
                SQLHENV environment = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (const std::string&amp; user,
                const std::string&amp; password,
                const std::string&amp; db,
                protocol_type protocol = protocol_auto,
                const std::string&amp; host = "",
                const std::string&amp; instance = "",
                const std::string&amp; driver = "",
                const std::string&amp; extra_connect_string = "",
                SQLHENV environment = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (const std::string&amp; user,
                const std::string&amp; password,
                const std::string&amp; db,
                const std::string&amp; host,
                unsigned int port,
                const std::string&amp; driver = "",
                const std::string&amp; extra_connect_string = "",
                SQLHENV environment = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (const std::string&amp; connect_string,
                SQLHENV environment = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      database (int&amp; argc,
                char* argv[],
                bool erase = false,
                const std::string&amp; extra_connect_string = "",
                SQLHENV environment = 0,
                std::[auto|unique]_ptr&lt;connection_factory> = 0);

      static void
      print_usage (std::ostream&amp;);

    public:
      const std::string&amp;
      user () const;

      const std::string&amp;
      password () const;

      const std::string&amp;
      db () const;

      protocol_type
      protocol () const;

      const std::string&amp;
      host () const;

      const std::string&amp;
      instance () const;

      unsigned int
      port () const;

      const std::string&amp;
      server () const;

      const std::string&amp;
      driver () const;

      const std::string&amp;
      extra_connect_string () const;

      const std::string&amp;
      connect_string () const;

      SQLHENV
      environment ();

    public:
      connection_ptr
      connection ();
    };
  }
}
  </pre>

  <p>You will need to include the <code>&lt;odb/mssql/database.hxx></code>
     header file to make this class available in your application.</p>

  <p>The overloaded <code>database</code> constructors allow us to specify the
     SQL Server database parameters that should be used when connecting to the
     database. The <code>user</code> and <code>password</code> arguments
     specify the login name and password. If <code>user</code> is empty,
     then Windows authentication is used and the <code>password</code>
     argument is ignored. The <code>db</code> argument specifies the
     database name to open. If it is empty, then the default database for
     the user is used.</p>

  <p>The <code>server</code> argument in the first constructor specifies
     the SQL Server instance address in the standard SQL Server address
     format:</p>

  <p>
  <code>[<i>protocol</i><b>:</b>]<i>host</i>[<b>\</b><i>instance</i>][<b>,</b><i>port</i>]</code>
  </p>

  <p>Where <code><i>protocol</i></code> can be <code>tcp</code>
    (TCP/IP), <code>lpc</code> (shared memory), or
    <code>np</code> (named pipe). If protocol is not specified, then a
    suitable protocol is automatically selected based on the SQL Server
    Native Client configuration. The <code><i>host</i></code> component
    can be a host name or an IP address. If <code><i>instance</i></code>
    is not specified, then the default SQL Server instance is assumed.
    If port is not specified, then the default SQL Server port is
    used (1433). Note that you would normally specify either the
    instance name or the port, but not both. If both are specified,
    then the instance name is ignored by the SQL Server Native Client
    ODBC driver. For more information on the format of the SQL
    Server address, refer to the SQL Server Native Client ODBC
    driver documentation.</p>

  <p>The second and third constructors allow us to specify all these address
     components (protocol, host, instance, and port) as separate
     arguments. The third constructor always connects using TCP/IP
     to the specified host and port.</p>

  <p>The <code>driver</code> argument specifies the SQL Server Native
     Client ODBC driver that should be used to connect to the database.
     If not specified, then the latest available version is used. The
     following examples show common ways of connecting to the database
     using the first three constructors:</p>

  <pre class="cxx">
// Connect to the default SQL Server instance on the local machine
// using the default protocol. Login as 'test' with password 'secret'
// and open the 'example_db' database.
//
odb::mssql::database db1 ("test",
                          "secret",
                          "example_db");

// As above except use Windows authentication and open the default
// database for this user.
//
odb::mssql::database db2 ("",
                          "",
                          "");

// Connect to the default SQL Server instance on 'onega' using the
// default protocol. Login as 'test' with password 'secret' and open
// the 'example_db' database.
//
odb::mssql::database db3 ("test",
                          "secret",
                          "example_db"
                          "onega");

// As above but connect to the 'production' SQL Server instance.
//
odb::mssql::database db4 ("test",
                          "secret",
                          "example_db"
                          "onega\\production");

// Same as above but specify protocol, host, and instance as separate
// arguments.
//
odb::mssql::database db5 ("test",
                          "secret",
                          "example_db",
                          odb::mssql::protocol_auto,
                          "onega",
                          "production");

// As above, but use TCP/IP as the protocol.
//
odb::mssql::database db6 ("test",
                          "secret",
                          "example_db"
                          "tcp:onega\\production");

// Same as above but using separate arguments.
//
odb::mssql::database db7 ("test",
                          "secret",
                          "example_db",
                          odb::mssql::protocol_tcp,
                          "onega",
                          "production");

// As above, but use TCP/IP port instead of the instance name.
//
odb::mssql::database db8 ("test",
                          "secret",
                          "example_db"
                          "tcp:onega,1435");

// Same as above but using separate arguments. Note that here we
// don't need to specify protocol explicitly since it can only
// be TCP/IP.
//
odb::mssql::database db9 ("test",
                          "secret",
                          "example_db",
                          "onega",
                          1435);

// As above but use the specific SQL Server Native Client ODBC
// driver version.
//
odb::mssql::database dbA ("test",
                          "secret",
                          "example_db"
                          "tcp:onega,1435",
                          "SQL Server Native Client 10.0");
  </pre>


  <p>The fourth constructor allows us to pass a custom ODBC connection
     string that provides all the information necessary to connect to
     the database. Note also that all the other constructors have the
     <code>extra_connect_string</code> argument which can be used to
     specify additional ODBC connection attributes. For more information
     on the format of the ODBC connection string, refer to the SQL
     Server Native Client ODBC driver documentation.</p>

  <p>The last constructor extracts the database parameters
     from the command line. The following options are recognized:</p>

  <pre class="terminal">
  --user | -U &lt;login>
  --password | -P &lt;password>
  --database | -d &lt;name>
  --server | -S &lt;address>
  --driver &lt;name>
  --options-file &lt;file>
  </pre>

  <p>The <code>--options-file</code> option allows us to specify some
     or all of the database options in a file with each option appearing
     on a separate line followed by a space and an option value.</p>

  <p>If the <code>erase</code> argument to this constructor is true,
     then the above options are removed from the <code>argv</code>
     array and the <code>argc</code> count is updated accordingly.
     This is primarily useful if your application accepts other
     options or arguments and you would like to get the SQL Server
     options out of the <code>argv</code> array.</p>

  <p>This constructor throws the <code>odb::mssql::cli_exception</code>
     exception if the SQL Server option values are missing or invalid. See
     section <a href="#17.4">Section 17.4, "SQL Server Exceptions"</a> for
     more information on this exception.</p>

  <p>The static <code>print_usage()</code> function prints the list of options
     with short descriptions that are recognized by this constructor.</p>

  <p>Additionally, all the constructors have the <code>environment</code>
     argument which allows us to provide a custom ODBC environment handle.
     If this argument is not <code>NULL</code>, then the passed handle is
     used in all the ODBC function calls made by this <code>database</code>
     class instance. Note also that the <code>database</code> instance
     does not assume ownership of the passed environment handle and this
     handle should be valid for the lifetime of the <code>database</code>
     instance.</p>

  <p>The last argument to all of the constructors is a pointer to the
     connection factory. In C++98, it is <code>std::auto_ptr</code> while
     in C++11 <code>std::unique_ptr</code> is used instead. If we pass a
     non-<code>NULL</code> value, the database instance assumes ownership
     of the factory instance. The connection factory interface as well as
     the available implementations are described in the next section.</p>

  <p>The set of accessor functions following the constructors allows us
     to query the parameters of the <code>database</code> instance.</p>

  <p>The <code>connection()</code> function returns a pointer to the
     SQL Server database connection encapsulated by the
     <code>odb::mssql::connection</code> class. For more information
     on <code>mssql::connection</code>, refer to <a href="#17.3">Section
     17.3, "SQL Server Connection and Connection Factory"</a>.</p>

  <h2><a name="17.3">17.3 SQL Server Connection and Connection Factory</a></h2>

  <p>The <code>mssql::connection</code> class has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace mssql
  {
    class connection: public odb::connection
    {
    public:
      connection (database&amp;);
      connection (database&amp;, SQLHDBC handle);

      SQLHDBC
      handle ();

      details::buffer&amp;
      long_data_buffer ();
    };

    typedef details::shared_ptr&lt;connection> connection_ptr;
  }
}
  </pre>

  <p>For more information on the <code>odb::connection</code> interface, refer
     to <a href="#3.6">Section 3.6, "Connections"</a>. The first overloaded
     <code>mssql::connection</code> constructor creates a new ODBC connection.
     The created connection is configured to use the manual commit mode with
     multiple active result sets (MARS) enabled. The second constructor allows
     us to create a <code>connection</code> instance by providing an already
     established ODBC connection. Note that the <code>connection</code>
     instance assumes ownership of this handle. The <code>handle()</code>
     accessor returns the underlying ODBC connection handle associated with
     the <code>connection</code> instance.</p>

  <p>Additionally, each <code>connection</code> instance maintains a long
     data buffer. This buffer is used by the SQL Server ODB runtime
     as an intermediate storage for piecewise handling of long data.
     By default, the long data buffer has zero initial capacity and is
     expanded to 4096 bytes when the first long data operation is performed.
     If your application requires a bigger or smaller long data buffer,
     you can specify a custom capacity using the <code>long_data_buffer()</code>
     accessor.</p>

  <p>The <code>mssql::connection_factory</code> abstract class has the
     following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace mssql
  {
    class connection_factory
    {
    public:
      virtual void
      database (database&amp;) = 0;

      virtual connection_ptr
      connect () = 0;
    };
  }
}
  </pre>

  <p>The <code>database()</code> function is called when a connection
     factory is associated with a database instance. This happens in
     the <code>odb::mssql::database</code> class constructors. The
     <code>connect()</code> function is called whenever a database
     connection is requested.</p>

  <p>The two implementations of the <code>connection_factory</code>
     interface provided by the SQL Server ODB runtime are
     <code>new_connection_factory</code> and
     <code>connection_pool_factory</code>. You will need to include
     the <code>&lt;odb/mssql/connection-factory.hxx></code>
     header file to make the <code>connection_factory</code> interface
     and these implementation classes available in your application.</p>

  <p>The <code>new_connection_factory</code> class creates a new
     connection whenever one is requested. When a connection is no
     longer needed, it is released and closed. The
     <code>new_connection_factory</code> class has the following
     interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace mssql
  {
    class new_connection_factory: public connection_factory
    {
    public:
      new_connection_factory ();
    };
};
  </pre>

  <p>The <code>connection_pool_factory</code> class implements a
     connection pool. It has the following interface:</p>

  <pre class="cxx">
namespace odb
{
  namespace mssql
  {
    class connection_pool_factory: public connection_factory
    {
    public:
      connection_pool_factory (std::size_t max_connections = 0,
                               std::size_t min_connections = 0);

    protected:
      class pooled_connection: public connection
      {
      public:
        pooled_connection (database_type&amp;);
        pooled_connection (database_type&amp;, SQLHDBC handle);
      };

      typedef details::shared_ptr&lt;pooled_connection> pooled_connection_ptr;

      virtual pooled_connection_ptr
      create ();
    };
};
  </pre>

  <p>The <code>max_connections</code> argument in the
     <code>connection_pool_factory</code> constructor specifies the maximum
     number of concurrent connections that this pool factory will
     maintain. Similarly, the <code>min_connections</code> argument
     specifies the minimum number of available connections that
     should be kept open.</p>

  <p>Whenever a connection is requested, the pool factory first
     checks if there is an unused connection that can be returned.
     If there is none, the pool factory checks the
     <code>max_connections</code> value to see if a new connection
     can be created. If the total number of connections maintained
     by the pool is less than this value, then a new connection is
     created and returned. Otherwise, the caller is blocked until
     a connection becomes available.</p>

  <p>When a connection is released, the pool factory first checks
     if there are blocked callers waiting for a connection. If so, then
     one of them is unblocked and is given the connection. Otherwise,
     the pool factory checks whether the total number of connections
     maintained by the pool is greater than the <code>min_connections</code>
     value. If that's the case, the connection is closed. Otherwise, the
     connection is added to the pool of available connections to be
     returned on the next request. In other words, if the number of
     connections maintained by the pool exceeds <code>min_connections</code>
     and there are no callers waiting for a new connection,
     the pool will close the excess connections.</p>

  <p>If the <code>max_connections</code> value is 0, then the pool will
     create a new connection whenever all of the existing connections
     are in use. If the <code>min_connections</code> value is 0, then
     the pool will never close a connection and instead maintain all
     the connections that were ever created.</p>

  <p>The <code>create()</code> virtual function is called whenever the
     pool needs to create a new connection. By deriving from the
     <code>connection_pool_factory</code> class and overriding this
     function we can implement custom connection establishment
     and configuration.</p>

  <p>If you pass <code>NULL</code> as the connection factory to one of the
     <code>database</code> constructors, then the
     <code>connection_pool_factory</code> instance will be created by default
     with the min and max connections values set to <code>0</code>. The
     following code fragment shows how we can pass our own connection factory
     instance:</p>

  <pre class="cxx">
#include &lt;odb/database.hxx>

#include &lt;odb/mssql/database.hxx>
#include &lt;odb/mssql/connection-factory.hxx>

int
main (int argc, char* argv[])
{
  auto_ptr&lt;odb::mssql::connection_factory> f (
    new odb::mssql::connection_pool_factory (20));

  auto_ptr&lt;odb::database> db (
    new mssql::database (argc, argv, false, "", 0, f));
}
  </pre>

  <h2><a name="17.4">17.4 SQL Server Exceptions</a></h2>

  <p>The SQL Server ODB runtime library defines the following
     SQL Server-specific exceptions:</p>

  <pre class="cxx">
namespace odb
{
  namespace mssql
  {
    class database_exception: odb::database_exception
    {
    public:
      class record
      {
      public:
        SQLINTEGER
        error () const;

        const std::string&amp;
        sqlstate () const;

        const std::string&amp;
        message () const;
      };

      typedef std::vector&lt;record> records;

      typedef records::size_type size_type;
      typedef records::const_iterator iterator;

      iterator
      begin () const;

      iterator
      end () const;

      size_type
      size () const;

      virtual const char*
      what () const throw ();
    };

    class cli_exception: odb::exception
    {
    public:
      virtual const char*
      what () const throw ();
    };

    class long_data_reload: odb::exception
    {
    public:
      virtual const char*
      what () const throw ();
    };
  }
}
  </pre>

  <p>You will need to include the <code>&lt;odb/mssql/exceptions.hxx></code>
     header file to make these exceptions available in your application.</p>

  <p>The <code>odb::mssql::database_exception</code> is thrown if
     an SQL Server database operation fails. The SQL Server-specific error
     information is stored as a series of records, each containing
     the error code as a signed 4-byte integer, the SQLSTATE code,
     and the message string. All this information is also combined
     and returned in a human-readable form by the <code>what()</code>
     function.</p>

  <p>The <code>odb::mssql::cli_exception</code> is thrown by the
     command line parsing constructor of the <code>odb::mssql::database</code>
     class if the SQL Server option values are missing or invalid. The
     <code>what()</code> function returns a human-readable description
     of an error.</p>

  <p>The <code>odb::mssql::long_data_reload</code> is thrown if an
     attempt is made to re-load an object or view with long data as
     part of a query result iteration. For more information, refer
     to <a href="#17.1">Section 17.1, "SQL Server Type Mapping"</a>.</p>

  <h2><a name="17.5">17.5 SQL Server Limitations</a></h2>

  <p>The following sections describe SQL Server-specific limitations imposed
     by the current SQL Server and ODB runtime versions.</p>

  <h3><a name="17.5.1">17.5.1 Query Result Caching</a></h3>

  <p>SQL Server ODB runtime implementation does not perform query result
     caching (<a href="#4.4">Section 4.4, "Query Result"</a>) even when
     explicitly requested. The ODBC API and the SQL Server Native Client ODBC
     driver support interleaving execution of multiple prepared statements
     on a single connection. As a result, it is possible to have multiple
     uncached results and calls to other database functions do not invalidate
     them. The only limitation of the uncached SQL Server results is the
     unavailability of the <code>result::size()</code> function. If you
     call this function on an SQL Server query result, then the
     <code>odb::result_not_cached</code> exception (<a href="#3.14">Section
     3.14, "ODB Exceptions"</a>) is always thrown. Future versions of the
     SQL Server ODB runtime library may add support for result caching.</p>

  <h3><a name="17.5.2">17.5.2 Foreign Key Constraints</a></h3>

  <p>ODB relies on standard SQL behavior which requires that foreign
     key constraints checking is deferred until the transaction is
     committed. The only behavior supported by SQL Server is to check
     such constraints immediately. As a result, schemas generated by
     the ODB compiler for SQL Server have foreign key definitions
     commented out. They are retained only for documentation.</p>

  <h3><a name="17.5.3">17.5.3 Unique Constraint Violations</a></h3>

  <p>Due to the granularity of the ODBC error codes, it is impossible
     to distinguish between the duplicate primary key and other unique
     constraint violations. As a result, when making an object persistent,
     the SQL Server ODB runtime will translate all unique constraint violation
     errors to the <code>object_already_persistent</code> exception
     (<a href="#3.14">Section 3.14, "ODB Exceptions"</a>).</p>

  <h3><a name="17.5.4">17.5.4 Multithreaded Windows Applications</a></h3>

  <p>Multithreaded Windows applications must use the
     <code>_beginthread()</code>/<code>_beginthreadex()</code> and
     <code>_endthread()</code>/<code>_endthreadex()</code> CRT functions
     instead of the <code>CreateThread()</code> and <code>EndThread()</code>
     Win32 functions to start and terminate threads. This is a limitation of
     the ODBC implementation on Windows.</p>

  <h3><a name="17.5.5">17.5.5 Affected Row Count and DDL Statements</a></h3>

  <p>SQL Server always returns zero as the number of affected rows
     for DDL statements. In particular, this means that the
     <code>database::execute()</code> (<a href="#3.12">Section 3.12,
     "Executing Native SQL Statements"</a>) function will always
     return zero for such statements.</p>

  <h3><a name="17.5.6">17.5.6 Long Data and Automatically Assigned Object Ids</a></h3>

  <p>SQL Server 2005 has a bug that causes it to fail on an <code>INSERT</code>
     statement with the <code>OUTPUT</code> clause (used to return
     automatically assigned object ids) if one of the inserted columns
     is long data. The symptom of this bug in ODB is an exception thrown
     by the <code>database::persist()</code> function when used on an
     object that contains long data and has an automatically assigned
     object id. The error message reads "This operation conflicts with
     another pending operation on this transaction. The operation failed."</p>

  <p>ODB includes a workaround for this bug which uses a less efficient
     method to obtain automatically assigned object ids for objects that
     contain long data. To enable this workaround you need to specify
     that the generated code will be used with SQL Server 2005 or later
     by passing the <code>--mssql-server-version&nbsp;9.0</code> ODB
     compiler option.</p>

  <h3><a name="17.5.7">17.5.7 Long Data and By-Value Accessors/Modifiers</a></h3>

  <p>As discussed in <a href="#12.4.5">Section 12.4.5,
     "<code>get</code>/<code>set</code>/<code>access</code>"</a>, by-value
     accessor and modifier expressions cannot be used with data members
     of long data types. The SQL Server ODB runtime uses streaming for
     reading/writing long data directly from/to data members. As a result,
     by-reference accessors and modifiers should be used for these data
     types.</p>

  <h2><a name="17.6">17.6 SQL Server Index Definitions</a></h2>

  <p>When the <code>index</code> pragma (<a href="#12.6">Section 12.6,
     "Index Definition Pragmas"</a>) is used to define an SQL Server index,
     the <code>type</code> clause specifies the index type (for example,
     <code>UNIQUE</code>, <code>CLUSTERED</code>), the <code>method</code>
     clause is not used, and the <code>options</code> clause specifies
     additional index properties. The column options can be used to specify
     the sort order. For example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  std::string name_;

  #pragma db index                             \
             type("UNIQUE CLUSTERED")          \
             member(name_, "DESC")             \
             options("WITH(FILLFACTOR = 80)")
};
  </pre>


  <!-- PART -->


  <hr class="page-break"/>
  <h1><a name="III">PART III&nbsp;&nbsp;
      <span style="font-weight: normal;">PROFILES</span></a></h1>

  <p>Part III covers the integration of ODB with popular C++ frameworks
     and libraries. It consists of the following chapters.</p>

  <table class="toc">
    <tr><th>18</th><td><a href="#18">Profiles Introduction</a></td></tr>
    <tr><th>19</th><td><a href="#19">Boost Profile</a></td></tr>
    <tr><th>20</th><td><a href="#20">Qt Profile</a></td></tr>
  </table>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="18">18 Profiles Introduction</a></h1>

  <p>ODB profiles are a generic mechanism for integrating ODB with
     widely-used C++ frameworks and libraries. A profile provides glue
     code which allows you to seamlessly persist various components, such
     as smart pointers, containers, and value types found in these
     frameworks or libraries. The code necessary to implement a profile
     is packaged into the so called profile library. For example, the
     Boost profile implementation is provided by the <code>libodb-boost</code>
     profile library.</p>

  <p>Besides linking the profile library to our application, it is also
     necessary to let the ODB compiler know which profiles we
     are using. This is accomplished with the <code>--profile</code>
     (or <code>-p</code> alias) option. For example:</p>

  <pre class="terminal">
odb --profile boost ...
  </pre>

  <p>Some profiles, especially those covering frameworks or libraries that
     consist of multiple sub-libraries, provide sub-profiles that allow you
     to pick and choose which components you would like to use in your
     application. For example, the <code>boost</code> profile contains
     the <code>boost/data-time</code> sub-profile. If we are only
     interested in the <code>date_time</code> types, then we can
     pass <code>boost/data-time</code> instead of <code>boost</code>
     to the <code>--profile</code> option, for example:</p>

  <pre class="terminal">
odb --profile boost/date-time ...
  </pre>

  <p>To summarize, you will need to perform the following steps in order
     to make use of a profile in your application:</p>

  <ol>
    <li>ODB compiler: if necessary, specify the path to the profile library
        headers (<code>-I</code> option).</li>
    <li>ODB compiler: specify the profile you would like to use with
        the <code>--profile</code> option.</li>
    <li>C++ compiler: if necessary, specify the path to the profile library
        headers (normally <code>-I</code> option).</li>
    <li>Linker: link the profile library to the application.</li>
  </ol>

  <p>The remaining chapters in this part of the manual describe the
     standard profiles provided by ODB.</p>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="19">19 Boost Profile</a></h1>

  <p>The ODB profile implementation for Boost is provided by the
     <code>libodb-boost</code> library and consists of multiple sub-profiles
     corresponding to the individual Boost libraries. To enable all the
     available Boost sub-profiles, pass <code>boost</code> as the profile
     name to the <code>--profile</code> ODB compiler option. Alternatively,
     you can enable only specific sub-profiles by passing individual
     sub-profile names to <code>--profile</code>. The following sections in
     this chapter discuss each Boost sub-profile in detail. The
     <code>boost</code> example in the <code>odb-examples</code>
     package shows how to enable and use the Boost profile.</p>

  <p>Some sub-profiles may throw exceptions to indicate error conditions,
     such as the inability to store a specific value in a particular database
     system. All such exceptions derive from the
     <code>odb::boost::exception</code> class which in turn derives from
     the root of the ODB exception hierarchy, class <code>odb::exception</code>
     (<a href="#3.14">Section 3.14, "ODB Exceptions"</a>). The
     <code>odb::boost::exception</code> class is defined in the
     <code>&lt;odb/boost/exception.hxx></code> header file and has the
     same interface as <code>odb::exception</code>. The concrete exceptions
     that can be thrown by the Boost sub-profiles are described in the
     following sections.</p>

  <h2><a name="19.1">19.1 Smart Pointers Library</a></h2>

  <p>The <code>smart-ptr</code> sub-profile provides persistence
     support for a subset of smart pointers from the Boost
     <code>smart_ptr</code> library. To enable only this profile,
     pass <code>boost/smart-ptr</code> to the <code>--profile</code>
     ODB compiler option.</p>

  <p>The currently supported smart pointers are
     <code>boost::shared_ptr</code> and <code>boost::weak_ptr</code>. For
     more information on using smart pointers as pointers to objects and
     views, refer to <a href="#3.3">Section 3.3, "Object and View Pointers"</a>
     and <a href="#6">Chapter 6, "Relationships"</a>. For more information
     on using smart pointers as pointers to values, refer to
     <a href="#7.3">Section 7.3, "Pointers and <code>NULL</code> Value
     Semantics"</a>. When used as a pointer to a value, only
     <code>boost::shared_ptr</code> is supported. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db null
  boost::shared_ptr&lt;std::string> middle_name_;
};
  </pre>

  <p>To provide finer grained control over object relationship loading,
     the <code>smart-ptr</code> sub-profile also provides the lazy
     counterparts for the above  pointers: <code>odb::boost::lazy_shared_ptr</code> and
     <code>odb::boost::lazy_weak_ptr</code>. You will need to include the
     <code>&lt;odb/boost/lazy-ptr.hxx></code> header file to make the lazy
     variants available in your application. For the description of the lazy
     pointer interface and semantics refer to <a href="#6.3">Section 6.3,
     "Lazy Pointers"</a>. The following example shows how we can use these
     smart pointers to establish a relationship between persistent objects.</p>

  <pre class="cxx">
class employee;

#pragma db object
class position
{
  ...

  #pragma db inverse(position_)
  odb::boost::lazy_weak_ptr&lt;employee> employee_;
};

#pragma db object
class employee
{
  ...

  #pragma db not_null
  boost::shared_ptr&lt;position> position_;
};
  </pre>

  <p>Besides providing persistence support for the above smart pointers,
     the <code>smart-ptr</code> sub-profile also changes the default
     pointer (<a href="#3.3">Section 3.3, "Object and View Pointers"</a>)
     to <code>boost::shared_ptr</code>. In particular, this means that
     database functions that return dynamically allocated objects and views
     will return them as <code>boost::shared_ptr</code> pointers.  To override
     this behavior, add the <code>--default-pointer</code> option specifying
     the alternative pointer type after the <code>--profile</code> option.</p>

  <h2><a name="19.2">19.2 Unordered Containers Library</a></h2>

  <p>The <code>unordered</code> sub-profile provides persistence support for
     the containers from the Boost <code>unordered</code> library. To enable
     only this profile, pass <code>boost/unordered</code> to
     the <code>--profile</code> ODB compiler option.</p>

  <p>The supported containers are <code>boost::unordered_set</code>,
     <code>boost::unordered_map</code>, <code>boost::unordered_multiset</code>,
     and <code>boost::unordered_multimap</code>. For more information on using
     the set and multiset containers with ODB refer to <a href="#5.2">Section
     5.2, "Set and Multiset Containers"</a>. For more information on using the
     map and multimap containers with ODB refer to <a href="#5.3"> Section
     5.3, "Map and Multimap Containers"</a>. The following example shows how
     the <code>unordered_set</code> container may be used within a persistent
     object.</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
  boost::unordered_set&lt;std::string&gt; emails_;
};
  </pre>

  <h2><a name="19.3">19.3 Multi-Index Container Library</a></h2>

  <p>The <code>multi-index</code> sub-profile provides persistence support for
     <code>boost::multi_index_container</code> from the Boost Multi-Index
     library. To enable only this profile, pass <code>boost/multi-index</code>
     to the <code>--profile</code> ODB compiler option. The following example
     shows how <code>multi_index_container</code> may be used within a
     persistent object.</p>

  <pre class="cxx">
namespace mi = boost::multi_index;

#pragma db object
class person
{
  ...

  typedef
  mi::multi_index_container&lt;
    std::string,
    mi::indexed_by&lt;
      mi::sequenced&lt;>,
      mi::ordered_unique&lt;mi::identity&lt;std::string> >
    >
  > emails;

  emails emails_;
};
  </pre>

  <p>Note that a <code>multi_index_container</code> instantiation is
     stored differently in the database depending on whether it has
     any <code>sequenced</code> or <code>random_access</code> indexes.
     If it does, then it is treated as an ordered container
     (<a href="#5.1">Section 5.1, "Ordered Containers"</a>) with the
     first such index establishing the order. Otherwise, it is treated
     as a set container (<a href="#5.2">Section 5.2, "Set and Multiset
     Containers"</a>).</p>

  <p>Note also that there is a terminology clash between ODB and Boost
     Multi-Index. The ODB term <em>ordered container</em> translates
     to Multi-Index terms <em>sequenced index</em> and <em>random access
     index</em> while the ODB term <em>set container</em> translates
     to Multi-Index terms <em>ordered index</em> and <em>hashed
     index</em>.</p>

  <p>The <code>emails</code> container from the above example is stored
     as an ordered container. In contrast, the following <code>aliases</code>
     container is stored as a set.</p>

  <pre class="cxx">
namespace mi = boost::multi_index;

#pragma db value
struct name
{
  std::string first;
  std::string last;
};

bool operator&lt; (const name&amp;, const name&amp;);

#pragma db object
class person
{
  ...

  typedef
  mi::multi_index_container&lt;
    name,
    mi::indexed_by&lt;
      mi::ordered_unique&lt;mi::identity&lt;name> >
      mi::ordered_non_unique&lt;
        mi::member&lt;name, std::string, &amp;name::first>
      >,
      mi::ordered_non_unique&lt;
        mi::member&lt;name, std::string, &amp;name::last>
      >
    >
  > aliases;

  aliases aliases_;
};
  </pre>

  <h2><a name="19.4">19.4 Optional Library</a></h2>

  <p>The <code>optional</code> sub-profile provides persistence support for
     the <code>boost::optional</code> container from the Boost
     <code>optional</code> library. To enable only this profile, pass
     <code>boost/optional</code> to the <code>--profile</code> ODB compiler
     option.</p>

  <p>In a relational database <code>boost::optional</code> is mapped to
     a column that can have a <code>NULL</code> value. Similar to
     <code>odb::nullable</code> (<a href="#7.3">Section 7.3, "Pointers and
     <code>NULL</code> Value Semantics"</a>), it can be used to add the
     <code>NULL</code> semantics to existing C++ types. For example:</p>

  <pre class="cxx">
#include &lt;boost/optional.hpp>

#pragma db object
class person
{
  ...

  std::string first_;                    // TEXT NOT NULL
  boost::optional&lt;std::string> middle_;  // TEXT NULL
  std::string last_;                     // TEXT NOT NULL
};
  </pre>

  <p>Note also that similar to <code>odb::nullable</code>, when
     this profile is used, the <code>NULL</code> values are automatically
     enabled for data members of the  <code>boost::optional</code> type.</p>

  <h2><a name="19.5">19.5 Date Time Library</a></h2>

  <p>The <code>date-time</code> sub-profile provides persistence support for a
     subset of types from the Boost <code>date_time</code> library. It is
     further subdivided into two sub-profiles, <code>gregorian</code>
     and <code>posix_time</code>. The <code>gregorian</code> sub-profile
     provides support for types from the <code>boost::gregorian</code>
     namespace, while the <code>posix-time</code> sub-profile provides support
     for types from the <code>boost::posix_time</code> namespace. To enable
     the entire <code>date-time</code> sub-profile, pass
     <code>boost/date-time</code> to the <code>--profile</code> ODB compiler
     option. To enable only the <code>gregorian</code> sub-profile, pass
     <code>boost/date-time/gregorian</code>, and to enable only the
     <code>posix-time</code> sub-profile, pass
     <code>boost/date-time/posix-time</code>.</p>

  <p>The only type that the <code>gregorian</code> sub-profile currently
     supports is <code>gregorian::date</code>. The types currently supported
     by the <code>posix-time</code> sub-profile are
     <code>posix_time::ptime</code> and
     <code>posix_time::time_duration</code>. The manner in which these types
     are persisted is database system dependent and is discussed in the
     sub-sections that follow. The example below shows how
     <code>gregorian::date</code> may be used within a persistent object.</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
  boost::gregorian::date date_of_birth_;
};
  </pre>

  <p>The concrete exceptions that can be thrown by the <code>date-time</code>
     sub-profile implementation are presented below.</p>


  <pre class="cxx">
namespace odb
{
  namespace boost
  {
    namespace date_time
    {
      struct special_value: odb::boost::exception
      {
        virtual const char*
        what () const throw ();
      };

      struct value_out_of_range: odb::boost::exception
      {
        virtual const char*
        what () const throw ();
      };
    }
  }
}
  </pre>

  <p>You will need to include the
     <code>&lt;odb/boost/date-time/exceptions.hxx&gt;</code> header file to
     make these exceptions available in your application.</p>

  <p>The <code>special_value</code> exception is thrown if an attempt is made
     to store a Boost date-time special value that cannot be represented in
     the target database. The <code>value_out_of_range</code> exception is
     thrown if an attempt is made to store a date-time value that is out of
     the target database range. The specific conditions under which these
     exceptions are thrown are database system dependent and are discussed in
     more detail in the following sub-sections.</p>

  <h3><a name="19.5.1">19.5.1 MySQL Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported Boost <code>date_time</code> types and the MySQL database
     types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Boost <code>date_time</code> Type</th>
      <th>MySQL Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>gregorian::date</code></td>
      <td><code>DATE</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>posix_time::ptime</code></td>
      <td><code>DATETIME</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>posix_time::time_duration</code></td>
      <td><code>TIME</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>The Boost special value <code>date_time::not_a_date_time</code> is stored
     as a <code>NULL</code> value in a MySQL database.</p>

  <p>The <code>posix-time</code> sub-profile implementation also provides
     support for mapping <code>posix_time::ptime</code> to the
     <code>TIMESTAMP</code> MySQL type. However, this mapping has to be
     explicitly requested using the <code>db&nbsp;type</code> pragma
     (<a href="#12.4.3">Section 12.4.3, "<code>type</code>"</a>), as shown in
     the following example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
  #pragma db type("TIMESTAMP") not_null
  boost::posix_time::ptime updated_;
};
  </pre>

  <p>Some valid Boost date-time values cannot be stored in a MySQL database.
     An attempt to persist any Boost date-time special value other than
     <code>date_time::not_a_date_time</code> will result in the
     <code>special_value</code> exception. An attempt to persist a Boost
     date-time value that is out of the MySQL type range will result in
     the <code>out_of_range</code> exception.  Refer to the MySQL
     documentation for more information on the MySQL data type ranges.</p>

  <h3><a name="19.5.2">19.5.2 SQLite Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported Boost <code>date_time</code> types and the SQLite database
     types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Boost <code>date_time</code> Type</th>
      <th>SQLite Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>gregorian::date</code></td>
      <td><code>TEXT</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>posix_time::ptime</code></td>
      <td><code>TEXT</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>posix_time::time_duration</code></td>
      <td><code>TEXT</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>The Boost special value <code>date_time::not_a_date_time</code> is stored
     as a <code>NULL</code> value in an SQLite database.</p>

  <p>The <code>date-time</code> sub-profile implementation also provides
     support for mapping <code>gregorian::date</code> and
     <code>posix_time::ptime</code> to the <code>INTEGER</code> SQLite type,
     with the integer value representing the UNIX time. Similarly, an
     alternative mapping for <code>posix_time::time_duration</code> to the
     <code>INTEGER</code> type represents the duration as a number of
     seconds. These mappings have to be explicitly requested using the
     <code>db&nbsp;type</code> pragma (<a href="#12.4.3">Section 12.4.3,
     "<code>type</code>"</a>), as shown in the following example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
  #pragma db type("INTEGER")
  boost::gregorian::date born_;
};
  </pre>

  <!--

  <p>The Boost UNIX time interface does not support 64 bit time arithmetic.
     As a result, the UNIX time representations of <code>gregorian::date</code>
     and <code>posix_time::ptime</code> are restricted to the 32 bit range.
     The minimum and maximum date representable by
     <code>gregorian::date</code> is 1901-12-14 and 2038-01-19 respectively,
     while the minimum and maximum date-time representable by
     <code>posix_time::ptime</code> is 1901-12-13&nbsp;20:45:54 GMT and
     2038-01-19&nbsp;03:14:07&nbsp;GMT respectively. Persisting and loading
     of values outside of these ranges will result in undefined behavior.</p>

  -->

  <p>Some valid Boost date-time values cannot be stored in an SQLite database.
     An attempt to persist any Boost date-time special value other than
     <code>date_time::not_a_date_time</code> will result in the
     <code>special_value</code> exception. An attempt to persist a negative
     <code>posix_time::time_duration</code> value as SQLite <code>TEXT</code>
     will result in the <code>out_of_range</code> exception.</p>


  <h3><a name="19.5.3">19.5.3 PostgreSQL Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported Boost <code>date_time</code> types and the PostgreSQL database
     types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Boost <code>date_time</code> Type</th>
      <th>PostgreSQL Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>gregorian::date</code></td>
      <td><code>DATE</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>posix_time::ptime</code></td>
      <td><code>TIMESTAMP</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>posix_time::time_duration</code></td>
      <td><code>TIME</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>The Boost special value <code>date_time::not_a_date_time</code> is stored
     as a <code>NULL</code> value in a PostgreSQL database.
     <code>posix_time::ptime</code> values representing the special values
     <code>date_time::pos_infin</code> and <code>date_time::neg_infin</code>
     are stored as the special PostgreSQL TIMESTAMP values
     <code>infinity</code> and <code>-infinity</code>, respectively.</p>

  <p>Some valid Boost date-time values cannot be stored in a PostgreSQL
     database. The PostgreSQL TIME type represents a clock time, and can
     therefore only store positive durations with a total length of time less
     than 24 hours. An attempt to persist a
     <code>posix_time::time_duration</code> value outside of this range will
     result in the <code>value_out_of_range</code> exception. An attempt to
     persist a <code>posix_time::time_duration</code> value representing any
     special value other than <code>date_time::not_a_date_time</code>  will
     result in the <code>special_value</code> exception.</p>


  <h3><a name="19.5.4">19.5.4 Oracle Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported Boost <code>date_time</code> types and the Oracle database
     types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Boost <code>date_time</code> Type</th>
      <th>Oracle Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>gregorian::date</code></td>
      <td><code>DATE</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>posix_time::ptime</code></td>
      <td><code>TIMESTAMP</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>posix_time::time_duration</code></td>
      <td><code>INTERVAL DAY TO SECOND</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>The Boost special value <code>date_time::not_a_date_time</code> is stored
     as a <code>NULL</code> value in an Oracle database.</p>

  <p>The <code>date-time</code> sub-profile implementation also provides
     support for mapping <code>posix_time::ptime</code> to the
     <code>DATE</code> Oracle type with fractional seconds that may be
     stored in a <code>ptime</code> instance being ignored. This
     alternative mapping has to be explicitly requested using the
     <code>db&nbsp;type</code> pragma (<a href="#12.4.3">Section 12.4.3,
     "<code>type</code>"</a>), as shown in the following example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
  #pragma db type("DATE")
  boost::posix_time::ptime updated_;
};
  </pre>

  <p>Some valid Boost date-time values cannot be stored in an Oracle database.
     An attempt to persist a <code>gregorian::date</code>,
     <code>posix_time::ptime</code>, or
     <code>posix_time::time_duration</code> value representing any special
     value other than <code>date_time::not_a_date_time</code> will result in
     the <code>special_value</code> exception.</p>


  <h3><a name="19.5.5">19.5.5 SQL Server Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported Boost <code>date_time</code> types and the SQL Server database
     types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Boost <code>date_time</code> Type</th>
      <th>SQL Server Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>gregorian::date</code></td>
      <td><code>DATE</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>posix_time::ptime</code></td>
      <td><code>DATETIME2</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>posix_time::time_duration</code></td>
      <td><code>TIME</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>The Boost special value <code>date_time::not_a_date_time</code> is stored
     as a <code>NULL</code> value in an SQL Server database.</p>

  <p>Note that the <code>DATE</code>, <code>TIME</code>, and
     <code>DATETIME2</code> types are only available in SQL Server 2008 and
     later. SQL Server 2005 only supports the <code>DATETIME</code> and
     <code>SMALLDATETIME</code> date-time types. The new types are
     also unavailable when connecting to an SQL Server 2008 or
     later with the SQL Server 2005 Native Client ODBC driver.</p>

  <p>The <code>date-time</code> sub-profile implementation provides
     support for mapping <code>posix_time::ptime</code> to the
     <code>DATETIME</code> and <code>SMALLDATETIME</code> types,
     however, this mapping has to be explicitly requested using the
     <code>db&nbsp;type</code> pragma (<a href="#12.4.3">Section 12.4.3,
     "<code>type</code>"</a>), as shown in the following example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
  #pragma db type("DATETIME")
  boost::posix_time::ptime updated_;
};
  </pre>

  <p>Some valid Boost date-time values cannot be stored in an SQL Server
     database. An attempt to persist a <code>gregorian::date</code>,
     <code>posix_time::ptime</code>, or <code>posix_time::time_duration</code>
     value representing any special value other than
     <code>date_time::not_a_date_time</code> will result in the
     <code>special_value</code> exception. The range of the <code>TIME</code>
     type in SQL server is from <code>00:00:00.0000000</code> to
     <code>23:59:59.9999999</code>. An attempt to persist a
     <code>posix_time::time_duration</code> value out of this range will
     result in the <code>value_out_of_range</code> exception.</p>

  <h2><a name="19.6">19.6 Uuid Library</a></h2>

  <p>The <code>uuid</code> sub-profile provides persistence support for the
     <code>uuid</code> type from the Boost <code>uuid</code> library. To
     enable only this profile, pass <code>boost/uuid</code> to the
     <code>--profile</code> ODB compiler option.</p>

  <p>The manner in which these types are persisted is database system
     dependent and is discussed in the sub-sections that follow. By
     default a data member of the <code>uuid</code> type is mapped to a
     database column with <code>NULL</code> enabled and nil <code>uuid</code>
     instances are stored as a <code>NULL</code> value. However, you can
     change this behavior by declaring the data member <code>NOT NULL</code>
     with the <code>not_null</code> pragma (<a href="#12.4.6">Section
     12.4.6, "<code>null</code>/<code>not_null</code>"</a>). In this
     case, or if the data member is an object id, the implementation
     will store nil <code>uuid</code> instances as zero UUID values
     (<code>{00000000-0000-0000-0000-000000000000}</code>). For example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  boost::uuids::uuid x_; // Nil values stored as NULL.

  #pragma db not_null
  boost::uuids::uuid y_; // Nil values stored as zero.
};
  </pre>

  <h3><a name="19.6.1">19.6.1 MySQL Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the Boost
     <code>uuid</code> type and the MySQL database type.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Boost Type</th>
      <th>MySQL Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>boost::uuids::uuid</code></td>
      <td><code>BINARY(16)</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <h3><a name="19.6.2">19.6.2 SQLite Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the Boost
     <code>uuid</code> type and the SQLite database type.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Boost Type</th>
      <th>SQLite Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>boost::uuids::uuid</code></td>
      <td><code>BLOB</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <h3><a name="19.6.3">19.6.3 PostgreSQL Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the Boost
     <code>uuid</code> type and the PostgreSQL database type.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Boost Type</th>
      <th>PostgreSQL Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>boost::uuids::uuid</code></td>
      <td><code>UUID</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <h3><a name="19.6.4">19.6.4 Oracle Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the Boost
     <code>uuid</code> type and the Oracle database type.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Boost Type</th>
      <th>Oracle Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>boost::uuids::uuid</code></td>
      <td><code>RAW(16)</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <h3><a name="19.6.5">19.6.5 SQL Server Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the Boost
     <code>uuid</code> type and the SQL Server database type.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Boost Type</th>
      <th>SQL Server Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>boost::uuids::uuid</code></td>
      <td><code>UNIQUEIDENTIFIER</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>


  <!-- CHAPTER -->


  <hr class="page-break"/>
  <h1><a name="20">20 Qt Profile</a></h1>

  <p>The ODB profile implementation for Qt is provided by the
     <code>libodb-qt</code> library and consists of multiple sub-profiles
     corresponding to the common type groups within Qt. Currently,
     only types from the <code>QtCore</code> module are supported. To
     enable all the available Qt sub-profiles, pass <code>qt</code> as the
     profile name to the <code>--profile</code> ODB compiler  option.
     Alternatively, you can enable only specific sub-profiles by passing
     individual sub-profile names to <code>--profile</code>. The following
     sections in this chapter discuss each Qt sub-profile in detail. The
     <code>qt</code> example in the <code>odb-examples</code>
     package shows how to enable and use the Qt profile.</p>

  <p>Some sub-profiles may throw exceptions to indicate error conditions,
     such as the inability to store a specific value in a particular database
     system. All such exceptions derive from the
     <code>odb::qt::exception</code> class which in turn derives from
     the root of the ODB exception hierarchy, class <code>odb::exception</code>
     (<a href="#3.14">Section 3.14, "ODB Exceptions"</a>). The
     <code>odb::qt::exception</code> class is defined in the
     <code>&lt;odb/qt/exception.hxx></code> header file and has the
     same interface as <code>odb::exception</code>. The concrete exceptions
     that can be thrown by the Qt sub-profiles are described in the
     following sections.</p>

  <h2><a name="20.1">20.1 Basic Types</a></h2>

  <p>The <code>basic</code> sub-profile provides persistence support for basic
     types defined by Qt. To enable only this profile, pass
     <code>qt/basic</code> to the <code>--profile</code> ODB compiler
     option.</p>

  <p>The currently supported basic types are <code>QString</code>,
    <code>QByteArray</code>, and <code>QUuid</code>. The manner in
     which these types are persisted is database system dependent
     and is discussed in the sub-sections that follow. The example
     below shows how <code>QString</code> may be used within a
     persistent object.</p>

  <pre class="cxx">
#pragma db object
class Person
{
  ...
  QString name_;
};
  </pre>

  <p>By default a data member of the <code>QUuid</code> type is mapped to a
     database column with <code>NULL</code> enabled and null <code>QUuid</code>
     instances are stored as a <code>NULL</code> value. However, you can
     change this behavior by declaring the data member <code>NOT NULL</code>
     with the <code>not_null</code> pragma (<a href="#12.4.6">Section
     12.4.6, "<code>null</code>/<code>not_null</code>"</a>). In this
     case, or if the data member is an object id, the implementation
     will store null <code>QUuid</code> instances as zero UUID values
     (<code>{00000000-0000-0000-0000-000000000000}</code>). For example:</p>

  <pre class="cxx">
#pragma db object
class object
{
  ...

  QUuid x_; // Null values stored as NULL.

  #pragma db not_null
  QUuid y_; // Null values stored as zero.
};
  </pre>

  <h3><a name="20.1.1">20.1.1 MySQL Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported basic Qt types and the MySQL database types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Qt Type</th>
      <th>MySQL Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>QString</code></td>
      <td><code>TEXT/VARCHAR(255)</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QByteArray</code></td>
      <td><code>BLOB</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QUuid</code></td>
      <td><code>BINARY(16)</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>Instances of the <code>QString</code> and <code>QByteArray</code>
     types are stored as a NULL value if their <code>isNull()</code>
     member function returns <code>true</code>.</p>

  <p>Note also that the <code>QString</code> type is mapped
     differently depending on whether a member of this type
     is an object id or not. If the member is an object id,
     then for this member <code>QString</code> is mapped
     to the <code>VARCHAR(255)</code> MySQL type. Otherwise,
     it is mapped to <code>TEXT</code>.</p>

  <p>The <code>basic</code> sub-profile also provides support
     for mapping <code>QString</code> to the <code>CHAR</code>,
     <code>NCHAR</code>, and <code>NVARCHAR</code> MySQL types.
     However, these alternative mappings have to be explicitly
     requested using the <code>db&nbsp;type</code> pragma
     (<a href="#12.4.3">Section 12.4.3, "type"</a>), as shown in
     the following example:</p>

  <pre class="cxx">
#pragma db object
class Person
{
  ...

  #pragma db type("CHAR(2)") not_null
  QString licenseState_;
};
  </pre>


  <h3><a name="20.1.2">20.1.2 SQLite Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported basic Qt types and the SQLite database types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Qt Type</th>
      <th>SQLite Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>QString</code></td>
      <td><code>TEXT</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QByteArray</code></td>
      <td><code>BLOB</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QUuid</code></td>
      <td><code>BLOB</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>Instances of the <code>QString</code> and <code>QByteArray</code> types
     are stored as a NULL value if their <code>isNull()</code> member
     function returns <code>true</code>.</p>

  <h3><a name="20.1.3">20.1.3 PostgreSQL Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported basic Qt types and the PostgreSQL database types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Qt Type</th>
      <th>PostgreSQL Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>QString</code></td>
      <td><code>TEXT</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QByteArray</code></td>
      <td><code>BYTEA</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QUuid</code></td>
      <td><code>UUID</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>Instances of the <code>QString</code> and <code>QByteArray</code> types
     are stored as a NULL value if their <code>isNull()</code> member
     function returns <code>true</code>.</p>

  <p>The <code>basic</code> sub-profile also provides support
     for mapping <code>QString</code> to the <code>CHAR</code>
     and <code>VARCHAR</code> PostgreSQL types.
     However, these alternative mappings have to be explicitly
     requested using the <code>db&nbsp;type</code> pragma
     (<a href="#12.4.3">Section 12.4.3, "type"</a>), as shown in
     the following example:</p>

  <pre class="cxx">
#pragma db object
class Person
{
  ...

  #pragma db type("CHAR(2)") not_null
  QString licenseState_;
};
  </pre>

  <h3><a name="20.1.4">20.1.4 Oracle Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported basic Qt types and the Oracle database types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Qt Type</th>
      <th>Oracle Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>QString</code></td>
      <td><code>VARCHAR2(512)</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QByteArray</code></td>
      <td><code>BLOB</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QUuid</code></td>
      <td><code>RAW(16)</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>Instances of the <code>QString</code> and <code>QByteArray</code> types
     are stored as a NULL value if their <code>isNull()</code> member
     function returns <code>true</code>.</p>

  <p>The <code>basic</code> sub-profile also provides support
     for mapping <code>QString</code> to the <code>CHAR</code>,
     <code>NCHAR</code>, <code>NVARCHAR</code>, <code>CLOB</code>, and
     <code>NCLOB</code> Oracle types, and for mapping <code>QByteArray</code>
     to the <code>RAW</code> Oracle type. However, these alternative
     mappings have to be explicitly requested using the <code>db&nbsp;type</code>
     pragma (<a href="#12.4.3">Section 12.4.3, "type"</a>), as shown in the
     following example:</p>

  <pre class="cxx">
#pragma db object
class Person
{
  ...

  #pragma db type("CLOB") not_null
  QString firstName_;

  #pragma db type("RAW(16)") null
  QByteArray uuid_;
};
  </pre>

  <h3><a name="20.1.5">20.1.5 SQL Server Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported basic Qt types and the SQL Server database types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Qt Type</th>
      <th>SQL Server Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>QString</code></td>
      <td><code>VARCHAR(512)/VARCHAR(256)</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QByteArray</code></td>
      <td><code>VARBINARY(max)</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QUuid</code></td>
      <td><code>UNIQUEIDENTIFIER</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>Instances of the <code>QString</code> and <code>QByteArray</code> types
     are stored as a NULL value if their <code>isNull()</code> member
     function returns <code>true</code>.</p>

  <p>Note also that the <code>QString</code> type is mapped
     differently depending on whether a member of this type
     is an object id or not. If the member is an object id,
     then for this member <code>QString</code> is mapped
     to the <code>VARCHAR(256)</code> SQL Server type. Otherwise,
     it is mapped to <code>VARCHAR(512)</code>.</p>

  <p>The <code>basic</code> sub-profile also provides support
     for mapping <code>QString</code> to the <code>CHAR</code>,
     <code>NCHAR</code>, <code>NVARCHAR</code>, <code>TEXT</code>, and
     <code>NTEXT</code> SQL Server types, and for mapping
     <code>QByteArray</code> to the <code>BINARY</code> and
     <code>IMAGE</code> SQL Server types. However, these alternative
     mappings have to be explicitly requested using the <code>db&nbsp;type</code>
     pragma (<a href="#12.4.3">Section 12.4.3, "type"</a>), as shown in the
     following example:</p>

  <pre class="cxx">
#pragma db object
class Person
{
  ...

  #pragma db type("NVARCHAR(256)") not_null
  QString firstName_;

  #pragma db type("BINARY(16)") null
  QByteArray uuid_;
};
  </pre>

  <h2><a name="20.2">20.2 Smart Pointers</a></h2>

  <p>The <code>smart-ptr</code> sub-profile provides persistence support the
     Qt smart pointers. To enable only this profile, pass
     <code>qt/smart-ptr</code> to the <code>--profile</code> ODB compiler
     option.</p>

  <p>The currently supported smart pointers are
     <code>QSharedPointer</code> and <code>QWeakPointer</code>.
     For more information on using smart pointers as pointers to objects
     and views, refer to <a href="#3.3">Section 3.3, "Object and View
     Pointers"</a> and <a href="#6">Chapter 6, "Relationships"</a>. For
     more information on using smart pointers as pointers to values, refer
     to <a href="#7.3">Section 7.3, "Pointers and <code>NULL</code> Value
     Semantics"</a>. When used as a pointer to a value, only
     <code>QSharedPointer</code> is supported. For example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...

  #pragma db null
  QSharedPointer&lt;QString> middle_name_;
};
  </pre>

  <p>To provide finer grained control over object relationship loading,
     the <code>smart-ptr</code> sub-profile also provides the lazy
     counterparts for the above pointers: <code>QLazySharedPointer</code>
     and <code>QLazyWeakPointer</code>. You will need to include the
     <code>&lt;odb/qt/lazy-ptr.hxx></code> header file to make the lazy
     variants available in your application. For the description of the lazy
     pointer interface and semantics refer to <a href="#6.3">Section 6.3,
     "Lazy Pointers"</a>. The following example shows how we can use these
     smart pointers to establish a relationship between persistent objects.</p>

  <pre class="cxx">
class Employee;

#pragma db object
class Position
{
  ...

  #pragma db inverse(position_)
  QLazyWeakPointer&lt;Employee> employee_;
};

#pragma db object
class Employee
{
  ...

  #pragma db not_null
  QSharedPointer&lt;Position> position_;
};
  </pre>

  <p>Besides providing persistence support for the above smart pointers,
     the <code>smart-ptr</code> sub-profile also changes the default
     pointer (<a href="#3.3">Section 3.3, "Object and View Pointers"</a>)
     to <code>QSharedPointer</code>.  In particular, this means that
     database functions that return dynamically allocated objects and views
     will return them as <code>QSharedPointer</code> pointers. To override
     this behavior, add the <code>--default-pointer</code> option specifying
     the alternative pointer type after the <code>--profile</code> option.</p>

  <h2><a name="20.3">20.3 Containers Library</a></h2>

  <p>The <code>container</code> sub-profile provides persistence support for
     Qt containers. To enable only this profile, pass
     <code>qt/containers</code> to the <code>--profile</code> ODB compiler
     option.</p>

  <p>The currently supported ordered containers are <code>QVector</code>,
     <code>QList</code>, and <code>QLinkedList</code>. Supported map
     containers are <code>QMap</code>, <code>QMultiMap</code>,
     <code>QHash</code>, and <code>QMultiHash</code>. The supported set
     container is <code>QSet</code>. For more information on using
     containers with ODB refer to <a href="#5">Chapter 5, "Containers"</a>.
     The following example shows how the <code>QSet</code> container may
     be used within a persistent object.</p>

  <pre class="cxx">
#pragma db object
class Person
{
  ...
  QSet&lt;QString> emails_;
};
  </pre>

  <h2><a name="20.4">20.4 Date Time Types</a></h2>

  <p>The <code>date-time</code> sub-profile provides persistence support for
     the Qt date-time types. To enable only this profile, pass
     <code>qt/date-time</code> to the <code>--profile</code> ODB compiler
     option.</p>

  <p>The currently supported date-time types are <code>QDate</code>,
     <code>QTime</code>, and <code>QDateTime</code>. The manner in which
     these types are persisted is database system dependent and is
     discussed in the sub-sections that follow. The example below shows how
     <code>QDate</code> may be used within a persistent object.</p>

  <pre class="cxx">
#pragma db object
class Person
{
  ...
  QDate dateOfBirth_;
};
  </pre>

  <p>The single concrete exception that can be thrown by the
     <code>date-time</code> sub-profile implementation is presented below.</p>


  <pre class="cxx">
namespace odb
{
  namespace qt
  {
    namespace date_time
    {
      struct value_out_of_range: odb::qt::exception
      {
        virtual const char*
        what () const throw ();
      };
    }
  }
}
  </pre>

  <p>You will need to include the
     <code>&lt;odb/qt/date-time/exceptions.hxx&gt;</code> header file to
     make this exception available in your application.</p>

  <p>The <code>value_out_of_range</code> exception is thrown if an attempt
     is made to store a date-time value that is out of the target database
     range. The specific conditions under which it is thrown is database
     system dependent and is discussed in more detail in the
     following sub-sections.</p>

  <h3><a name="20.4.1">20.4.1 MySQL Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported Qt date-time types and the MySQL database types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Qt Date Time Type</th>
      <th>MySQL Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>QDate</code></td>
      <td><code>DATE</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QTime</code></td>
      <td><code>TIME</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QDateTime</code></td>
      <td><code>DATETIME</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>Instances of the <code>QDate</code>, <code>QTime</code>, and
     <code>QDateTime</code> types are stored as a NULL value if their
     <code>isNull()</code> member function returns true.</p>

  <p>The <code>date-time</code> sub-profile implementation also provides
     support for mapping <code>QDateTime</code> to the <code>TIMESTAMP</code>
     MySQL type. However, this mapping has to be explicitly requested using
     the <code>db&nbsp;type</code> pragma
     (<a href="#12.4.3">Section 12.4.3, "<code>type</code>"</a>), as shown in
     the following example:</p>

  <pre class="cxx">
#pragma db object
class Person
{
  ...
  #pragma db type("TIMESTAMP") not_null
  QDateTime updated_;
};
  </pre>

  <p>Some valid Qt date-time values cannot be stored in a MySQL database.  An
     attempt to persist a Qt date-time value that is out of the MySQL type
     range will result in the <code>out_of_range</code> exception.  Refer to
     the MySQL documentation for more information on the MySQL data type
     ranges.</p>

  <h3><a name="20.4.2">20.4.2 SQLite Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported Qt date-time types and the SQLite database types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Qt Date Time Type</th>
      <th>SQLite Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>QDate</code></td>
      <td><code>TEXT</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QTime</code></td>
      <td><code>TEXT</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QDateTime</code></td>
      <td><code>TEXT</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>Instances of the <code>QDate</code>, <code>QTime</code>, and
     <code>QDateTime</code> types are stored as a NULL value if their
     <code>isNull()</code> member function returns true.</p>

  <p>The <code>date-time</code> sub-profile implementation also provides
     support for mapping <code>QDate</code> and <code>QDateTime</code> to the
     SQLite <code>INTEGER</code> type, with the integer value representing the
     UNIX time. Similarly, an alternative mapping for <code>QTime</code> to
     the <code>INTEGER</code> type represents a clock time as the number of
     seconds since midnight. These mappings have to be explicitly requested
     using the <code>db&nbsp;type</code> pragma
     (<a href="#12.4.3">Section 12.4.3, "<code>type</code>"</a>), as shown
     in the following example:</p>

  <pre class="cxx">
#pragma db object
class Person
{
  ...
  #pragma db type("INTEGER")
  QDate born_;
};
  </pre>

  <p>Some valid Qt date-time values cannot be stored in an SQLite database.
     An attempt to persist any Qt date-time value representing a negative UNIX
     time (any point in time prior to the 1970-01-01&nbsp;00:00:00 UNIX time
     epoch) as an SQLite <code>INTEGER</code> will result in the
     <code>out_of_range</code> exception.</p>

  <h3><a name="20.4.3">20.4.3 PostgreSQL Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported Qt date-time types and the PostgreSQL database types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Qt Date Time Type</th>
      <th>PostgreSQL Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>QDate</code></td>
      <td><code>DATE</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QTime</code></td>
      <td><code>TIME</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QDateTime</code></td>
      <td><code>TIMESTAMP</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>Instances of the <code>QDate</code>, <code>QTime</code>, and
     <code>QDateTime</code> types are stored as a NULL value if their
     <code>isNull()</code> member function returns true.</p>

  <h3><a name="20.4.4">20.4.4 Oracle Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported Qt date-time types and the Oracle database types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Qt Date Time Type</th>
      <th>Oracle Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>QDate</code></td>
      <td><code>DATE</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QTime</code></td>
      <td><code>INTERVAL DAY(0) TO SECOND(3)</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QDateTime</code></td>
      <td><code>TIMESTAMP(3)</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>Instances of the <code>QDate</code>, <code>QTime</code>, and
     <code>QDateTime</code> types are stored as a NULL value if their
     <code>isNull()</code> member function returns true.</p>

  <p>The <code>date-time</code> sub-profile implementation also provides
     support for mapping <code>QDateTime</code> to the
     <code>DATE</code> Oracle type with fractional seconds that may be
     stored in a <code>QDateTime</code> instance being ignored. This
     alternative mapping has to be explicitly requested using the
     <code>db&nbsp;type</code> pragma (<a href="#12.4.3">Section 12.4.3,
     "<code>type</code>"</a>), as shown in the following example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
  #pragma db type("DATE")
  QDateTime updated_;
};
  </pre>

  <h3><a name="20.4.5">20.4.5 SQL Server Database Type Mapping</a></h3>

  <p>The following table summarizes the default mapping between the currently
     supported Qt date-time types and the SQL Server database types.</p>

  <!-- border="1" is necessary for html2ps -->
  <table id="mapping" border="1">
    <tr>
      <th>Qt Date Time Type</th>
      <th>SQL Server Type</th>
      <th>Default <code>NULL</code> Semantics</th>
    </tr>

    <tr>
      <td><code>QDate</code></td>
      <td><code>DATE</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QTime</code></td>
      <td><code>TIME(3)</code></td>
      <td><code>NULL</code></td>
    </tr>

    <tr>
      <td><code>QDateTime</code></td>
      <td><code>DATETIME2(3)</code></td>
      <td><code>NULL</code></td>
    </tr>
  </table>

  <p>Instances of the <code>QDate</code>, <code>QTime</code>, and
     <code>QDateTime</code> types are stored as a NULL value if their
     <code>isNull()</code> member function returns true.</p>

  <p>Note that the <code>DATE</code>, <code>TIME</code>, and
     <code>DATETIME2</code> types are only available in SQL Server 2008 and
     later. SQL Server 2005 only supports the <code>DATETIME</code> and
     <code>SMALLDATETIME</code> date-time types. The new types are
     also unavailable when connecting to an SQL Server 2008 or
     later with the SQL Server 2005 Native Client ODBC driver.</p>

  <p>The <code>date-time</code> sub-profile implementation provides
     support for mapping <code>QDateTime</code> to the <code>DATETIME</code>
     and <code>SMALLDATETIME</code> types, however, this mapping has to
     be explicitly requested using the <code>db&nbsp;type</code> pragma
     (<a href="#12.4.3">Section 12.4.3, "<code>type</code>"</a>), as
     shown in the following example:</p>

  <pre class="cxx">
#pragma db object
class person
{
  ...
  #pragma db type("DATETIME")
  QDateTime updated_;
};
  </pre>

  </div>
</div>

</body>
</html>