// file : odb/relational/mysql/source.cxx // copyright : Copyright (c) 2009-2011 Code Synthesis Tools CC // license : GNU GPL v3; see accompanying LICENSE file #include #include #include using namespace std; namespace relational { namespace mysql { namespace source { namespace relational = relational::source; namespace { const char* integer_buffer_types[] = { "MYSQL_TYPE_TINY", "MYSQL_TYPE_SHORT", "MYSQL_TYPE_LONG", // *_bind_param() doesn't support INT24. "MYSQL_TYPE_LONG", "MYSQL_TYPE_LONGLONG" }; const char* float_buffer_types[] = { "MYSQL_TYPE_FLOAT", "MYSQL_TYPE_DOUBLE" }; const char* date_time_buffer_types[] = { "MYSQL_TYPE_DATE", "MYSQL_TYPE_TIME", "MYSQL_TYPE_DATETIME", "MYSQL_TYPE_TIMESTAMP", "MYSQL_TYPE_SHORT" }; const char* char_bin_buffer_types[] = { "MYSQL_TYPE_STRING", // CHAR "MYSQL_TYPE_BLOB", // BINARY, "MYSQL_TYPE_STRING", // VARCHAR "MYSQL_TYPE_BLOB", // VARBINARY "MYSQL_TYPE_STRING", // TINYTEXT "MYSQL_TYPE_BLOB", // TINYBLOB "MYSQL_TYPE_STRING", // TEXT "MYSQL_TYPE_BLOB", // BLOB "MYSQL_TYPE_STRING", // MEDIUMTEXT "MYSQL_TYPE_BLOB", // MEDIUMBLOB "MYSQL_TYPE_STRING", // LONGTEXT "MYSQL_TYPE_BLOB" // LONGBLOB }; } // // struct object_columns: relational::object_columns, context { object_columns (base const& x): base (x) {} virtual void column (semantics::data_member& m, string const& key_prefix, string const& table, string const& column) { // When we store a ENUM column in the MySQL database, if we bind // an integer parameter, then it is treated as an index and if we // bind a string, then it is treated as a enumerator. Everything // would have worked well if the same logic applied to the select // operation. That is, if we bind integer, then the database sends // the index and if we bind string then the database sends the // enumerator. Unfortunately, MySQL always sends the enumerator // and to get the index one has to resort to the enum+0 hack. // // This causes the following problem: at code generation time we // do not yet know which format we want. This is determined at // C++ compile time by traits (the reason we don't know this is // because we don't want to drag database-specific runtimes, // which define the necessary traits, as well as their // prerequisites into the ODB compilation process). As a result, // we cannot decide at code generation time whether we need the // +0 hack or not. One way to overcome this would be to construct // the SELECT statements at runtime, something along these lines: // // "enum" + enum_traits::hack + "," // // However, this complicates the code generator quite a bit: we // either have to move to std::string storage for all the // statements and all the databases, which is kind of a waste, // or do some deep per-database customizations, which is hairy. // So, instead, we are going to use another hack (hey, what the // hell, right?) by loading both the index and enumerator // combined into a string: // // CONCAT (enum+0, ' ', enum) // // For cases where we need the index, everything works since // MySQL will convert the leading number and stop at the space. // For cases where we need the enumerator, we do a bit of pre- // processing (see enum_traits) before handing the value off // to value_traits. // if (sk_ != statement_select || column_sql_type (m, key_prefix).type != sql_type::ENUM) { base::column (m, key_prefix, table, column); return; } string r; r += "CONCAT("; if (!table.empty ()) { r += table; r += '.'; } r += column; r += "+0,' ',"; if (!table.empty ()) { r += table; r += '.'; } r += column; r += ")"; sc_.push_back (relational::statement_column (r, m, key_prefix)); } }; entry object_columns_; struct view_columns: relational::view_columns, context { view_columns (base const& x): base (x) {} virtual void column (semantics::data_member& m, string const& column) { // The same idea as in object_columns. // if (column_sql_type (m).type != sql_type::ENUM) { base::column (m, column); return; } string r; r += "CONCAT("; r += column; r += "+0,' ',"; r += column; r += ")"; sc_.push_back (relational::statement_column (r, m)); } }; entry view_columns_; // // bind // struct bind_member: relational::bind_member, member_base { bind_member (base const& x) : member_base::base (x), // virtual base base (x), member_base (x) { } virtual bool pre (member_info& mi) { if (container (mi)) return false; ostringstream ostr; ostr << "b[n]"; b = ostr.str (); arg = arg_override_.empty () ? string ("i") : arg_override_; if (var_override_.empty ()) { os << "// " << mi.m.name () << endl << "//" << endl; if (inverse (mi.m, key_prefix_) || version (mi.m)) os << "if (sk == statement_select)" << "{"; // If the whole class is readonly, then we will never be // called with sk == statement_update. // else if (!readonly (*context::top_object)) { semantics::class_* c; if (id (mi.m) || readonly (mi.m) || ((c = composite (mi.t)) && readonly (*c))) os << "if (sk != statement_update)" << "{"; } } return true; } virtual void post (member_info& mi) { if (var_override_.empty ()) { semantics::class_* c; if ((c = composite (mi.t))) { bool ro (readonly (*c)); column_count_type const& cc (column_count (*c)); os << "n += " << cc.total << "UL"; // select = total // insert = total - inverse // update = total - inverse - readonly // if (cc.inverse != 0 || (!ro && cc.readonly != 0)) { os << " - (" << endl << "sk == statement_select ? 0 : "; if (cc.inverse != 0) os << cc.inverse << "UL"; if (!ro && cc.readonly != 0) { if (cc.inverse != 0) os << " + "; os << "(" << endl << "sk == statement_insert ? 0 : " << cc.readonly << "UL)"; } os << ")"; } os << ";"; } else os << "n++;"; bool block (false); // The same logic as in pre(). // if (inverse (mi.m, key_prefix_) || version (mi.m)) block = true; else if (!readonly (*context::top_object)) { semantics::class_* c; if (id (mi.m) || readonly (mi.m) || ((c = composite (mi.t)) && readonly (*c))) block = true; } if (block) os << "}"; else os << endl; } } virtual void traverse_composite (member_info& mi) { os << "composite_value_traits< " << mi.fq_type () << " >::bind (b + n, " << arg << "." << mi.var << "value, sk);"; } virtual void traverse_integer (member_info& mi) { // While the is_unsigned should indicate whether the // buffer variable is unsigned, rather than whether the // database type is unsigned, in case of the image types, // this is the same. // os << b << ".buffer_type = " << integer_buffer_types[mi.st->type - sql_type::TINYINT] << ";" << b << ".is_unsigned = " << (mi.st->unsign ? "1" : "0") << ";" << b << ".buffer = &" << arg << "." << mi.var << "value;" << b << ".is_null = &" << arg << "." << mi.var << "null;"; } virtual void traverse_float (member_info& mi) { os << b << ".buffer_type = " << float_buffer_types[mi.st->type - sql_type::FLOAT] << ";" << b << ".buffer = &" << arg << "." << mi.var << "value;" << b << ".is_null = &" << arg << "." << mi.var << "null;"; } virtual void traverse_decimal (member_info& mi) { os << b << ".buffer_type = MYSQL_TYPE_NEWDECIMAL;" << b << ".buffer = " << arg << "." << mi.var << "value.data ();" << b << ".buffer_length = static_cast (" << endl << arg << "." << mi.var << "value.capacity ());" << b << ".length = &" << arg << "." << mi.var << "size;" << b << ".is_null = &" << arg << "." << mi.var << "null;"; } virtual void traverse_date_time (member_info& mi) { os << b << ".buffer_type = " << date_time_buffer_types[mi.st->type - sql_type::DATE] << ";" << b << ".buffer = &" << arg << "." << mi.var << "value;"; if (mi.st->type == sql_type::YEAR) os << b << ".is_unsigned = 0;"; os << b << ".is_null = &" << arg << "." << mi.var << "null;"; } virtual void traverse_short_string (member_info& mi) { // MySQL documentation is quite confusing about the use of // buffer_length and length when it comes to input parameters. // Source code, however, tells us that it uses buffer_length // only if length is NULL. // os << b << ".buffer_type = " << char_bin_buffer_types[mi.st->type - sql_type::CHAR] << ";" << b << ".buffer = " << arg << "." << mi.var << "value.data ();" << b << ".buffer_length = static_cast (" << endl << arg << "." << mi.var << "value.capacity ());" << b << ".length = &" << arg << "." << mi.var << "size;" << b << ".is_null = &" << arg << "." << mi.var << "null;"; } virtual void traverse_long_string (member_info& mi) { os << b << ".buffer_type = " << char_bin_buffer_types[mi.st->type - sql_type::CHAR] << ";" << b << ".buffer = " << arg << "." << mi.var << "value.data ();" << b << ".buffer_length = static_cast (" << endl << arg << "." << mi.var << "value.capacity ());" << b << ".length = &" << arg << "." << mi.var << "size;" << b << ".is_null = &" << arg << "." << mi.var << "null;"; } virtual void traverse_bit (member_info& mi) { // Treated as a BLOB. // os << b << ".buffer_type = MYSQL_TYPE_BLOB;" << b << ".buffer = " << arg << "." << mi.var << "value;" << b << ".buffer_length = static_cast (" << endl << "sizeof (" << arg << "." << mi.var << "value));" << b << ".length = &" << arg << "." << mi.var << "size;" << b << ".is_null = &" << arg << "." << mi.var << "null;"; } virtual void traverse_enum (member_info& mi) { // Represented as either integer or string. // os << "mysql::enum_traits::bind (" << b << "," << endl << arg << "." << mi.var << "value," << endl << arg << "." << mi.var << "size," << endl << "&" << arg << "." << mi.var << "null);"; } virtual void traverse_set (member_info& mi) { // Represented as a string. // os << b << ".buffer_type = MYSQL_TYPE_STRING;" << b << ".buffer = " << arg << "." << mi.var << "value.data ();" << b << ".buffer_length = static_cast (" << endl << arg << "." << mi.var << "value.capacity ());" << b << ".length = &" << arg << "." << mi.var << "size;" << b << ".is_null = &" << arg << "." << mi.var << "null;"; } private: string b; string arg; }; entry bind_member_; // // grow // struct grow_member: relational::grow_member, member_base { grow_member (base const& x) : member_base::base (x), // virtual base base (x), member_base (x) { } virtual bool pre (member_info& mi) { if (container (mi)) return false; ostringstream ostr; ostr << "t[" << index_ << "UL]"; e = ostr.str (); if (var_override_.empty ()) os << "// " << mi.m.name () << endl << "//" << endl; return true; } virtual void post (member_info& mi) { if (semantics::class_* c = composite (mi.t)) index_ += column_count (*c).total; else index_++; } virtual void traverse_composite (member_info& mi) { os << "if (composite_value_traits< " << mi.fq_type () << " >::grow (" << endl << "i." << mi.var << "value, t + " << index_ << "UL))" << "{" << "grew = true;" << "}"; } virtual void traverse_integer (member_info&) { os << e << " = 0;" << endl; } virtual void traverse_float (member_info&) { os << e << " = 0;" << endl; } virtual void traverse_decimal (member_info& mi) { // @@ Optimization disabled. // os << "if (" << e << ")" << endl << "{" << "i." << mi.var << "value.capacity (i." << mi.var << "size);" << "grew = true;" << "}"; } virtual void traverse_date_time (member_info&) { os << e << " = 0;" << endl; } virtual void traverse_short_string (member_info& mi) { // @@ Optimization disabled. // os << "if (" << e << ")" << endl << "{" << "i." << mi.var << "value.capacity (i." << mi.var << "size);" << "grew = true;" << "}"; } virtual void traverse_long_string (member_info& mi) { os << "if (" << e << ")" << endl << "{" << "i." << mi.var << "value.capacity (i." << mi.var << "size);" << "grew = true;" << "}"; } virtual void traverse_bit (member_info&) { os << e << " = 0;" << endl; } virtual void traverse_enum (member_info& mi) { // Represented as either integer or string (and we don't know // at the code generation time which one it is). // os << "if (" << e << ")" << endl << "{" << "if (mysql::enum_traits::grow (" << "i." << mi.var << "value, " << "i." << mi.var << "size))" << endl << "grew = true;" // String << "else" << endl << e << " = 0;" // Integer. << "}"; } virtual void traverse_set (member_info& mi) { // Represented as a string. // os << "if (" << e << ")" << endl << "{" << "i." << mi.var << "value.capacity (i." << mi.var << "size);" << "grew = true;" << "}"; } private: string e; }; entry grow_member_; // // init image // struct init_image_member: relational::init_image_member, member_base { init_image_member (base const& x) : member_base::base (x), // virtual base base (x), member_base (x), member_database_type_id_ (base::type_override_, base::fq_type_override_, base::key_prefix_) { } virtual bool pre (member_info& mi) { // Ignore containers (they get their own table) and inverse // object pointers (they are not present in this binding). // if (container (mi) || inverse (mi.m, key_prefix_)) return false; if (!member_override_.empty ()) member = member_override_; else { // If we are generating standard init() and this member // contains version, ignore it. // if (version (mi.m)) return false; string const& name (mi.m.name ()); member = "o." + name; os << "// " << name << endl << "//" << endl; // If the whole class is readonly, then we will never be // called with sk == statement_update. // if (!readonly (*context::top_object)) { semantics::class_* c; if (id (mi.m) || readonly (mi.m) || ((c = composite (mi.t)) && readonly (*c))) os << "if (sk == statement_insert)"; } } // If this is a wrapped composite value, then we need to // "unwrap" it. For simple values this is taken care of // by the value_traits specializations. // if (mi.wrapper != 0 && composite (mi.t)) { // Here we need the wrapper type, not the wrapped type. // member = "wrapper_traits< " + mi.fq_type (false) + " >::" + "get_ref (" + member + ")"; } if (composite (mi.t)) { os << "{"; traits = "composite_value_traits< " + mi.fq_type () + " >"; } else { // When handling a pointer, mi.t is the id type of the referenced // object. // semantics::type& mt (member_utype (mi.m, key_prefix_)); if (semantics::class_* c = object_pointer (mt)) { type = "obj_traits::id_type"; db_type_id = member_database_type_id_.database_type_id (mi.m); // Handle NULL pointers and extract the id. // os << "{" << "typedef object_traits< " << class_fq_name (*c) << " > obj_traits;"; if (weak_pointer (mt)) { os << "typedef pointer_traits< " << mi.fq_type () << " > wptr_traits;" << "typedef pointer_traits< wptr_traits::" << "strong_pointer_type > ptr_traits;" << endl << "wptr_traits::strong_pointer_type sp (" << "wptr_traits::lock (" << member << "));"; member = "sp"; } else os << "typedef pointer_traits< " << mi.fq_type () << " > ptr_traits;" << endl; os << "bool is_null (ptr_traits::null_ptr (" << member << "));" << "if (!is_null)" << "{" << "const " << type << "& id (" << endl; if (lazy_pointer (mt)) os << "ptr_traits::object_id< ptr_traits::element_type > (" << member << ")"; else os << "obj_traits::id (ptr_traits::get_ref (" << member << "))"; os << ");" << endl; member = "id"; } else { type = mi.fq_type (); db_type_id = member_database_type_id_.database_type_id (mi.m); os << "{" << "bool is_null;"; } traits = "mysql::value_traits<\n " + type + ",\n " + db_type_id + " >"; } return true; } virtual void post (member_info& mi) { if (composite (mi.t)) os << "}"; else { // When handling a pointer, mi.t is the id type of the referenced // object. // if (object_pointer (member_utype (mi.m, key_prefix_))) { os << "}"; if (!null (mi.m, key_prefix_)) os << "else" << endl << "throw null_pointer ();"; } os << "i." << mi.var << "null = is_null;" << "}"; } } virtual void traverse_composite (member_info& mi) { os << "if (" << traits << "::init (" << endl << "i." << mi.var << "value," << endl << member << "," << endl << "sk))" << endl << "grew = true;"; } virtual void traverse_integer (member_info& mi) { os << traits << "::set_image (" << endl << "i." << mi.var << "value, is_null, " << member << ");"; } virtual void traverse_float (member_info& mi) { os << traits << "::set_image (" << endl << "i." << mi.var << "value, is_null, " << member << ");"; } virtual void traverse_decimal (member_info& mi) { // @@ Optimization: can remove growth check if buffer is fixed. // os << "std::size_t size (0);" << "std::size_t cap (i." << mi.var << "value.capacity ());" << traits << "::set_image (" << endl << "i." << mi.var << "value," << endl << "size," << endl << "is_null," << endl << member << ");" << "i." << mi.var << "size = static_cast (size);" << "grew = grew || (cap != i." << mi.var << "value.capacity ());"; } virtual void traverse_date_time (member_info& mi) { os << traits << "::set_image (" << endl << "i." << mi.var << "value, is_null, " << member << ");"; } virtual void traverse_short_string (member_info& mi) { // @@ Optimization: can remove growth check if buffer is fixed. // os << "std::size_t size (0);" << "std::size_t cap (i." << mi.var << "value.capacity ());" << traits << "::set_image (" << endl << "i." << mi.var << "value," << endl << "size," << endl << "is_null," << endl << member << ");" << "i." << mi.var << "size = static_cast (size);" << "grew = grew || (cap != i." << mi.var << "value.capacity ());"; } virtual void traverse_long_string (member_info& mi) { os << "std::size_t size (0);" << "std::size_t cap (i." << mi.var << "value.capacity ());" << traits << "::set_image (" << endl << "i." << mi.var << "value," << endl << "size," << endl << "is_null," << endl << member << ");" << "i." << mi.var << "size = static_cast (size);" << "grew = grew || (cap != i." << mi.var << "value.capacity ());"; } virtual void traverse_bit (member_info& mi) { // Represented as a BLOB. // os << "std::size_t size (0);" << traits << "::set_image (" << endl << "i." << mi.var << "value," << endl << "sizeof (i." << mi.var << "value)," << endl << "size," << endl << "is_null," << endl << member << ");" << "i." << mi.var << "size = static_cast (size);"; } virtual void traverse_enum (member_info& mi) { // Represented as either integer or string. // os << "if (mysql::enum_traits::set_image (" << endl << "i." << mi.var << "value," << endl << "i." << mi.var << "size," << endl << "is_null," << endl << member << "))" << endl << "grew = true;"; } virtual void traverse_set (member_info& mi) { // Represented as a string. // os << "std::size_t size (0);" << "std::size_t cap (i." << mi.var << "value.capacity ());" << traits << "::set_image (" << endl << "i." << mi.var << "value," << endl << "size," << endl << "is_null," << endl << member << ");" << "i." << mi.var << "size = static_cast (size);" << "grew = grew || (cap != i." << mi.var << "value.capacity ());"; } private: string type; string db_type_id; string member; string traits; member_database_type_id member_database_type_id_; }; entry init_image_member_; // // init value // struct init_value_member: relational::init_value_member, member_base { init_value_member (base const& x) : member_base::base (x), // virtual base base (x), member_base (x), member_database_type_id_ (base::type_override_, base::fq_type_override_, base::key_prefix_) { } virtual bool pre (member_info& mi) { if (container (mi)) return false; if (!member_override_.empty ()) member = member_override_; else { string const& name (mi.m.name ()); member = "o." + name; if (mi.cq) member = "const_cast< " + mi.fq_type (false) + "& > (" + member + ")"; os << "// " << name << endl << "//" << endl; } // If this is a wrapped composite value, then we need to // "unwrap" it. For simple values this is taken care of // by the value_traits specializations. // if (mi.wrapper != 0 && composite (mi.t)) { // Here we need the wrapper type, not the wrapped type. // member = "wrapper_traits< " + mi.fq_type (false) + " >::" + "set_ref (\n" + member + ")"; } if (composite (mi.t)) traits = "composite_value_traits< " + mi.fq_type () + " >"; else { // When handling a pointer, mi.t is the id type of the referenced // object. // semantics::type& mt (member_utype (mi.m, key_prefix_)); if (semantics::class_* c = object_pointer (mt)) { type = "obj_traits::id_type"; db_type_id = member_database_type_id_.database_type_id (mi.m); // Handle NULL pointers and extract the id. // os << "{" << "typedef object_traits< " << class_fq_name (*c) << " > obj_traits;" << "typedef pointer_traits< " << mi.fq_type () << " > ptr_traits;" << endl << "if (i." << mi.var << "null)" << endl; if (null (mi.m, key_prefix_)) os << member << " = ptr_traits::pointer_type ();"; else os << "throw null_pointer ();"; os << "else" << "{" << type << " id;"; member = "id"; } else { type = mi.fq_type (); db_type_id = member_database_type_id_.database_type_id (mi.m); } traits = "mysql::value_traits<\n " + type + ",\n " + db_type_id + " >"; } return true; } virtual void post (member_info& mi) { if (composite (mi.t)) return; // When handling a pointer, mi.t is the id type of the referenced // object. // semantics::type& mt (member_utype (mi.m, key_prefix_)); if (object_pointer (mt)) { if (!member_override_.empty ()) member = member_override_; else { member = "o." + mi.m.name (); if (mi.cq) member = "const_cast< " + mi.fq_type (false) + "& > (" + member + ")"; } if (lazy_pointer (mt)) os << member << " = ptr_traits::pointer_type (db, id);"; else os << "// If a compiler error points to the line below, then" << endl << "// it most likely means that a pointer used in a member" << endl << "// cannot be initialized from an object pointer." << endl << "//" << endl << member << " = ptr_traits::pointer_type (" << endl << "db.load< obj_traits::object_type > (id));"; os << "}" << "}"; } } virtual void traverse_composite (member_info& mi) { os << traits << "::init (" << endl << member << "," << endl << "i." << mi.var << "value," << endl << "db);" << endl; } virtual void traverse_integer (member_info& mi) { os << traits << "::set_value (" << endl << member << "," << endl << "i." << mi.var << "value," << endl << "i." << mi.var << "null);" << endl; } virtual void traverse_float (member_info& mi) { os << traits << "::set_value (" << endl << member << "," << endl << "i." << mi.var << "value," << endl << "i." << mi.var << "null);" << endl; } virtual void traverse_decimal (member_info& mi) { os << traits << "::set_value (" << endl << member << "," << endl << "i." << mi.var << "value," << endl << "i." << mi.var << "size," << endl << "i." << mi.var << "null);" << endl; } virtual void traverse_date_time (member_info& mi) { os << traits << "::set_value (" << endl << member << "," << endl << "i." << mi.var << "value," << endl << "i." << mi.var << "null);" << endl; } virtual void traverse_short_string (member_info& mi) { os << traits << "::set_value (" << endl << member << "," << endl << "i." << mi.var << "value," << endl << "i." << mi.var << "size," << endl << "i." << mi.var << "null);" << endl; } virtual void traverse_long_string (member_info& mi) { os << traits << "::set_value (" << endl << member << "," << endl << "i." << mi.var << "value," << endl << "i." << mi.var << "size," << endl << "i." << mi.var << "null);" << endl; } virtual void traverse_bit (member_info& mi) { // Represented as a BLOB. // os << traits << "::set_value (" << endl << member << "," << endl << "i." << mi.var << "value," << endl << "i." << mi.var << "size," << endl << "i." << mi.var << "null);" << endl; } virtual void traverse_enum (member_info& mi) { // Represented as either integer or string. // os << "mysql::enum_traits::set_value (" << endl << member << "," << endl << "i." << mi.var << "value," << endl << "i." << mi.var << "size," << endl << "i." << mi.var << "null);" << endl; } virtual void traverse_set (member_info& mi) { // Represented as a string. // os << traits << "::set_value (" << endl << member << "," << endl << "i." << mi.var << "value," << endl << "i." << mi.var << "size," << endl << "i." << mi.var << "null);" << endl; } private: string type; string db_type_id; string traits; string member; member_database_type_id member_database_type_id_; }; entry init_value_member_; struct class_: relational::class_, context { class_ (base const& x): base (x) {} virtual void init_auto_id (semantics::data_member&, string const& im) { os << im << "value = 0;"; } }; entry class_entry_; struct include: relational::include, context { include (base const& x): base (x) {} virtual void extra_post () { os << "#include " << endl; } }; entry include_; } } }